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A B S T R A C T

The reference standard for spatial normalization of brain positron emission tomography (PET) images involves
structural Magnetic Resonance Imaging (MRI) data. However, the lack of such structural information is fairly
common in clinical settings. This might lead to lack of proper image quantification and to evaluation based only
on visual ratings, which does not allow research studies or clinical trials based on quantification.

PET/CT systems are widely available and CT normalization procedures need to be explored. Here we describe
and validate a procedure for the spatial normalization of PET images based on the low-dose Computed
Tomography (CT) images contextually acquired for attenuation correction in PET/CT systems. We included
N=34 subjects, spanning from cognitively normal to mild cognitive impairment and dementia, who underwent
amyloid-PET/CT (18F-Florbetaben) and structural MRI scans. The proposed pipeline is based on the SPM12
unified segmentation algorithm applied to low-dose CT images. The validation of the normalization pipeline
focused on 1) statistical comparisons between regional and global 18F-Florbetaben-PET/CT standardized uptake
value ratios (SUVrs) estimated from both CT-based and MRI-based normalized PET images (SUVrCT, SUVrMRI)
and 2) estimation of the degrees of overlap between warped gray matter (GM) segmented maps derived from CT-
and MRI-based spatial transformations.

We found negligible deviations between regional and global SUVrs in the two CT and MRI-based methods.
SUVrCT and SUVrMRI global uptake scores showed negligible differences (mean ± sd 0.01 ± 0.03). Notably, the
CT- and MRI-based warped GM maps showed excellent overlap (90% within 1mm).

The proposed analysis pipeline, based on low-dose CT images, allows accurate spatial normalization and
subsequent PET image quantification. A CT-based analytical pipeline could benefit both research and clinical
practice, allowing the recruitment of larger samples and favoring clinical routine analysis.

1. Introduction

The evaluation of biomarkers for the early diagnosis of neurode-
generative conditions causing dementia has been increasingly re-
cognized as of outmost importance in research and clinical practice
(Ahmed et al., 2014; Albert et al., 2011; Armstrong et al., 2013; Dubois
et al., 2014; Iaccarino et al., 2017; McKeith et al., 2017; McKhann et al.,
2011a; Rascovsky et al., 2011; Sperling et al., 2011). As for Alzheimer's
Disease (AD), the development of Positron Emission Tomography (PET)
techniques to investigate brain amyloid accumulation (amyloid-PET)

brought landmark changes in clinical neuroscience research
(Villemagne, 2016). The reliability of PET tracers for in vivo amyloid
assessment is supported by their correlation with post-mortem amyloid
plaque measurement (Clark et al., 2012; Sabri et al., 2015; Wolk, 2011).

To date, their mandatory adoption in clinical trials and the great
potential for diagnostic purposes is recognized, in particular to rule out
AD pathology (Vandenberghe et al., 2013b; Vandenberghe et al.,
2013a). Amyloid PET imaging plays a fundamental role for the inclu-
sion and exclusion of subjects in clinical trials based on anti-amyloid
treatments (Sperling et al., 2014a, 2014b), and it has been used as an
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outcome measure as well (Salloway et al., 2014; Sevigny et al., 2016).
The positivity of an amyloid-PET scan is commonly assessed qualita-
tively through a visual evaluation of the PET radiotracer distribution, in
accordance to tracer-specific guidelines (Rowe and Villemagne, 2013).

A correct and reliable quantification of regional amyloid burden
with PET, however, is considered mandatory to avoid the limitations of
the operator-dependent visual classification, especially in longitudinal
studies (Perani et al., 2014a,b). The most commonly adopted semi-
quantification techniques involve tracer-specific approaches to estimate
regional amyloid burden based on Standardized Uptake Value Ratio
(SUVr) measurements. SUVrs are obtained by comparing tracer uptake
in target regions to a reference area devoid of specific uptake. By
comparing SUVrs in AD patients with SUVrs obtained in healthy vo-
lunteers, previous studies derived cut-off thresholds that could dis-
criminate between amyloid positive and amyloid negative individuals
(Barthel et al., 2011; Chiotis et al., 2015; Fleisher, 2011; Nordberg
et al., 2013; Oh et al., 2015; Ong et al., 2015; Vandenberghe et al.,
2010). Semi-quantitative amyloid burden is generally estimated on
average (composite) SUVr based on neocortical regions, usually in-
cluding frontal, parietal, temporal and cingulate regions (Clark et al.,
2012; Fleisher, 2011). The adopted reference regions for amyloid PET
SUVr can vary and may include the whole cerebellum, the cerebellar
gray matter (GM) and/or specific portions of the white matter (WM)
(Brendel et al., 2015; Schmidt et al., 2015). Of note, the implementation
of semi-quantification techniques can also introduce variability, espe-
cially with respect to differences in analysis procedures and scan pro-
tocols. All these factors can heavily impact the classification of amyloid
burden, with considerable effects in research studies and consequences
in clinical trials (e.g. inclusion/exclusion of subjects). Among the most
important factors there are: i) the selection of regions of interest (ROIs);
ii) the selection of reference regions and iii) the choice of running
quantifications in either native or standard space, with the latter being
strongly influenced by the spatial normalization algorithms.

In an ideal setting, structural Magnetic Resonance Imaging (MRI)
scans are available for each subject, allowing high precision spatial
normalization and ROIs definition. Conveying the PET images to stan-
dard space can offer the use of standardized, published atlases with
regions of interest, such as Automatic Anatomical Labeling: AAL
(Tzourio-Mazoyer et al., 2002), Talairach Daemon: TD (Lancaster et al.,
2000; Lancaster et al., 1997), Individual Brain Atlas: IBA (Aleman-
Gomez et al., 2006), allowing for the definition of ROIs and to estimate
regional SUVrs. In a routine diagnostic setting, however, MRI data are
not always available, thus preventing an MRI-based spatial normal-
ization of the amyloid-PET images to a standard space. For many cen-
ters, the lack of an MRI-based normalization pipeline prevents any
further quantification.

To overcome this limitation, several PET-only pipelines for spatial
normalization have been developed, based on custom or simulated PET
templates (Hutton et al., 2015; Lundqvist et al., 2013; Saint-Aubert
et al., 2014). These templates enable an accurate PET image warping
and semi-quantification, but they are tracer-specific, limiting their
utilization to radioligands with similar radioactivity distributions.
Furthermore, to perform an appropriate PET-based normalization, the
tracer uptake should define brain anatomy in sufficient details, which is
not always the case for PET molecular imaging radiotracers. Finally, the
spatial distribution of the tracer should be reasonably similar across
subjects, to prevent bias in registration. This is not the case for amyloid
tracers, where tracer distribution varies markedly across individuals,
depending on the degree of amyloid burden: while in positive cases GM
uptake is on par with WM uptake, amyloid-negative subjects display
high contrast between the two.

Building on these premises, there is a need for validated methods to
perform reliable spatial normalization of PET amyloid images. In this
view, and considering that most PET clinical studies are nowadays
performed using PET/Computed Tomography (CT) systems, we tested
and validated a method for a high precision spatial normalization and

SUVr computation using the low-dose CT image acquired for attenua-
tion correction (AC). The inclusion of a CT-based analytical pipeline for
PET quantification would allow a net benefit in terms of both research
and clinical practice, allowing the recruitment of larger samples and
favoring clinical routine analysis.

2. Materials and methods

2.1. Participants

Subjects were retrieved from the Ricerca Finalizzata Progetto di
Rete Nazionale AD (AD-NETWORK/RETEAD) database. RETEAD is a
large Italian multicenter study that aims at developing and validating
operational research criteria for diagnosis of AD in the preclinical/
predementia phase and early recognition of atypical forms, based on a
multi-factorial protocol that integrates molecular, imaging, neu-
ropsychological and clinical profiles. The study conformed to the
ethical standards of the Declaration of Helsinki for protection of human
subjects. Each subject provided written informed consent as approved
by the Local Ethical Committees.

Thirty four subjects (age=69.58 ± 6.63 (range:50–80) years; M/
F=16/18) were recruited at Fondazione IRCCS Istituto Neurologico
Besta, Milan. The sample consisted of subjects in preclinical and pro-
dromal dementia phases and patients with overt dementia, thus cov-
ering a wide spectrum of cases, from normal cognition to dementia. In
detail, the sample included 4 subjects with subjective cognitive com-
plaints (Jessen et al., 2014), 12 subjects with pre-mild cognitive im-
pairment (pre-MCI) (Storandt et al., 2006), 14 subjects with MCI (8
single-domain MCI and 6 multi-domain MCI) (McKhann et al., 2011b)
and 4 patients with a diagnosis of probable AD dementia (McKhann
et al., 2011a). Each subject underwent brain structural imaging, in-
cluding an MRI scan at Fondazione IRCCS Istituto Neurologico Besta,
Milan and an amyloid PET/CT scan at the Nuclear Medicine Unit of San
Raffaele Hospital, Milan. Inter-scan interval was no longer than six
months for MRI and amyloid PET scans.

2.2. Image acquisition

2.2.1. 18F-Florbetaben PET/CT
Each subject received an intravenous injection of 300 ± − 37MBq

of 18F-Florbetaben (Neuraceq, Piramal). The dose was administered as a
single bolus injection followed by 20 cc of saline flush. All PET acqui-
sition were performed using a hybrid PET/CT Discovery-690 system
(General Electric Medical Systems Milwaukee, WI, USA) (Bettinardi
et al., 2011). After positioning, a low dose CT scan (kVp: 140 kV, cur-
rent: 40mA, rotation time: 0.8 s, slice thickness: 3.75mm, pitch:
1.375:1) was acquired to be used for attenuation correction of PET data.
Images were reconstructed using the “standard” kernel, a 30 cm re-
construction field of view, and 3.27mm slice interval, for a resulting
voxel size of 0.59× 0.59× 3.27mm3. A 3D-PET acquisition (list mode)
was started about 90min after the injection of the tracer and lasted for
20min. Image reconstruction was performed by using a 3D Ordered
Subsets Expectation Maximization (OSEM) algorithm with the fol-
lowing parameters: Image matrix= 128, Field Of View=250mm,
Subsets= 24, Iterations= 3, Post Filter (Gaussian)= 3mm FWHM,
Attenuation Correction=CT-based. The resulting voxel size was
1.95×1.95×3.27mm3.

2.2.2. MRI
The MRI imaging data were acquired in Neurological Institute “C.

Besta”, using an Achieva 3 T MR scanner (Philips Healthcare BV, Best,
NL) equipped with a 32-channel head coil. A volumetric turbo field
echo (TFE) T1-weighted structural sequence (180 sagittal slices,
TR= 8.3ms, TE=3.9ms, FOV=240×240mm, voxel
size= 1x1x1mm3, flip angle= 8°) was acquired for each subject. Other
structural, diffusion and functional magnetic imaging data were also
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collected in the same session, but not reported in this study. The total
duration of scanning session was around 55min.

2.2.3. Image processing
All CT and MRI images were converted from the original DICOM to

a NIFTI format using SPM12. The origin coordinates of the MRI scan
were manually set to the anterior commissure. CT and PET images were
rigidly co-registered to the respective MRI scan. A visual inspection was
always performed as a quality control to detect possible errors in the co-
registration step.

2.3. Spatial normalization

2.3.1. CT-based normalization algorithm
The hypothesis of the proposed procedure is that a low dose CT scan

contains enough information in terms of contrast between GM, WM and
cerebro-spinal fluid (CSF) to estimate the spatial transformation accu-
rately. To spatially normalize the CT images into the stereotactic/
standard space, we optimized the unified segmentation-normalization
algorithm as implemented by Ashburner and Friston in SPM12
(Ashburner and Friston, 2005). This algorithm iteratively finds the
spatial transformation that best matches the analyzed image to a set of
tissue probability maps (TPM), that are used in a subsequent tissue
classification procedure.

The algorithm works with a parametrization of the image intensities
for each tissue type using a Gaussian Mixture Model (GMM). In the
latest version, known as “new segment”, included in SPM12 (Malone
et al., 2015; Weiskopf et al., 2011), 6 tissue classes are considered: GM,
WM, CSF, bone, outside tissues and air. A priori TPM are used to im-
prove the segmentation, to fix initial intensities for each tissue class and
to distinguish tissues with identical average intensities. This iterative
algorithm first estimates the spatial deformation from the Montreal
Neurological Institute (MNI) space to the subject native space. The TPM
are then transformed to the subject native space using this deformation
and they are used to update the GMM describing the intensities of all
tissues. Finally, the spatial transformation from the MNI space to the
native space is updated, looking for the one that best matches the
current GMM. The procedure is iterated until the algorithm converges.
Forward and backward transformations are both estimated.

In our proposed optimization, the CT images are pre-processed by a
“clean-up” procedure. Every value lower than −300 HU is set to
−1024 HU, to avoid low-density structures outside the head (e.g.:
head-holder, cushion etc.) confounding the algorithm. Without this
procedure, the coarse affine registration performed before the actual
segmentation often fails. The resulting images are then loaded in the
SPM12 unified segmentation algorithm, with optimized parameters.
Compared to the default SPM12 settings for MRI, we disabled bias-field
correction, as CT does not suffer from this artifact. Also, as Hounsfield
values are generally comprised in a fixed and narrow range in CT, we
used only 1 Gaussian for the GMM of GM, WM, and only 2 Gaussians for
the other 4 classes (CSF, bone, outside tissue and air). Identical reg-
ularization strengths to the default were used. All the parameters used
are summarized in Table 1. The number of Gaussians was chosen a
priori, knowing that in CT GM and WM have only one average intensity.
For CSF, 2 Gaussians were used to take into account the possibility that
CSF close to the bone has higher intensity than that in the ventricles due
to spillover effect. As bone has values in a very broad range in CT, 2
gaussians were used. Tissue can be thought as composed of low-in-
tensity fat and higher-intensity areas like muscles, so 2 gaussians also
were used. In the “air” class we expect all low intensity structures that
have the same value of −1024, after our thresholding, modeled with 1
gaussian, and another Gaussian to model all the other low intensity
pixels between about −50 to −300 HU.

The robustness of our algorithm to different settings was tested in
supplementary material.

2.3.2. MRI-based spatial normalization
MRI images were spatially normalized to the MNI space using the

SPM12 unified segmentation and default settings. The parameters are
reported in Table 1, to be compared to the optimization introduced for
the CT version. The segmented tissues and the forward transformation
to the MNI space are then saved. The spatial transformation was used as
a comparison with the CT one. The GM map was also used in a later
stage to compare and validate the proposed method (see below).

2.4. Comparison of the CT and MRI normalizations

Two strategies were used to compare the output of the normal-
ization procedures, with the MRI-based normalization considered as the
gold standard for the pre-processing step. First, we measured, from the
two normalized CT- (nPETCT) and MRI-based (nPETMRI) 18F-
Florbetaben PET images, the SUVr values in a set of ROIs commonly
considered to estimate amyloid burden in AD. The second strategy
consisted in measuring, for each subject, the degree of overlap between
the two estimated GM maps (GMCT and GMMRI) obtained with the CT-
and the MRI-derived transformations. Normalized 18F-Florbetaben PET
images were resampled to a bounding box of [−90–126 -72; 90
90,108] mm with an isotropic voxel size of 2mm, using the two pre-
viously estimated deformations.

2.4.1. 18F-Florbetaben SUVr estimation
Multiple ROIs for regional and global amyloid burden assessment

were selected according to previous literature (Barthel et al., 2011; Ong
et al., 2013; Sabri et al., 2015; Tiepolt et al., 2016) To summarize, we
extracted six ROIs representing wide, bilateral cortical macroareas
(Fig. 1), i.e. Dorsolateral and Medial Frontal Cortex, Cingulum, Pre-
cuneus, Inferior and Superior Parietal Lobules, Lateral Occipital Cortex,
and Lateral Temporal Cortex, from the Automated Anatomical Labeling
(AAL) atlas (Tzourio-Mazoyer et al., 2002), through the Wake Forest
University PickAtlas toolbox for SPM (Maldjian et al., 2003). All the
images were scaled to the activity of the cerebellar GM, used as the
reference region (Catafau et al., 2016; Villemagne et al., 2015). The
average computed from the six ROIs was considered as an index of
global cortical amyloid burden.

2.4.2. Statistical analysis
Concordance between the SUVr measures was assessed using Bland-

Altman plots and estimation of region-wise Pearson correlation ana-
lysis. Regional and global amyloid burdens and standard deviations
were computed with mean absolute differences and limits of agreement
(see Table 2).

Table 1
Settings for the unified segmentation algorith.

Setting Parameter CT MRI
(default SPM
settings)

Bias Field Correction FWHM Disabled 60mm
Regularization Light

Tissue GMM: Number of
Gaussians

GM 1 1
WM 1 1
CSF 2 2
Bone 2 3
Tissue 2 4
Air 2 2

Warping regularization Absolute
displacement

0 0

Membrane Energy 0.001 0.001
Bending Energy 0.5 0.5
Linear Elasticity 1 0.05 0.05
Linear Elasticity 2 0.2 0.2
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2.4.3. Comparison of gray matter maps
The GM maps obtained from the MRI segmentation of each patient

were resampled to the MNI space within a bounding box of [−90–126
-72; 90 90,108] with an isotropic voxel size of 1mm, to better capture
the limited thickness of GM. The MRI and the CT derived deformations
were used to obtain a GMMRI and a GMCT map for each subject. It is
reasonable to expect a complete overlap of the two maps in the case of
identical deformations. Therefore, we measured the percentage of
voxels in the GMCT that overlap with those in the GMMRI. The GMMRI

was then dilated to the 6 nearest-neighbor voxels in three dimensions,
and this dilated map was used again as a reference to perform the same
computation. This allowed the assessment of the fraction of GM that
was transformed either to the correct location or to a 1mm wide
neighborhood. This dilation was performed two more times to measure
concordance within 2mm and 3mm wide from the reference. These
overlap measures were computed over the whole image and also lo-
cally, inside the same ROIs defined for the SUVr analysis.

3. Results

3.1. 18F-Florbetaben SUVr

The main steps of the proposed procedure are shown in Fig. 2. The
mean regional SUVrCT and SUVrMRI as well as the composite cortical
values are reported in Table 2. Negligible differences were found at
regional level. Occipital SUVr scores showed some deviation, but were
still negligible (mean absolute difference 0.048, limits of agreement
−0.067 | 0.160), whereas the temporal SUVr scores showed the best
concordance (mean absolute difference 0.010, limits of agreement
−0.079 | 0.056). When compared to the regional SUVrMRI, the SUVrCT
was slightly underestimated for all regions, except for the occipital
region which showed the opposite trend. Global amyloid burden
showed very narrow differences using average regional SUVrCT or
SUVrMRI (mean ± sd 0.012 ± 0.032), as further confirmed by the
Bland-Altman plot (Fig. 3) and correlation analysis (Pearson r=0.994,
p < 2.2e-16) (Fig. 3). In the Bland-Altman plot of the global SURr, we
performed a Spearman correlation to test whether there was a trend
between the SUVrCT vs SUVrMRI difference and the global SUVr load.
There was a trend with ρ2= 0.16, which is significant with p= .02.

In supplementary materials we show that these results are affected
by the exact algorithms settings, at least when using reasonable para-
meters.

3.2. Comparison of gray matter maps

The overlap between GM maps obtained using the two different
transformations is shown in Fig. 4. Transforming the GMmaps using the
CT-based normalization algorithm provided a 70% overlap with those
obtained with MR-based normalization. Notably,> 90% of the GM map
voxels from the CT-based normalization were within 1mm from the
MR-transformed ones. Full results including 2 and 3mm dilation are
reported in Table 3.

4. Discussion

A correct AD diagnosis in early prodromal, and even preclinical,
disease stages is important, especially for the appropriate inclusion of
patients in clinical trials (Sperling et al., 2014a, 2014b). In this fra-
mework, amyloid-PET is unique for the detection of pathological Aβ
accumulation in vivo (Vandenberghe et al., 2013a,b). Amyloid posi-
tivity, as shown by PET studies, is currently considered as a supportive
biomarker for AD diagnosis according to the diagnostic criteria (Albert
et al., 2011; Dubois et al., 2014; McKhann et al., 2011a; Sperling et al.,
2011). Validated and standardized amyloid (semi)quantification pro-
cedures are therefore needed to overcome the limitations of visual
ratings and/or binary classifications, for both diagnostic and research
purposes (Perani et al., 2014b), and also for a better evaluation of cases
for clinical trials. To this end, there is a need to develop highly reliable
(semi)quantification approaches to accurately measure amyloid burden
in different brain regions at the single-subject level. Previous studies
have focused on how to optimize Amyloid-PET analysis to improve both
quantification (Bullich et al., 2017a; Saint-Aubert et al., 2014) and re-
liability of longitudinal PET assessments (Brendel et al., 2015; Bullich
et al., 2017b). Notably, semi-quantification with SUVr increased the
classification accuracy in comparison to visual ratings (Bullich et al.,
2017a; Camus et al., 2012; Perani et al., 2014b).

The majority of previous studies has focused on the development of
highly accurate processing steps for the quantification, especially con-
sidering reference and target region selection and definition of optimal
scanning protocols. The present study, however, focuses on the pre-
processing phase, with the aim of validating a feasible CT-based pipe-
line which could greatly increase the implementation of semi-quanti-
fication protocols in research and clinical settings.

When performing PET data analysis in standard space, spatial nor-
malization is the first and a crucial step for the accurate estimation of
radioligand specific uptake. High-precision spatial alignment of brain
structures is indeed fundamental to achieve the highest statistical
power. High resolution MRI images are currently considered the gold
standard for spatial warping and many algorithms are available to
compute the individual spatial transformations. MRI scans require extra
costs and time, on top of being a procedure that cannot be performed on
all patients (e.g. in presence of metallic inserts, or due to claus-
trophobia). While these limitations might not be relevant in research
settings, MRI scans are not always acquired in routine studies in clinical
settings.

Fig. 1. Visualization of the regions of interest used
for the analysis, overlaid on a standardized template.

Table 2
Regional and global amyloid SUVr.

ROI CT-based MRI-
based

Absolute
Difference

Limits of
Agreement

Frontal cortex 1.25 1.28 0.030 −0.125 | 0.066
Cingulum 1.39 1.44 0.044 −0.110 | 0.022
Precuneus 1.39 1.42 0.026 −0.099 | 0.047
Temporal cortex 1.34 1.35 0.010 −0.079 | 0.056
Occipital cortex 1.44 1.40 0.048 −0.067 | 0.160
Parietal cortex 1.25 1.26 0.011 −0.087 | 0.064
Whole cortical

regions
1.34 1.35 0.012 −0.075 | 0.051

Regional SUVr computed on the whole brain considering the two different
spatial normalization pipelines (see text). Values are shown as means, while
limits of agreement are computed as: mean(d)-1.96*sd(d) | mean(d)+ 1.96*sd
(d).

L. Presotto et al. NeuroImage: Clinical 20 (2018) 153–160

156



The CT acquisition protocol resulted in a volumetric CT Dose Index
(CTDIvol) of about 1.5mGy, which translated to a Dose Length Product
(DLP) of about 25mGy*cm, meaning, in an average patient, a dose
of< 70 μSv. This dose provides sufficient anatomical details while
being extremely low. In this work CT were acquired using 40mA cur-
rent and 0.8 s rotation time. The most recent scanners, like ours, can be
set up to acquire images with currents as low as 10mA and lower ro-
tation times, for even lower doses. However, not only the image quality
significantly decreases, but also there is the risk of “photon starvation”
artefacts, which lead to incorrect attenuation correction (Xia et al.,
2012). To overcome this limit, new methods are being used where the
current is not lowered but the number of projections acquired is re-
duced, using then sparse view reconstruction techniques (Rui et al.,
2015). However, these techniques have only been recently introduced
clinically and they have not been optimized to provide anatomical
detail.

A limit of this study is that the influence of CT image quality on the
algorithm could not be studied. Future studies will need to assess both
the lower dose limit at which the algorithm still performs correctly, and
also whether the use of diagnostic quality CT provides improvements.

Here we found high concordance with MRI-based normalization
using the CT-based normalization procedure. Notably, considering the
SUVr values, the standard deviation of the differences between the re-
ference MRI-based normalization and the proposed algorithm was<
0.05 in all the considered ROIs. Therefore, this semi-quantitative ap-
proach allowed for an accurate measurement of the amyloid burden in
each ROI, which is of importance since regional variations of amyloid
burden are well-documented in literature (Jansen et al., 2015;
Ossenkoppele et al., 2015). Additionally, in the second validation test,
comparing the CT- and MRI-based GM maps registration, we found that
the maps overlapped within 1mm in 90% of the voxels. This validation
was run on a patient population that spanned over a wide range of
pathological stages and of amyloid burden, where brain anatomy might
differ due to increased atrophy. Accordingly, global amyloid SUVr for
our population ranged from 0.9 to 1.8 SUVr. A very small trend,
ρ2= 0.16, was noted in the Bland-Altman plot. Considering that the p-
value was at the threshold for statistical significance (p= .02), this
result might be due to the presence of few outliers. Studying this al-
gorithm on larger number of subjects, especially AD with high amyloid
load and high levels of atrophy, could further certify the good

Fig. 2. Images of the normalization methods in a representative patient. Left: CT based normalization, Right: MRI based normalization. Top: Native Space structural
images; Middle: normalized structural images; Bottom: Amyloid Images normalized with the respective pipelines. MNI: Montreal Neurological Institute.

Fig. 3. Left: Bland-Altman Plot showing the agreement between the two normalization procedures when quantifying the whole cortical SUVr. Subjects are color
coded by their initial diagnosis. Right: Scatter plot showing the correlation between whole cortical SUVr scores obtained using the two procedures. Blue diagonal line
represents the identity (y= x) line.
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performance of this algorithm in all the possible conditions. In Sup-
plementary Materials, we have also shown that the algorithm is robust
to changes in the settings, concerning to how the thresholding opera-
tion is performed and to the number of gaussians used for outside tis-
sues.

The proposed CT normalization procedure was developed for hybrid
PET/CT scanners, since this is the most widely diffuse system for both
clinical and research applications. This approach does not require any
tracer-specific template to determine the spatial normalization.
Notably, while the present procedure was validated using the 18F-
Florbetaben tracer, it can be adopted as well with other radioligands.
This CT-based approach could also be useful for analyzing large retro-
spective databases where CT, but not MRI, scans are only available.
Another important application could be the development of an auto-
mated processing pipeline that can aid clinicians in the evaluation of
amyloid PET scans. Finally, it should be noted that this procedure was
built exclusively using widely available and validated free tools: SPM
and the AAL atlas.

5. Conclusions

In this work, we validated an automated spatial normalization
method for amyloid PET data, based on the low-dose CT acquired
contextually with the PET scan for attenuation correction. This proce-
dure, when compared to the gold-standard MRI-based spatial trans-
formation, showed extremely high levels of concordance in the results
of semi-quantification. The procedure is well-suited for both clinical
and research applications as well as for radioligands other than amy-
loid-tracers since it has a simple implementation and is based on vali-
dated and widely available tools.
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