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Selecting responses in working memory while processing combinations of stimuli
depends strongly on their relations stored in long-term memory. However, the learning
of XOR-like combinations of stimuli and responses according to complex rules raises
the issue of the non-linear separability of the responses within the space of stimuli.
One proposed solution is to add neurons that perform a stage of non-linear processing
between the stimuli and responses, at the cost of increasing the network size. Based
on the non-linear integration of synaptic inputs within dendritic compartments, we
propose here an inter-synaptic (IS) learning algorithm that determines the probability of
potentiating/depressing each synapse as a function of the co-activity of the other synapses
within the same dendrite. The IS learning is effective with random connectivity and without
either a priori wiring or additional neurons. Our results show that IS learning generates
efficacy values that are sufficient for the processing of XOR-like combinations, on the basis
of the sole correlational structure of the stimuli and responses. We analyze the types of
dendrites involved in terms of the number of synapses from pre-synaptic neurons coding
for the stimuli and responses. The synaptic efficacy values obtained show that different
dendrites specialize in the detection of different combinations of stimuli. The resulting
behavior of the cortical network model is analyzed as a function of inter-synaptic vs.
Hebbian learning. Combinatorial priming effects show that the retrospective activity of
neurons coding for the stimuli trigger XOR-like combination-selective prospective activity
of neurons coding for the expected response. The synergistic effects of inter-synaptic
learning and of mixed-coding neurons are simulated. The results show that, although each
mechanism is sufficient by itself, their combined effects improve the performance of the
network.
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INTRODUCTION
The adaptation of behavior to complex environments relies on the
ability of the brain to select appropriate actions according to arbi-
trary combinations of stimuli (Miller, 1999; Bunge et al., 2003;
Muhammad et al., 2006). The prefrontal cortex plays a critical
role in this process and is an essential structure for the process-
ing of rule-based behavior and response selection (Passingham,
1993; Wise et al., 1996; Hoshi et al., 1998; White and Wise, 1999;
Asaad et al., 2000; Murray et al., 2000; Toni et al., 2001; Wallis
et al., 2001; Wallis and Miller, 2003; Brasted and Wise, 2004;
Genovesio et al., 2005; Buckley et al., 2009; Badre et al., 2010;
Walsh and Anderson, 2013). Further, single-neuron recordings
have provided us with invaluable information on the dynamics
of the activation of neurons coding for stimuli in real time (e.g.,
Wallis et al., 2001; Muhammad et al., 2006).

Computational modeling of cortical networks sheds light on
the processes of activation of items in working memory, cor-
responding to populations of neurons coding for stimuli to be
recalled (Brunel, 1996; Lavigne and Denis, 2001, 2002; Mongillo

et al., 2003; Brunel and Lavigne, 2009) or to populations of
neurons coding for responses to be selected (Wang, 2002, 2008;
Salinas, 2008; Soltani and Wang, 2010). These models have under-
lined the critical role that synaptic connectivity in long-term
memory plays in these phenomena. However, rule-based behav-
ior requires the cerebral cortex to learn responses to complex
combinations of stimuli. A paradigmatic example of such com-
binations in logical analysis is the exclusive OR (XOR; Minsky
and Papert, 1969). For example, when normally flying a plane,
the pilot must push the control column to descend and apply back
pressure to climb. However, in upside-down flying, the pilot must
apply back pressure to descend and push to climb. Then, during
aerobatics, the pilot constantly faces a XOR like combination rule.

Understanding which associations have to be learned to per-
form rule-based tasks and how they are embedded within the
synaptic matrix relates to non-linearly separable problems that
are central for computational models (Amit, 1988; Xing and
Andersen, 2000; Loh and Deco, 2005; Rigotti et al., 2010a,b). Up
to now, the solution to non-linearly separable problems such as
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XOR-like rules has been to consider additional neurons that per-
form a stage of non-linear processing between the stimuli and
responses (Rigotti et al., 2010a,b; Bourjaily and Miller, 2011a,b,
2012). However, the solution of adding additional neurons is
effective, at the cost of increasing the size of the network.

Here, we propose an inter-synaptic (IS) learning algorithm of
rule-based combinations that does not require additional neu-
rons, and show that it can work in synergy with additional
neurons. This IS learning algorithm solves the problem of clus-
tering synapses that are combined within the same dendrite, by
embedding a recently found property in which the potentiation
of synapses that are co-active and co-localized within dendritic
branches is amplified (Govindarajan et al., 2011). The proposed
algorithm formalizes the reported inter-synaptic amplification of
potentiation of nearby synapses within the dendrites, and extends
it to include inter-synaptic amplification of depression. Within
this framework, we investigate the necessary and sufficient con-
ditions of non-linear dendritic integration (Koch et al., 1983;
Mel, 1992, 1993; Polsky et al., 2004) and synaptic clustering
(Govindarajan et al., 2006; Chen et al., 2011; Takahashi et al.,
2012) for inter-synaptic learning of rule-based combinations of
stimuli.

PROCESSING OF NON-LINEARLY SEPARABLE XOR-LIKE
COMBINATIONS
The common denominator of many contextual rules is described
by XOR-like combination rules, according to which a given stim-
ulus can predict different responses depending on the context
(Figure 1A). As a consequence, responses cannot be selected
based on any single stimulus, but rather only based on their
combinations. Responses therefore are not linearly separable
within the space of stimuli. For example, given a XOR-like rule
of context-stimulus-response taken within two contexts, with
two stimuli and two responses, learning of the combinations
described by XOR-like rule with equal probabilities results in a
non-linearly separable problem (Figure 1A; see also Figure 4E for
simulations and a geometrical representation of the problem).

Non-linearly separable problems have been addressed using
multilayer connectionist networks including a hidden layer of
neurons (e.g., Rumelhart and McClelland, 1986). Hidden neu-
rons provide the network with an additional level of non-linear
processing between neurons coding for the stimuli and neurons
coding for the responses. Since then, studies in behaving non-
human primates have provided essential information on neuronal
activity during the processing of multi-conditional deductive
rules (Naya et al., 1996; Wallis et al., 2001; Wallis and Miller, 2003;
Muhammad et al., 2006). In addition, studies have reported that
mixed-coding neurons—widely distributed over the prefrontal
cortex—exhibit elevated activity in response to abstract combina-
tions of stimuli, although without being selective for any particu-
lar stimulus or response (Bongard and Nieder, 2010; Rigotti et al.,
2013). Those neurons are active in behaving monkeys responding
to XOR-like combinations (Wallis et al., 2001; Wallis and Miller,
2003). The spike rates of prefrontal neurons coding for a given
response (holding vs. releasing a lever) depended on the combi-
nation of match/no-match between two successive image stimuli
and of a preceding cue. The XOR component of the rule was

assessed by the learning protocol, in which equal probabilities of
the combinations of stimuli and responses were ensured during
the learning stage. The results showed that, in addition to the
activity of coding neurons which was predicted by a single stim-
ulus, cue, or response, the activity of mixed-coding neurons was
predicted neither by the stimuli nor the cues alone, but rather only
by their combination. Their potential functional role as hidden
neurons has led modelers to investigate the inclusion of stimulus-
pair selective neurons in the learning of XOR-like combinations
(Rigotti et al., 2010a,b; Bourjaily and Miller, 2011a,b, 2012).

Regarding learning at the neuronal level, it is known that neu-
rons coding for different stimuli can be close together and inter-
mixed in the same prefrontal area (Miller et al., 1996; Wallis and
Miller, 2003). Even more locally, axons of cortical neurons form
direct appositions with dendrites of almost all their surround-
ing neurons, without any preference for any particular neurons
(Kalisman et al., 2005; Le Bé and Markram, 2006). This property
of random connectivity is consistent with the notion that func-
tional circuits are primarily shaped through the modification of
synaptic connections between neurons (Engert and Bonhoeffer,
1999; Maletic-Savatic et al., 1999; Lendvai et al., 2000; Yuste and
Bonhoeffer, 2004). Computational modeling of synaptic learn-
ing has investigated how synaptic matrices can be obtained by
Hebbian learning of stimuli in an initially unstructured network
of randomly connected neurons (Brunel, 1996; Brunel et al.,
1998; Mongillo et al., 2003). However, the random connectivity
between neurons and the absence of a priori wiring of the net-
work constrain Hebbian learning of XOR combinations based
solely on neurons coding for individual stimuli and responses.
Indeed, the Hebb rule locally updates values of synaptic efficacy
as a function of only the pre- and post-synaptic neuronal activ-
ities (Hebb, 1949; Bliss and Lomo, 1973; Bliss and Collingridge,
1993; Kirkwood and Bear, 1994). In the case of XOR-like combi-
nations of context-stimulus-response taken within two contexts,
two stimuli and two responses (Figure 1A), the equal probabil-
ities of the various triadic combinations result in equal proba-
bilities for the pairwise combinations of each context with each
stimulus, each stimulus with each response, and each context with
each response (Figures 1B). A consequence of this is that local
Hebbian learning based on the average activities of pre- and post-
synaptic neurons generates the same efficacy values for synapses
connecting pairs of neurons coding for the contexts, stimuli and
responses (see Rigotti et al., 2010a,b; Fusi et al., 2007: Bourjaily
and Miller, 2011a,b, 2012 for discussions). Such synaptic matri-
ces thus do not allow the network to activate different responses
for different combinations of context and stimulus.

Recent models of the cerebral cortex have demonstrated a crit-
ical role for mixed-coding neurons observed in experiments. In
these models, learning has been addressed in networks embed-
ding neurons coding for individual stimuli and responses along-
side mixed-coding neurons responding to combinations of stim-
uli (Rigotti et al., 2010a,b, 2013; Bourjaily and Miller, 2011a,b,
2012). However, contrary to the hidden neurons of connection-
ist networks, mixed-coding neurons of cortical network models
are not a priori wired and have been proved sufficient to perform
XOR-like rules. Indeed, these neurons provide the network with
an additional stage of non-linear processing, in line with that of
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FIGURE 1 | The XOR-like combination rule. (A) A typical combination rule
requires the subject to give a response to a combination of context and
stimulus. Responses (R1 vs. R2) are predicted equally by each individual
context (C1 vs. C2) and each individual stimulus (S1 vs. S2), making
responses not linearly separable in the space of contexts and stimuli
(Considering C1 = C2, S1 = S2, R1 = R2, this combination rule
corresponds to a XOR rule). Responses can be discriminated only on the
basis of the four combinations of one context and one stimulus.
(B) Schematic representation of excitatory links between populations of
neurons coding for the six items involved in the rule: stimuli S1 (dark blue)
and S2 (light blue), contexts C1 (purple) and C2 (orange), and responses
R1 (green) and R2 (red). Hebbian learning of the XOR-like rule generates
equal efficacy between each context, each stimulus and each response
(black lines). (C) Architecture and synaptic connectivity of the cortical
network model embedding IS learning (for clarity, all connections are not
displayed; see Table 1 for values of connectivity). Excitatory neurons are
selective for distinct stimuli (same color codes as in B). According to the
IS learning algorithm, efficacy values (thickness of the arrows) depend on

the activity of other synapses within the same dendrite (precise values of
the parameters are given in Table 1). Regarding different types of
dendrites of a neuron coding for R1 (green), potentiation is weak with a
neuron coding for S1 in the lower dendrite having others contacts with C2
(C2, S1 and R1 are not combined), while it is amplified in the upper
dendrite having other contacts with C1 (C1, S1 and R1 are combined). (D)

Example of a dendrite of type [C1 = 4, S1 = 4, C2 = 1, S2 = 2, R1 = 1,
R2 = 2] defined by the number of contacts with pre-synaptic neurons
coding for the different contexts, stimuli and responses. This dendrites has
2 synapses from non-single-item (NSI) coding neurons (black). (E)

Cumulative probability of the different types of dendrites. In the model,
the probability of each type of dendrite was calculated exactly according to
equations 2 and 3. These probabilities equal—up to the 4th decimal—the
ones computed from 500 million simulations of the connectivity within the
dendrites via random numbers generation. The sum of all exactly
computed probabilities is 1, as we would expect if the probability law is
correct (example of 3003 types of dendrites with 8 synapses; NE = 4000;
f = 0.1; Np = 400; g = 6; Nes = 8; Nd = 100).
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the hidden units in multilayer connectionist networks. However,
this solution for the learning and processing of XOR-like combi-
nations requires additional neurons, while other candidate mech-
anisms could also be envisaged without the need for additional
neurons, and could even improve the function of mixed-coding
neurons.

NON-LINEAR DENDRITIC INTEGRATION
A growing field of research points to dendritic non-linear inte-
gration of synaptic inputs as a mechanism that could contribute
to the processing of XOR-like combinations at the level of neu-
rons. Electrophysiological experiments have shown that non-
linear integration occurs not only in the cell body but also at
an earlier stage within the dendritic arbor (Koch et al., 1983;
Johnston et al., 1996; Magee et al., 1998; Hausser et al., 2000;
London and Hausser, 2005; Sjöström et al., 2008; Spruston, 2008;
Stuart et al., 2008; Larkum et al., 2009; Lavzin et al., 2012;
Major et al., 2013). Experiments have also shown that synap-
tic inputs from nearby sources are non-linearly summed (Koch
et al., 1983; Tuckwell, 1986; Schwindt and Crill, 1995; Polsky
et al., 2004), whereas inputs from distant dendritic branches are
linearly summed (Poirazi et al., 2003a,b; Gasparini et al., 2004;
Polsky et al., 2004; Gasparini and Magee, 2006; Losonczy and
Magee, 2006; Silver, 2010). The possibility of obtaining non-linear
integration as a function of synapse co-localization in dendrites
allows pyramidal neurons to multiply incoming signals at the
dendritic stage before summing them at the somatic stage (Koch
et al., 1983; Rall and Segev, 1987; Shepherd and Brayton, 1987;
Mel, 1992, 1993, 2008; Sidiropoulou et al., 2006; Cazé et al.,
2013). Such ��-neurons compute weighted products in addi-
tion to weighted sums, extending their range of computational
operations (Durbin and Rumelhart, 1989; Poirazi and Mel, 2001;
Poirazi et al., 2003a,b; Polsky et al., 2004). Here the dendritic
tree is a computational unit (see Branco and Hausser, 2010) that
plays the role of the hidden layer of a multilayer network (Schiller
et al., 2000; Chiarello et al., 2003; Silver, 2010). Embedded at the
single-neuron scale, this computational property is an important
feature of the modulatory influences that affect sensory process-
ing (Salinas and Abbott, 1995, 1997; Pouget and Sejnowski, 1997;
Deneve and Pouget, 2003; Salinas, 2004). Further, with a suffi-
cient number of dendrites, a neuron can compute all positive
non-linearly separable Boolean functions (Cazé et al., 2013). This
makes neurons with non-linear dendritic integration good candi-
dates for performing combinations of synaptic inputs involved in
XOR-like rules.

Considering the role of non-linear dendritic integration, the
problem that must be solved is that the computation of com-
binations of specific contexts, stimuli, and responses according
to XOR-like rules are not known a priori and must be learned.
The synaptic inputs to be combined must be amplified by non-
linear integration, while inputs that will not be combined must
not be amplified. The central question then pertains to learning
in dendrites: how are the synaptic inputs that will be non-
linearly integrated grouped within the same dendrite, while those
that will be linearly summed are in separate dendrites? Hebbian
learning generates identical values for the efficacy of synapses
that connect neurons with equivalent average activities of pre-

and post-synaptic neurons (Brunel et al., 1998; Figures 1B, 2I).
When combined with the random distribution of synapses in
the dendritic branches, non-linear integration would thus equally
amplify all possible combinations of synapses within the den-
drites. Hebbian learning would therefore not allow dendrites
to discriminate between learned and non-learned combinations.
Instead, such discrimination would require that, given an initial
random allocation of synapses within the dendrites, the cluster-
ing of synapses to be combined within the same dendrite would
thus rely on an increased synaptic efficacy of these synapses.
How the functional efficacy values are learned is still an open
question.

SYNAPTIC CLUSTERING
Modeling approaches have investigated the integration of synap-
tic inputs as a function of their combinations with other inputs
(Dehaene et al., 1987; Dehaene and Changeux, 1989; Kühn et al.,
1989; Baird, 1990; Phillips et al., 1995; Phillips and Singer, 1997;
Kay et al., 1998; Körding and König, 2000a). For example, in a
biologically inspired model of the cerebral cortex, a non-Hebbian
learning algorithm updated synaptic efficacy at pairs of func-
tionally dependent synapses as a function of the activity of the
post-synaptic neuron and of two pre-synaptic neurons (Körding
and König, 2000a,b, 2001a,b). This network can learn XOR-like
combinations, under the assumption of a priori wiring of layers
as a function of the items they code for in memory (contexts,
types of stimuli, responses (see Körding and König, 2000a). This
would not be possible in the opposite case, i.e., where there is
random connectivity. In that case, a post-synaptic neuron (e.g.,
coding for a response R1) with randomly distributed synaptic
contacts would receive all possible pairs of linked synapses (from
C1S1, C1S2, C2S1, C2S2), and as a consequence non-Hebbian
learning would increase potentiation at all linked synapses cor-
responding to learned combinations (C1S1R1, C2S2R1). Equal
numbers of pairs of synapses would benefit from increased poten-
tiation. As a result, the total value of synaptic efficacy from each
context or stimulus taken alone would be equal, meaning that
the network would not be able to discriminate between learned
and non-learned combinations. This dependency of learning on
the wiring of the network is problematic for our understanding
of the learning of XOR-like combinations without a priori func-
tional link between synapses as a function of what the neurons
code for.

Neurophysiological studies on synaptic clustering have pro-
vided us with invaluable information on the functional links
that exist between synapses during learning (Govindarajan et al.,
2006; Larkum and Nevian, 2008; Larkum et al., 2009). Synaptic
connections between neurons rely strongly on dendritic spines,
where post-synaptic signaling is generated (Segal, 2005; Harms
and Dunaevsky, 2007). Dendritic spines are spatially clustered
at the level of individual dendrites (De Roo et al., 2008; Fu
et al., 2012), and synaptic clusters are widely distributed on api-
cal and oblique branches of pyramidal neurons (Yadav et al.,
2012). During learning, dendritic spines emerge in clusters (Fu
et al., 2012), suggesting that clustering depends on learning and
can persist after training (Yadav et al., 2012). In accordance with
the clustered plasticity hypothesis (Govindarajan et al., 2006),
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one consequence of learning on synaptic clusters is that synapses
within the same cluster are more likely to transmit the same infor-
mation than synapses dispersed throughout the dendritic arbor
(Chen et al., 2011; Takahashi et al., 2012). As a result of this,
not only could clusters improve non-linear integration locally
within a given dendrite (Poirazi and Mel, 2001; Poirazi et al.,
2003a,b), but clustered synapses are also likely to strengthen con-
tacts with functionally related pre-synaptic neurons. Different
computations can then take place simultaneously within different
dendrites of a single neuron (Polsky et al., 2004; Gasparini and
Magee, 2006; Rabinowitch and Segev, 2006a,b).

Simulations of learning in a compartmental model of a neuron
can generate synaptic efficacy mosaics, i.e., spatially segregated
clusters within which a group of synapses transmitting correlated
inputs dominates other groups and exhibits locally stable potenti-
ation (Iannella et al., 2010). A recent experimental study reported
that, during learning, spine head size—which is a good approxi-
mation of synaptic strength—increases more within clusters than
in isolated spines (Fu et al., 2012). In addition, another recent
set of experiments has shown that the simultaneous pseudo-
synchronous stimulation of two synapses leads to a total efficacy
that is stronger when the synapses are on the same dendrite than
when they are on different dendrites (Govindarajan et al., 2011).
These results open the way toward the mathematical formalism
of learning within dendrites as a function of combinations of
multiple synaptic inputs.

METHODS
We describe here the architecture of a cortical network of excita-
tory neurons that is regulated by inhibitory feedback. In this net-
work, items (contexts, stimuli, and responses) are coded by pop-
ulations of excitatory neurons. These coding neurons exhibit an
activity that is selective for each item presented individually. The
populations of coding neurons are denoted by P1, . . . , Pg , not
referring to a specific context, stimulus or response (Methods—
Network Architecture). Other coding neurons do not exhibit any
activity that is selective for any single item. We will consider
later a fraction of these neurons that respond to combinations of
items (mixed-coding neurons; results Section Synergistic Effects
of IS Learning and of Mixed-coding Neurons). Each neuron has
a constant number of dendrites, each of them having a constant
number of synapses. Synaptic connections between pre-synaptic
neurons and the dendrites of post-synaptic neurons are random
(Methods—Synaptic Connectivity). This new architecture makes
it possible to propose a new inter-synaptic (IS) learning algorithm
that takes into account not only the activity of the pre- and post-
synaptic neurons, but also the other active synapses within the
same dendrite. The main idea is that, in each individual den-
drite, the potentiation or depression of a given synapse between
a post-synaptic and a pre-synaptic neuron is amplified as a func-
tion of the number of other synapses that are in contact with other
active pre-synaptic neurons (Methods—Inter-synaptic Learning).
The IS learning algorithm allows the learning and processing of
XOR-like combinations when non-linearity is introduced into
the current dynamics of NMDA synapses (Methods—Dendritic
and Neuronal Dynamics. Equation 22; Results—Selectivity and
Responsiveness of the Different Types of Dendrites).

NETWORK ARCHITECTURE
Our model includes a biophysically realistic cortical network
of NE excitatory pyramidal cells whose activity is regulated by
NI = 0.25NE inhibitory inter-neurons (Abeles, 1991; Braitenberg
and Schütz, 1991), with a probability of C = 0.2 of having a
synapse from any pre-synaptic neuron to any post-synaptic neu-
ron (Figure 1C). g populations of coding excitatory neurons,
called P1, . . . , Pg , encode g items (either contexts, stimuli or
responses), and 40% of the excitatory neurons do not encode
any particular single item. Each population P of coding neu-
rons corresponds to a low fraction f << 1 of the NE excitatory
neurons. Excitatory and inhibitory neurons receive external noise
from other cortical areas, obeying a Poisson process of rate νext =
15 Hz, leading to average values for activities of 3 Hz for excita-
tory neurons and 9 Hz for inhibitory interneurons (Burns and
Webb, 1976; Koch and Fuster, 1989). The negative retroaction
by inhibitory interneurons prevents the runaway propagation of
activation and regulates population dynamics in the network.

SYNAPTIC CONNECTIVITY
Neurons in the network are connected through four types of
synapses. Synaptic efficacies between excitatory neurons (EE) are
subject to variations due to learning. In contrast, synaptic effi-
cacies involving inhibitory neurons, i.e., excitatory to inhibitory
(IE), inhibitory to excitatory (EI), or inhibitory to inhibitory
(II), are not subject to learning. We first analyze here network
connectivity at the scale of neurons and at the scale of dendrites.

Every post synaptic neuron i has a probability C of having a
synapse with a pre-synaptic neuron. We consider that neurons
do not self-connect and that each neuron has exactly the average
number of pre-synaptic contacts C(NE + NI − 1). The NE exci-
tatory neurons are grouped into g populations of fNE neurons,
P1, . . . , Pg , coding for items in memory (f is the coding level,
or fraction of neurons coding for a given item in a population),
and the remaining excitatory neurons that are not selective for
any single item (not in any population) are called non-single-item
(NSI) coding neurons. Every inhibitory inter-neuron is connected
to CfNE neurons of P1, . . . , Pg , to CNE(1 – gf) NSI coding neu-
rons and to C(NI − 1) inhibitory inter-neurons. Every excitatory
post-synaptic neuron i has a set of Nd dendrites. A dendrite has
Nes excitatory (and Nis inhibitory) synapses connecting the post-
synaptic neuron i to pre-synaptic neurons from the populations
P1, . . . , Pg, and to pre-synaptic NSI-coding neurons (and to
pre-synaptic neurons from the pool of inhibitory inter-neurons).
Therefore, an excitatory neuron has a total number of excitatory
synapses NdNes = C(NE − 1) and a total number of inhibitory
synapses NdNis = CNI .

Dendrites are defined by their type, denoted [n1, n2, . . . , ng],
with n1 representing the number of synapses from pre-synaptic
neurons of population P1, . . ., and ng representing the number
of synapses from pre-synaptic neurons of population Pg, with
n1 + · · · + ng ≤ Nes. The Nes − (n1 + · · · + ng) other excitatory
synapses are from NSI-coding pre-synaptic neurons, and Nis

inhibitory synapses are from inhibitory inter-neurons. We note
that synapses are not located with a specific order within a den-
drite. An example of a dendrite is shown in Figure 1D (belonging
to a post-synaptic neuron of the population coding for R1). Here
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g = 6 (two contexts, two stimuli and two responses) and the
populations P1, . . . , P6 are respectively called C1 (context1), S1
(stimulus1), C2 (context2), S2 (stimulus2), R1 (response1) and
R2 (response2). The type of the dendrite is [4, 4, 1, 2, 1, 2]. As
Nes = 16 there are 2 remaining synapses from NSI-coding presy-
naptic neurons. For clarity, the Nis = 4 inhibitory synapses are
not displayed.

Connections between post-synaptic and pre-synaptic neurons
are random. This generates a set of dendrite types, each having
its own probability of occurrence. Random synaptic connectivity
corresponds to a random allocation of every pre-synaptic neu-
ron with every dendrite of every post-synaptic neuron. To do
this exactly, we describe the probabilistic law of allocation of
pre-synaptic neurons to dendrites and then allocate dendrites
to each neuron according to that law. This has two advantages.
First, we can mathematically study the dendrite’s distribution in
the network, and second we can guarantee the probabilities of
occurrence of the different types of dendrites and overcome the
problem of dealing with small populations.

In order to compute the probability of occurrence of a dendrite
of type T, one has to first compute the total number N of ways to
connect a post-synaptic neuron to pre-synaptic neurons through
synapses within the dendrite. The desired probability is then sim-
ply the number of ways of connecting a post-synaptic neuron to
pre-synaptic neurons through a dendrite of type T divided by N.
This is what we investigate below.

The number of ways of connecting a post-synaptic neu-
ron with n pre-synaptic neurons through k synapses is �k

n =
Ck

n + k − 1 = (n + k − 1)!
k!(n − 1)! . This corresponds to the number of non-

ordered words (synapses are not located with a specific order
within a dendrite) of size k, allowing repetitions, made from an
alphabet of size n. For example if k = 2, n = 4 and if we call A,
B, C, D the 4 pre-synaptic neurons, then there is �2

4 = 10 pos-
sibilities which are AA, BB, CC, DD, AB (=BA), AC (=CA), AD
(=DA), BC (=CB), BD (=DB), CD (=DC).

Using that result, we can now compute the probability that a
post-synaptic neuron i, from any population Pv(1 ≤ v ≤ g), has
a dendrite of type [n1, n2, . . . , ng]. Given that neurons do not
self-connect, the total number of ways of connecting NE − 1 exci-
tatory neurons to a post-synaptic neuron i through a dendrite of

Nes synapses is �
Nes
NE−1.

The question then becomes: in how many ways can the NE-
1 excitatory neurons be connected to neuron i of population Pv

through the Nes synapses of a dendrite of type [n1, n2, . . . , ng]?
For the sake of simplicity, we can first set v to 1, meaning that

neuron i is taken in population P1. We note that Np = fNE the
number of neurons in each population of coding neurons. There
are �

n1
Np−1 ways to connect Np − 1 neurons from P1 to i through

n1 synapses (i does not self-connect) and �
nu
Np

ways to connect

Np neurons from Pu to i through nu synapses (u = 2, . . . , g).

There are �

Nes−
g∑

u = 1
nu

NE − gNp ways of connecting the remaining Nes −
(n1 + · · · + ng) synapses from the NE − gNp NSI-coding neurons
to neuron i.

Finally, the total number of ways to connect neuron i
through a dendrite of type [n1, n2, . . . , ng] is the product of

�
n1
Np−1, �

n2
Np

, . . . , �
ng

Np
and �

Nes−
g∑

u = 1
nu

NE − gNp . Thus, the probability that

a post-synaptic neuron i from population P1 has a dendrite of
type [n1, n2, . . . , ng] is:

ProbP1 = ([
n1, . . . , ng

]) =
�

n1
Np − 1

( g∏
u = 2

�
nu
Np

)
�

Nes−
g∑

u = 1
nu

NE − gNp

�
Nes
Ng − 1 (1)

This result generalizes to the probability that any post-synaptic
neuron i from any population Pv(1 ≤ v ≤ g) has a dendrite of
type [n1, n2, . . . , ng]:

ProbPv = ([
n1, . . . , ng

]) =
�

nv
Np − 1

(
g∏

u = 1,u�=v
�

nu
Np

)
�

Nes −
g∑

u = 1
nu

NE − gNp−1

�
Nes
NE−1

(2)

and also for NSI-coding neurons:

ProbPNSI = ([
n1, . . . , ng

]) =

( g∏
u = 1

�
nu
Np

)
�

Nes−
g∑

u = 1
nu

NE−gNp−1

�
Nes
NE−1

(3)

This probabilistic law has been verified via random number gen-
eration (see Figure 1E) and was used for connecting the network
for simulations.

INTER-SYNAPTIC LEARNING
During synaptic learning, the local pattern of pre- and post-
synaptic activity leads to long-term potentiation (LTP; Hebb,
1949; Bliss and Lomo, 1973; Bliss and Collingridge, 1993) or
depression (LTD; e.g., Kirkwood and Bear, 1994) of the synapse.
LTP and LTD have been reported with rewarded responses
(Soltani and Wang, 2006) resulting from dopamine modulation
of synaptic plasticity at prefrontal synapses (Reynolds et al., 2001;
Reynolds and Wickens, 2002), while a lack of dopamine signal
prevents both LTP (Centonze et al., 1999) and LTD (Calabresi
et al., 1992). We therefore consider that learning occurs when
the response to a combination of context and stimulus is in
accordance with the rule (rewarded combinations). Synapses
are updated for each rewarded combination according to the
states of the pre- and post-synaptic neurons. Those neurons are
active when the context, stimulus or response they code for is
involved in the rewarded combination. We first consider the for-
malism describing Hebbian learning (Brunel et al., 1998) before
presenting the new formalism describing IS learning.

Hebbian learning
The plastic synapses are assumed to be binary, with two discrete
states: a potentiated “Up” state and a depressed “Down” state. The
formalism of classical Hebbian learning generates potentiation or
depression of synapses as a function of the activity of the two pre-
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and post-synaptic neurons (e.g., Brunel et al., 1998). For simplic-
ity, we will consider here neurons whose current state Vi ∈ [0; 1]
corresponds to its activity in the absence of any external stimu-
lus or context. The state Vi of a neuron i is driven by the presence
or absence of the item it codes for (context, stimulus or response),
described as a binary string ξi ∈ {0; 1}. Learning occurs according
to an all-or-none reward signal (depending on the combination)
that determines if synapses learn or not for a given trial. When the
learning conditions are met, synaptic modification occurs proba-
bilistically (Amit and Fusi, 1994; Brunel et al., 1998; Fusi, 2002;
Fusi et al., 2005). In cases of LTP, each synapse in the Down
state has an instant probability q+ to be switched to the Up state.
Similarly, in cases of LTD, each synapse in the Up state has an
instant probability q− of being switched to the Down state. As a
result, a synapse ij between pre- and post-synaptic neurons i and j
has a probability aij to potentiate, a probability bij to depress, and
probability λij that no change occurs (Brunel et al., 1998):

aij = q+ξiξj (4)

bij = q− [ξi
(
1 − ξj

)+ ξj (1 − ξi)
]

(5)

λij = 1 − aij − bij (6)

Inter-synaptic amplification of potentiation
In our model, we consider that the spatial organization of
synapses in the dendritic tree impacts the integration of synap-
tic inputs within the dendrites. Dendritic compartmentalization
influences the pairing of excitatory post-potentials (EPSP) gen-
erated in dendrites and action potentials (see Spruston, 2008).
Studies have reported that the induction of LTP requires a min-
imal amount of synapse activation (Govindarajan et al., 2011),
due to the activation of at least some biochemical pathways that
are spread over a short distance (Yasuda et al., 2006; Harvey
et al., 2008) and/or the electrical supralinear summation of synap-
tic inputs within subdendritic domains (Poirazi et al., 2003a,b;
Gasparini et al., 2004). Synapses at which LTP has been induced
can then benefit from further LTP when other synapses are
potentiated through the use of plasticity-related protein prod-
ucts (Frey and Morris, 1997). The clustered plasticity hypothesis
(Govindarajan et al., 2006) predicts that, based on local activity-
induced protein synthesis (Steward and Schuman, 2001; Martin
and Kosik, 2002), potentiation is amplified for synapses that are
close in a dendritic branch (see Harvey and Svoboda, 2007). This
is in line with the observation of LTP within the same dendritic
branches rather than across branches (Govindarajan et al., 2011).
Moreover, these authors also report that, under conditions in
which spines are located within the same dendrite, the number
of spines that are potentiated increases with the number of spines
that are stimulated (Govindarajan et al., 2011 Figure 6).

In our model, we consider the number of active synapses
within the dendrite to be of critical importance in the amplifica-
tion of their potentiation, i.e., the potentiation of a given synapse
between a post-synaptic and a pre-synaptic neuron is ampli-
fied when other pre-synaptic neurons having synapses within the
same dendrite are also activated (active synapses). The resulting
inter-synaptic learning rule has been formalized according to a
mathematically tractable description of the average potentiation

values of the synapses in the different types of dendrites after a
learning protocol of any type of combination rule.

We will next consider a dendrite D of type [n1, n2, . . . , ng].
From Equation 4, the probability aij(D) of potentiating an active
synapse connecting two active neurons i and j within a den-
drite D is equal to its instant probability q+ of being switched
to the Up state. Here, we consider that the probability aij(D) will
increase according to the number of other active synapses in D.
The simplest way to take this in account is to multiply q+ by n:

aij (D) = q+ξiξjn (7)

We note here that aij(D) ≤ 1 corresponds to cases of small values of
q+ (slow learning; Brunel et al., 1998) and of a small number n of
active synapses in a given dendrite D. Here we take q+ = 0.01 and
the maximum number of active synapses per dendrite Ns = 16.

If the population of neurons Pu is inactive/active, every neu-
ron that belongs to it is, respectively, inactive/active. By extension,
we will denote ξPu ∈ {0; 1} the state of every neuron in that
population.

Let us now consider a dendrite of type [n1, n2, . . . , ng], of a
post-synaptic neuron i and consider that a pre-synaptic neuron j
belongs to population Pj such that the synapse ij is one of the nj

synapses from population j within the dendrite. The number of
active synapses from population Pu is ξPunu, and thus the number
of active synapses n within the dendrite can be decomposed as:

n = ξPjnj +
g∑

u=1, u�=j

ξPunu (8)

As ξPj = ξj Equation (7) can be now written as:

aij (D) = q + ξiξj + q + ξiξJ
(
nj − 1

)+ q + ξiξj

⎛
⎝ g∑

u = 1, u �= j

ξPunu

⎞
⎠

(9)

with q + ξiξj representing the synaptic potentiation due to clas-
sic Hebbian learning (Equation 4), q + ξiξJ

(
nj − 1

)
representing

the inter-synaptic amplification of the potentiation due to co-
active synapses connecting neurons from the same population Pj,

and q + ξiξj

(∑g
u= 1, u �= j ξPunu

)
representing the inter-synaptic

amplification of potentiation due to co-active synapses connect-
ing neurons from different populations Pu. The amplification of
potentiation of a given synapse depends on the activity of the
post-synaptic neuron, of the pre-synaptic neuron, and of other
active neurons having a synaptic contact within the same dendrite
D. Synaptic potentiation is calculated locally within a dendrite,
but obeys a non-local rule that takes into account the activity of
neurons other than the pre- and post-synaptic neuron.

Inter-synaptic amplification of depression
The probability bij of depressing a synapse connecting two active
neurons i and j within a dendrite D is equal to its instant probabil-
ity q− of being switched to the Down state if either i is active and
j is inactive or i is inactive and j is active (Equation 5). Here, we
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consider that the probability bij(D) will depend on the number of
other active synapses in D: bij increases according to the number
of others active synapses in D if i is active and j is inactive, or if i
is inactive and j is active. As in the case of amplification of poten-
tiation, the simplest way to take that increase into account is by
multiplication. Considering a dendrite D of type [n1, n2, . . . , ng]
we thus have:

bij (D) = q− ξi
(
1 − ξj

)⎛⎝1 +
g∑

u = 1,u�=j

ξPunu

⎞
⎠+ q− ξj (1 − ξi) nj

(10)

We also note here that bij(D) < 1 corresponds to cases of small
values of q− (slow learning; Brunel et al., 1998) and of a small
number n of active synapses in a given dendrite D. Here we take
q− = q+ = 0.01 (the maximum number of synapses per dendrite
Ns = 16).

Equation 10 can be rewritten:

bij (D) = q− ξi
(
1 − ξj

)+ q− (1 − ξi) ξj + q−ξj(1 − ξi)
(
nj − 1

)
+ q− ξi

(
1 − ξj

) g∑
u = 1,u�=j

ξPunu (11)

with q − ξi
(
1 − ξj

)+ q − (1 − ξi) ξj representing the synaptic
depression due to classic Hebbian learning (Equation
5), q − ξj (1 − ξi)

(
nj − 1

)
representing the inter-synaptic

amplification of depression due to co-active synapses
connecting neurons from the same population Pj, and

q − ξi
(
1 − ξj

)∑g
u = 1, u �= j ξPunu representing the inter-synaptic

amplification of depression due to co-active synapses connecting
neurons from different populations Pu. The amplification of
depression of a given synapse depends on the activity of the
post-synaptic neuron, of the pre-synaptic neuron, and of other
active neurons having a synaptic contact within the same dendrite
D. Like synaptic potentiation, synaptic depression is calculated
locally within a dendrite, but obeys a non-local rule that takes
into account the activity of other neurons than the pre- and
post-synaptic neuron.

No change
From Equation 6, the probability that a synapse does not change
can be written as follows for a given dendrite:

λij (D) = 1 − aij (D) − bij (D) (12)

Overall probability of potentiation
According to Brunel et al. (1998), aij and bij allow the calcula-
tion of the mean values of potentiation Jij as the mean probability
of potentiating the synapse ij without further changes along the
learning protocol, under the assumption that learning is slow (i.e.,
q+ and q− are low; see Brunel et al., 1998). Jij is the mean proba-
bility reaching the value aij, for each presentation of the stimuli ξi

and ξj at each discrete time t (from 1 to the last learning time
T), and that the value aij does not change (λij) at each time t

afterward (from s = t + 1 to T):

jij (T) =
T∑

t = 1

aij(t)
T∏

s = t + 1

λij(s) (13)

If we consider a dendrite D of type [n1, n2, . . . , ng], we can calcu-
late the mean values of potentiation Jij as the mean probability of
potentiating the synapse ij without further changes for each type
of dendrite (aij from Equation 9 and λij from Equation 12):

jij (D, T) =
T∑

t = 1

aij (D, t)
T∏

s = t + 1

λij (D, s) (14)

Given that each of the at
ij�sλ

s
ij is a product of terms correspond-

ing to different times, they can be averaged independently since
presentations at different time steps are uncorrelated. According
to Brunel et al. (1998), we obtain, for each type of dendrite, the
average probability Jij that a synapse is potentiated after the pre-
sentation of all combinations of items in all possible orders (case
of infinite and slow learning):

Jij (D) = 〈
jij (D)

〉 = 〈
aij (D)

〉 ∞∑
s = 0

λ
(D,s)
ij =

〈
aij (D)

〉
〈
aij (D) + bij (D)

〉(15)

Jij is the probability that a synapse connecting a post-synaptic
neuron i and a pre-synaptic neuron j is potentiated. It corre-
sponds to the probability a in the notation of Brunel et al. (1998),
and allows us to calculate the exact value of synaptic efficacy Ja

(see Mongillo et al., 2003):

- Synapses between neurons coding for different and associated
items have an intermediate efficacy Ja whose value depends on
the probability a, which depends in turn on the type of dendrite
considered and to the IS learning algorithm:

Ja = J0 + a(J1 − J0) (16)

- Synapses between neurons coding for a same item have a maxi-
mum efficacy J1 that corresponds to the maximum probability
a = 1:

J1 = k.JEE (17)

with JEE the value of efficacy before learning, and k = 2.09 so
that neurons coding for the same item can exhibit persistent
activity after removal of the stimulus (see Amit and Brunel,
1997).

- Synapses between neurons coding for different and non-
associated items, or between coding and NSI neurons, have
minimum efficacy J0:

J0 = (JEE − f J1)/(1 − f ) (18)

with f being the coding level and JEE being the average efficacy
of excitatory to excitatory synapses.
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The IS learning algorithm allows the calculation of the synaptic
efficacy of all the synapses as a function of their probability of
being potentiated according to each type of dendrite. The com-
binations of items are learned solely through the modification of
synaptic efficacy, which depends on the states of the neurons cod-
ing for the items during the learning of a combination, i.e., on the
context, stimulus, and response involved in that combination.

DENDRITIC AND NEURONAL DYNAMICS
Dendritic dynamics
Dendrites integrate synaptic currents induced by AMPA (α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) and
NMDA (N-methyl-D-aspartate) receptors to glutamate, and
currents induced by GABA (γ-aminobutiric acid) receptors to
GABA. This allows us to calculate voltage-independent AMPA
and GABA synaptic currents and voltage-dependent NMDA
currents obeying their own dynamics. The total dendritic current
ID is a composite of different currents IR, corresponding to
different types of post-synaptic receptors R to GABA, AMPA and
NMDA.

Upon the emission of a pre-synaptic spike at tk, an epsp/ipsp
is generated within the dendrite D after a delay δs. The current
has an instantaneous jump proportional to the efficacy Js (mS)
of the synapse s. It is followed by an exponential decay with a
time constant τR. Different τR values correspond to the different
receptors involved (Hestrin et al., 1990; Spruston et al., 1995; Salin
and Prince, 1996; Xiang et al., 1998): GABARs exhibit fast activa-
tion and decay (τGABA = 5 ms), AMPARs exhibit fast activation
and decay (τAMPA = 2 ms), and NMDARs exhibit slow activation
and decay (τNMDA = 100 ms).

For GABA receptors, voltage-independent inhibitory post-
synaptic currents IGABA obey the equation:

τGABA dIGABA
D (t)

dt
= −IGABA

D (t) + τm

∑
s

Js

∑
k

δ (t − tk − δs)

(19)

For AMPA receptors, voltage-independent excitatory post-
synaptic currents IAMPA obey the equation:

τAMPA dIAMPA
D (t)

dt
= −IAMPA

D (t) + τm

∑
s

(1 − x) Js

∑
k

δ (t − tk − δs) (20)

where (1 − x) is the fraction of excitatory currents induced by
AMPA receptors, and x is the fraction of excitatory currents
induced by NMDA receptors.

NMDA receptors are voltage-dependent. Excitatory post-
synaptic currents INMDA

d are calculated as a function of the
dendrite potential VD according to the equation:

τNMDA dINMDA
D (t)

dt
= −INMDA

D (t) + τm

1 + ( 1
3.57

)
e−0.062VD(t)∑

s

xJ
∑

k

δ (t − tk − δs) (21)

The dendritic currents generated by each receptor R in each den-
drite D are due to recurrent excitatory and inhibitory activities
and to external noise and input stimuli. Within each dendrite D,
currents evolve with their own dynamics, with the GABAA and
AMPA currents being linearly integrated.

Non-linear dendritic integration relies on NMDA currents
that are non-linearly integrated within each dendrite before arriv-
ing at the cell body. NMDA currents vary according to the

multiplying factor SI

(
INMDA,rec
d

)
that varies non-linearly with

INMDA,rec
d according to a sigmoïd between the values 1 and 1 + G:

SI
(
INMDA
D

) = 1 + G

1 + e
γ −|INMDA

D |
s

(22)

with γ = Imax + Imin
2 , s = |Imax − Imin|

20 .G = 12.5 is the gain and Imin

and Imax are the minimum and maximum values of dendritic
current, respectively (see Table 1).

NMDA currents are then multiplied by SI

(
INMDA,rec
d

)
and

therefore vary non-linearly. In some simulations testing the effects

of linear dendritic integration, SI

(
INMDA,rec
d

)
will be set to 1 (see

Results—Selectivity and Responsiveness of the Different Types of
Dendrites).

All receptor-dependent currents are then summed within the
dendrite, to give the dendritic current ID:

ID = SI
(
INMDA
D

)
INMDA
D + IAMPA

D + IGABA
D + (1 + λ) IAMPA,ext

D (23)

where IAMPA,ext
D is the external current induced by noise which we

assume to be induced by AMPA receptors only. λ is the contrast
of the external afferent input over external noise, and is equal to
0 when no input is presented to the network and equals 0.08 for a
given neuron population when the neuron receives selective affer-
ents, when the specific item is presented to the network with a rate
(1 + λ)νext (Mongillo et al., 2003).

The dendritic potential VD is calculated in each dendrite D as
a function of the synaptic current ID in the dendrite (in units of
VD), generated by spikes arriving from pre-synaptic neurons.

τm
dVD (t)

dt
= −VD (t) + ID (t) (24)

where τm is the membrane time constant of excitatory cells
(τE = 20 ms) and inhibitory cells (τ I = 10 ms).

Neuronal dynamics
Each neuron i of the network is a leaky integrate-and-fire neuron
(Tuckwell, 1988), whose state is described by its total depolariza-
tion V (mV) and is calculated as follows:

τm
dV (t)

dt
= −V (t) +

∑
D

ID (t) (25)

For simplicity, we consider that the integration in a given dendrite
is independent of that in other dendrites, and that all dendrites
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Table 1 | Description and parameters for the model.

MODEL SUMMARY

Populations One of inhibitory neurons
Six of excitatory neurons (selective to a context, stimulus or response)
One of NSI-coding excitatory neurons (not selective to a context, stimulus or response). A fraction can respond to combinations
(mixed-coding neurons, depending on simulations)

Connectivity Random

Neuron model Leaky integrate and fire, fixed voltage threshold, fixed absolute refractory period

Dendrite model Linear integration of GABA and AMPA currents. Voltage dependent linear or non-linear integration of NMDA currents (depending on
simulations)

Synapse model δ-current inputs (discontinuous voltage jumps)

Plasticity Hebbian or Inter-Synaptic Learning (depending on simulations)

Input Independent fixed-rate Poisson spike trains to neurons coding for the context, stimulus or response

Measurements Averaged spike frequencies of the neurons of each population

CONNECTIVITY

NE Number of excitatory neurons 4000

NI Number of inhibitory neurons 1000

C Connectivity 0.2

CE Number of recurrent excitatory connections per neuron 800

Cext Number of external excitatory connections per neuron 2200

CI Number of recurrent inhibitory connections per neuron 200

g Number of populations 6

fNE Number of neurons per population 400

f Coding level NEp/NE = 0.1

Ns Number of excitatory synapses per dendrite 16

Nd Number of dendrites per neuron 50

DYNAMICS

δE Latency (transmission delay), excitatory neurons 15–30 ms

δI Latency (transmission delay), inhibitory neurons 0.5 ms

τAMPA Synaptic decay type, AMPA-R 2 ms

τNMDA Synaptic decay type, NMDA-R 100 ms

τGABA Synaptic decay type, GABA-R 5 ms

x Fraction of NMDA currents 0.3

τmE Membrane time constant, excitatory neurons 20 ms

τmI Membrane time constant, inhibitory neurons 10 ms

θ Firing threshold, both types 20 mV

Vτ E Reset membrane potential, excitatory neurons 10 mV

Vτ I Reset membrane potential, inhibitory neurons 15 mV

τRP Refractory period, both types 2 ms

λ Contrast of external input 0.08

Imin Minimum value of dendritic current 0

Imax Maximum value of dendritic current 0.115

νext External Poisson noise 15 Hz

SYNAPSES AND LEARNING

q+ Intrinsic probability of potentiation 0.01

q− Intrinsic probability of depression 0.01

JEE Average E→E efficacy 0.047 mV

JIE E→I efficacy 0.09 mV

JEI I→E efficacy −0.27 mV

JII I→I efficacy −0.5 mV

JEext External E→E efficacy 0.052 mV

JIext External E→I efficacy 0.1 mV

J1 Potentiated E→E efficacy between neurons coding for a same item 0.098

Ja Potentiated E→E efficacy between associated items J0 + a(J1 − J0)

J0 Depressed E→E efficacy between non-associated items (JEE − fJ1)/(1 − f)

Frontiers in Psychology | Cognitive Science August 2014 | Volume 5 | Article 842 | 10

http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science/archive


Lavigne et al. Inter-synaptic learning of combination rules

have the same weight when summed in the cell body. When V
reaches a threshold Vθ , the neuron emits a spike and VT is reset
to Vτ , following a refractory period τRP.

RESULTS
The main objective of the present formalism of IS learning is to
investigate how important a role the interactions between nearby
synapses within dendrites play at the stages of learning and of pro-
cessing of XOR-like combinations at the network level. The results
section is organized as follows: Section Probability of the Different
Types of Dendrites presents a description of the types of den-
drites generated by random connectivity; Section Inter-Synaptic
Learning in the Different Types of Dendrites presents the IS learn-
ing of the values of synaptic efficacy depending on the number
of co-active synapses that are present in different types of den-
drites, as well as a comparison of IS learning and classical Hebbian
learning; Section Selectivity and Responsiveness of the Different
Types of Dendrites presents the effects of IS learning on the
dendritic response to combinations of contexts and stimuli, and
the role of non-linear dendritic integration in the amplification
of the learned combinations; and Section Neuron and Network
Processing of XOR-like Combinations presents the behavior of
the network processing a XOR-like combination after IS learning
and a comparison to Hebbian learning and the synergistic effects
of IS learning and mixed-coding neurons.

PROBABILITY OF THE DIFFERENT TYPES OF DENDRITES
Given that all dendrites have the same, small number Ns of
synapses compared to the total number of potential pre-synaptic
contacts, random connectivity generates dendrites that have dif-
ferent numbers of synapses with pre-synaptic neurons coding
for the different contexts, stimuli, or responses (from zero to
the maximum number of synapses Ns in the dendrite). Some
of the dendrites will have more synapses for a given context,
stimulus and response, and will thus be better able to respond
to their particular combination. At the level of neurons and of
the network, it is therefore necessary to know the probability
of each type of dendrite. We first analyze the random distri-
bution of synapses in the different types of dendrites involved
(Figures 2A–C; Methods—Synaptic Connectivity; Equation 2
and 3). The probability of occurrence of each type of dendrites
is highly variable (Figure 2A). It is heterogeneous even for a fixed
number of synapses from C1 and S1 (along the anti-diagonal; that
will show the effects of IS learning for a fixed number of synapses;
Figures 2, 3). The probability is also heterogeneous depending on
the number of synapses from C2 and S2 within two relevant types
of dendrites: the rare case of four synapses from C1 and four from
S1 ([C1 = 4, S1 = 4, C2, S2, R1, R2], Figure 2B) and the fre-
quent case of two synapses from C1 and two from S1 ([C1 =
2, S1 = 2, C2, S2, R1, R2], Figure 2C). The different probabili-
ties of the different types of dendrites creates the possibility that
only a fraction of the dendrites have more synapses from neurons
coding for combinations that will be learned (e.g., for a den-
drite on a neuron coding for R1: dendrites having synapses from
C1S1 and/or C2S2). The result is that random connectivity at the
level of dendrites having few synapses makes different dendrites
with different numbers of synapses from the different contexts,

stimuli, and response. These dendrites are therefore more or
less susceptible to learn some specific combinations through IS
learning.

INTER-SYNAPTIC LEARNING IN THE DIFFERENT TYPES OF DENDRITES
The next step is to determine, for a given type of synapse (e.g.,
between C1 and R1 neurons), to what extent IS learning gener-
ates different efficacy values in different types of dendrites with
different numbers of synapses from pre-synaptic neurons coding
for items combined together (e.g., C1S1R1). Finally, we compare
the effect of IS learning (Equation 15) to the effect of classical
Hebbian learning (see Brunel et al., 1998) on the synaptic efficacy
values in the different types of dendrites.

Considering a specific set of synapses that connect neurons
coding for a given pair of context and stimulus (C1 & S1) to a
response (R1), the results show that the inter-synaptic learning
algorithm generates, for a given pair of synapses (e.g., S1-R1 and
C1-R1), efficacy values that depend greatly on the number of this
type of synapses in the dendrite (Figure 2D; Methods—Synaptic
Connectivity and Inter-synaptic Learning). The different efficacy
values generated by IS learning in the different types of dendrites
correspond to a synaptic efficacy mosaic (Iannella et al., 2010).

An important point is visible on the types of dendrites along
the diagonal of the matrix (Figure 2D), where the efficacy of two
synapses (from C1 and from S1) increases with the number of
synapses from C1 and from S1 within the dendrite. Regarding
the anti-diagonal of Figure 2D, the curve—corresponding to the
sum of the efficacy of two synapses C1-R1 and S1-R1—exhibits a
concave shape (inset of Figure 2D). This is due to the fact that,
along the anti-diagonal, the amplification of potentiation of a
synapse C1-R1 alone increases with the increasing number of
synapses from C1 (inset of Figure 2G), while the amplification
of potentiation of a synapse S1-R1 alone increases in the opposite
direction with the increasing number of synapses from S1. The
combination of the two phenomena leads to the concave curve of
Figure 2D (inset). An interesting feature is that, when multiplied
by the number of synapses of each type in the dendrite, the shape
of the curve becomes convex (Figure 3A) and predicts different
amounts of dendritic currents (Figure 3D).

Figure 2D shows that synaptic amplification of potentiation
is larger in the rare dendrites having four synapses from C1 and
four from S1 ([C1 = 4, S1 = 4, C2, S2, R1, R2], see Figure 2E)
than in the frequent dendrites having two synapses from C1 and
two from S1 ([C1 = 2, S1 = 2, C2, S2, R1, R2], see Figure 2F). IS
learning of combinations therefore involves rare dendrites that are
more selective to those combinations. To examine the effects of
amplification of synaptic depression, efficacies are further exam-
ined in these dendrites as a function of the number of synapses
from C2 and S2 that are learned in combination with R1 and
depress synapses from C1 and S1. For these two types of den-
drites, Figures 2E,F show that an increasing number of synapses
from either C2 or S2 decreases the efficacy of synapses from C1
and S1. This shows the effects of the amplification of synaptic
depression due to the other learned combination C2S2R1, which
depresses synapses from C1 and S1 proportionally to the number
of synapses from C2 and S2. Note the flat curves along the anti-
diagonals (insets of Figures 2E,F) that show that efficacy of C1R1
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FIGURE 2 | Probability of the types of dendrites (A–C) and synaptic

efficacy after inter-synaptic learning (D–I), as a function of the number of

synapses from neurons coding for the context and neurons coding for

the stimulus (case of dendrites of neurons coding for response R1). For
clarity, synapses from NSI-coding neurons are not reported (see Figure 1D

for details). Insets focus on the probability or efficacy (y-axe) along the
anti-diagonal of each figure, where the number of synapses from the
combined items is constant (seven synapses). The x-axe (black anti-diagonal
lines) corresponds to the number of synapses from the Stimulus (the inverse
number of synapses from the Context). The effects of the increasing number
of co-active synapses (from the context and from the stimulus) appear along
the diagonal, while the effects of the increasing (decreasing) number of
synapses from the stimulus (context) appear on the shape of the curve along
the anti-diagonal (insets). Non-flat shapes reveal the effects of IS learning.
(A–C) After random connectivity: heterogeneous distribution of the
probability of the types of dendrite, defined by the numbers of synapses
from pre-synaptic neurons coding for contexts (C1 or C2), stimuli (S1 or S2)
and responses (R1 and R2): [C1, S1, C2, S2, R1, R2]. To better display slight
variations along the scale, only dendrites occurring with a probability higher
than 1.28 ×10−9 are displayed (note the different scales between graphs A, B

and C). For a given dendrite, this corresponds to a maximum of seven
synapses from pre-synaptic neurons coding for C1 and/or S1. (A) Overall

probability (over all synapses from C2, S2, R1, R2, and NSI-coding neurons)
of the types of dendrites, as a function of the number of synapses from
neurons coding for C1 and S1 (mean = 0.02; min = 2.80 ×10−9; max = 0.11).
(B,C) Two types of relevant dendrites (see text). (B) Overall probability of
[C1 = 4, S1 = 4, C2, S2, R1, R2] dendrites (averaged over all types) with any
number of synapses from C2, S2, R1, and R, as a function of the number of
synapses from neurons coding for C2 and S2 (mean = 3.52 ×10−5; min =
7.50 ×10−10; max = 2.35 ×10−4). (C) Same as (B) but regarding [C1 = 2,
S1 = 2, C2, S2, R1, R2] dendrites (mean = 0.001; min = 9.10 ×10−10; max =
8.65 ×10−3). (D-F) Amplification of potentiation and depression through IS
learning of the combination C1S1R1: Sum of the efficacy of two synapses
JR1−S + JR1−C from pre-synaptic neurons coding for the stimulus and the
context for the different types of dendrites defined in (A–C). Amplification of
potentiation and depression with the number of synapses in the dendrites
indicates that IS learning of the C1S1R1 combination generates different
efficacy values in different dendrite. (D) Amplification of the potentiation
along the diagonal when the number of synapses increases (mean = 0.83,
min = 0 and max = 1.22, compare to I). Synaptic efficacy is weak when one
type of synapses (from C1 or S1) is absent along the anti-diagonal (inset).
(E,F) Two types of dendrites having [4C1, 4S1] or [2C1, 2S1] synapses further
show the efficacy of two synapses JR1−S1 + JR1−C1 as a function of the

(Continued)
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FIGURE 2 | Continued

number of synapses from C2 and S2. Overall amplification of potentiation is
stronger in [C1 = 4, S1 = 4, C2, S2, R1, R2] dendrites (E; mean = 0.89;
min = 0.76 max = 1.17) than in [C1 = 2, S1 = 2, C2, S2, R1, R2] dendrites
(F; mean = 0.67; min = 0.42; max = 1.08). In both cases, amplification of
depression increases with the number of synapses from C2 and S2, also
learned in combination with R1 but generating depression of the C1R1 and
S1R1 synapses when learning a C2S2R1 combination. (G,H) Efficacy JR1C1

of synapses from C1 learned in combination with S1 and R1 (learned
context, G) or of JR1C2 of synapses from C2 not learned in combination with

S1 and R1 (context change, H). Overall synaptic efficacy from neurons
coding for the context is stronger when the context was learned in the
same combination (C1, G; mean = 0.41; min = 0; max = 0.61) than when it
was not (C2, H; mean = 0.27; min = 0; max = 0.44). (I) Classical Hebbian
learning of the combination C1S1R1: As in (D): synaptic efficacy is strong
(mean = 0.58). However, the efficacy does not depend on the number of
synapses in the dendrite along the diagonal, due to the absence of
inter-synaptic amplification of potentiation (min = max = 0.67). The efficacy
is weak when one type of synapses (from C1 or S1 or both) is absent along
the anti-diagonal (inset).

and S1R1 synapses does not depend on the number of synapses
from neurons coding for items not combined with R1 and C1
or S1 and R1 (here C2 and S2). Note also the highest efficacy
when more synapses from C1 and S1 are present in the dendrite
(Figure 2E compared to Figure 2F; visible on the y-value of the
insets).

Figure 2H shows the effects of synaptic depression on synapses
R1-C2 from a context (C2) that is not learned in combination
with the stimulus and response (S1R1). This is to compare to
synapses R1C1 from a context (C1) that is learned in combination
with the same stimulus and response (S1R1; Figure 2G). When
comparing to classical Hebbian learning (Figure 2I and inset), the
Hebb rule generates strong potentiation of synapses that connect
neurons coding for the contexts, stimuli and responses, regardless
of the number of co-active synapses within the dendrite. Hebbian
learning does not generate different efficacy values for a given
type of synapse although the algorithm is applied at the level of
dendrites and not of point neurons. This is in clear contrast with
the amplification of potentiation and depression generated by IS
learning (Figure 2D) and reveals the role not only of the synapses
localization but of the IS algorithm itself. Synapses are grouped
within dendrites, while being in different dendrites than other
groups of synapses. Given that groups of synapses in dendrites
are small, different dendrites have different numbers of a given
type of synapse (e.g., between S1 and R1). As a consequence, IS
learning generates efficacy values of a given type of synapse that
are different from dendrite to dendrite. This would not be pos-
sible by applying a classical Hebbian algorithm, because it does
not take into account of the number of active synapses and would
generate the same efficacy value for all synapses of a given type
whatever the dendrite considered. Further, IS learning applied in
the absence of different dendrites would not work either (i.e., by
considering a point neuron or a single dendrite grouping all the
synapses to the neuron). In the absence of different dendrites, IS
learning would take into account of the total number of active
synapses to the neuron and not those that are coactive within the
same dendrite. This total number being constant if synapses are
not grouped in different dendrites, IS learning would generate the
same synaptic efficacy for all synapses of a same type. Considering
a neurons coding for R1, potentiation of all synapses from neu-
rons coding for C1, C2, S1 or S2 would be amplified in the same
amount, because synapses from C1 and S1, or from C2 and S2
would be equally co-active. As a result of either Hebbian learn-
ing with different dendrites or of IS learning without dendrites,
equal values of synaptic efficacy would not allow the network to
discriminate C1S1, C1S2, C2S1, or C2S2 combinations.

To summarize, the amplification of potentiation and depres-
sion is determined by the inter-synaptic learning algorithm,
which is applied to different numbers of co-active synapses in
the different types of dendrites (diagonal of Figure 2D). Further,
for dendrites having a constant number of synapses from a con-
text and a stimulus, IS learning generates different efficacy values
depending on the ratio of the number of synapses from the
context and from the stimulus (inset of Figure 2D). Therefore,
though synaptic connectivity is random, different types of den-
drites of a neuron coding for a response learn certain combina-
tions rather than others, with an optimum when the numbers of
synapses from the context and from the stimulus are equal (i.e.,
along the diagonal). Here, optimal learning of particular combi-
nations arises at the level of individual dendrites that code for
associations between a given stimulus and response in a given
context (Figure 2G), but not in another context (Figure 2H).

SELECTIVITY AND RESPONSIVENESS OF THE DIFFERENT TYPES OF
DENDRITES
The fact that IS learning generates different efficacy values in
different dendrites does not necessarily mean that this will sig-
nificantly change the dendritic responses necessary to optimize
the behavior of the network. We investigate here to what extent
the total synaptic input to dendrites—defined here by the synap-
tic efficacy of active synapses—determines the magnitude of
dendritic currents (Figures 3A–C). We also compare the effects
of non-linear to linear integration of combinations of synaptic
inputs on dendritic currents (Figures 3D–I).

The selectivity of the different types of dendrites to particular
combinations of synaptic inputs is described by the total synaptic
input, as measured by the sum of synaptic efficacies multiplied by
their number (Figures 3A–C). Regarding a neuron coding for R1,
the total input in the dendrite increases naturally with the number
of synapses from C1 and S1 within the dendrite (Figure 3A). As a
consequence, non-linear dendritic integration generates currents
that increase non-linearly with the amount of synaptic input,
being larger in dendrites having four synapses from C1 and four
from S1 than in dendrites having two synapses from C1 and
two from S1 (Figure 3D). It is important to note here that the
total input, as well as the dendritic current, varies also along the
anti-diagonal with the ratio of the numbers of synapses from C1
and from S1 while their total number remains constant (convex
curve in the inset of Figures 3A,D). This variation along the anti-
diagonal arises from the product of the efficacy of each type of
synapse by its number within the dendrite. This reveals that, after
IS learning, dendrites (e.g., of a neuron coding for R1) are more
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FIGURE 3 | Selectivity and responsiveness of the different types of

dendrites to the combined activity of the context and stimulus (same

dendrites as in Figure 2). Insets display the total synaptic input or dendritic
current along the anti-diagonal of each figure (see Figure 2). (A–C) Total
pre-synaptic input, as the sum of two efficacies weighted by their number
(nSJR1−S + nCJR1−C ). (A) Amplification of the total synaptic input increases
with amplification of potentiation and with the number of synapses (mean =
3.40; min = 0; max = 8.55). Along the anti-diagonal, synaptic input varies
with the ratio of numbers of synapses from C2 and S2, even though the
number of synapses is constant. (B,C). Overall synaptic input is stronger in
[C1 = 4, S1 = 4, C2, S2, R1, R2] dendrites (B; mean = 3.58; min = 3.05;
max = 4.69) than in [C1 = 2, S1 = 2, C2, S2, R1, R2] dendrites (C; mean =
1.34; min = 0.84; max = 2.16). In both cases, synaptic depression decreases
efficacy with the increasing number of synapses from C2 and S2 that
generate depression of the C1R1 and S1R1 synapses when learning of a
C2S2R1 combination. (D–I) Total dendritic current ID generated by a spike
train of 20 Hz on synapses from neurons coding for the context and stimulus
S1 and S2 (averaged over a 100 ms stimulation). (D–F) Non-linear integration
following IS learning (same dendritic types as A-C). (D) Currents greatly
increase with the number of potentiated synapses from C1 and S1 (mean =
0.238; min = 0; max = 1.03). The non-linear responses of dendrites magnify
the effect of the efficacy (compare with Figure 2D). Dendritic currents also
vary along the anti-diagonal for a constant number of synapses. (E,F) Two

types of dendrites having [4C1, 4S1] or [2C1, 2S1] synapses (same as
Figures 2E,F) further show the increased dendritic current as a function of
the number of synapses from C2 and S2. The overall dendritic current is
stronger in [C1 = 4, S1 = 4, C2, S2, R1, R2] dendrites (E; mean = 0.18;
min = 0.14; max = 0.28) than in [C1 = 2, S1 = 2, C2, S2, R1, R2] dendrites
where amplification of potentiation is too weak to generate different currents
in the different dendrites (F; mean = 0.02; min = 0.02; max = 0.02). When
dendrites have too few synapses from C1 and S1, they lose responsiveness
to the C1S1 combination (C). (G) Same as (D) in case of linear dendritic
integration following classic Hebbian learning: currents vary in very small
amount due to linear dendritic integration (mean = 0.03; min = 0, max =
0.07, compare with (D), with a different scale). Along the anti-diagonal, for a
constant number of linearly integrated inputs, currents do not vary with the
ratio of numbers of synapses from C2 and S2 due to the absence of IS
learning. (H) Same as (D) in case of non-linear dendritic integration and
classical Hebbian learning: currents vary in larger amount than in G but
smaller than in (D) (mean = 0.15; min = 0; max = 0.72) due to non-linear
integration. As in (G), dendritic currents do not vary along the anti-diagonal
due to the absence of IS learning. (I) Same as (D) in case of linear dendritic
integration and IS learning: Currents vary in small amount across dendrites
(mean = 0.04; min = 0; max = 0.09: compare with D). The anti-diagonal
exhibits the pure effect IS learning, with dendritic currents that vary even
though dendritic integration is linear (see Figure 2D).
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or less selective to some combinations as a function of the num-
ber of synapses from C1 and from S1 (diagonal), but also vary
in selectivity for a fixed number of synapses, as a function of the
ratio of their numbers (Inset of Figure 3A).

Regarding type of dendrites receiving the largest total input
(Figure 3B), responsiveness decreases when the number of
synapses from either C2 or S2 increases (diagonal of Figure 3E).
This is due to lower synaptic efficacy (due to synaptic depression,
Figures 2E). Regarding dendrites receiving fewer synaptic inputs
(Figure 3C), responsiveness stays very weak whatever the number
of synapses from C2 and from S2 (Figure 3F), due to low efficacy
from C1 and from S1 (Figure 2F).

These results show that the non-linear response of dendrites is
selective to some combinations of synaptic inputs after IS learn-
ing. The synergistic effects of non-linear dendritic integration and
IS learning are next investigated by cross-manipulating the type of
dendritic integration used (linear vs. non-linear) and the choice
of either Hebbian vs. IS learning. Non-linear integration is cal-
culated using Equation 23 by taking SI(INMDA

D ) of Equation 22.
Linear integration is calculated by setting SI(INMDA

D ) = 1 and
taking INMDA

D according to Equation 21. Figure 3D shows the
combined effects of non-linear dendritic integration and IS learn-
ing on the amplification of dendritic currents with the increasing
number of combined synaptic inputs. To the opposite, Figure 3G
shows that in case of linear dendritic integration and Hebbian
learning, the responsiveness of dendrites is very weak and exhibit
negligible variations due to the increasing number of synapses
along the diagonal (note the different scales in Figures 3D,G).
Along the anti-diagonal, dendritic currents do not vary for a
fixed number of synapses from C2 and S2 (inset of Figure 3G).
This is due to the Hebbian learning that cannot change synap-
tic efficacy with the ratio of numbers of synapses from C2 and
S2. Figure 3H shows that, when non-linear dendritic integration
is allowed but not IS learning, currents vary in larger amount
with the number of synapses along the diagonal, due to the sole
effect of non-linear integration. However, along the anti-diagonal,
synaptic efficacy does not change with this number due to the
absence of IS learning. Finally, Figure 3I shows that, when den-
dritic integration is only linear and IS learning is allowed, currents
increase in small amounts with increasing number of synapses
along the diagonal. The pure contribution of IS learning is visible
along the anti-diagonal, where dendritic currents exhibit a convex
curve. However, the convexity is amplified by non-linear dendritic
integration (Figure 3D). Non-linear integration is necessary for a
neuron to discriminate between two learned combinations, even
in case of IS learning. Let us consider a dendrite with two groups
of synapses from a context and a stimulus (C1 and S1) and
another dendrite with two other groups (C2 and S2). According
to the rule, both groups are combined with the response (here
R1 coded by the post-synaptic neuron) and synapses all have the
same efficacy due to amplification of potentiation. A consequence
of this is that, in the case of linear dendritic integration, every
combination of inputs (e.g., C1S1, C1S2, C2S1, C2S2) would be
linearly integrated before arriving at the cell body, regardless of
their dendrite of origin. In the case of non-linear integration, only
combinations within the same dendrite (e.g., C1S1 and C2S2)
would be non-linearly integrated and lead to amplification of

the current. Other combinations arising from different dendrites
would be simply summed before arriving at the cell body. It is
thus the combination of IS learning and non-linear dendritic inte-
gration that allow neurons to discriminate between learned and
not-learned combinations.

To summarize, although synaptic connectivity is random, IS
learning causes some dendrites to specialize and respond prefer-
entially to certain combinations of stimuli. Dendrites can then
perform a first stage of non-linear integration that is ampli-
fied for learned combinations of inputs. This will allow neurons
to discriminate learned from not-learned combinations while
processing contexts and stimuli at the network level.

NEURON AND NETWORK PROCESSING OF XOR-LIKE COMBINATIONS
Here we investigate the behavior of a biophysically realistic model
of the cerebral cortex during real time recall of a response when
presented with a combination of context and stimulus. In partic-
ular, we study to what extent processing of XOR-like combination
depends on the synaptic matrix generated by IS learning. To this
aim, the different types of dendrites are randomly attributed to
the neurons of the network, according to their calculated prob-
abilities (Equation 2 and 3). Given that neurons have far fewer
dendrites than the total number of types of dendrites, different
neurons have different sets of dendrites. However, those neu-
rons are randomly attributed to the populations coding for the
contexts, stimuli, and responses. The different populations of
neurons have therefore very similar distributions of the types of
neurons (defined by their types of dendrites). The fact that dif-
ferent populations have the same types of neurons makes these
populations unable to discriminate a priori between combina-
tions, because, on average, their neurons respond similarly to the
different combinations. This leaves the discrimination between
precise combinations to IS learning that shapes the values of
potentiation within dendrites as a function of what the post-
synaptic neuron codes for (i.e., to which population it belongs). IS
learning amplifies synaptic efficacy between neurons activated in
combination during learning, compared to efficacy between neu-
rons not activated in combination. A result of IS learning is that,
within each population, some neurons have a distribution of den-
drites that have learned certain combinations better than others.
At the network level, the synaptic matrix is filled with the values
of synaptic efficacy calculated according to the IS learning algo-
rithm applied to each type of dendrite according to the learning
protocol of the rule (Equation 15).

After IS learning, and non-linear amplification of synaptic
inputs, dendritic currents transmitted to each neuron are larger
after synaptic inputs from learned combinations than after inputs
from not learned combinations. A consequence is that neurons
that have a subset of dendrites responsive to a learned combina-
tion will respond to this combination (or to several combinations
if they have different subsets of dendrites responsive to differ-
ent combinations). At the level of the populations of neurons,
each population has subsets of neurons responsive to the different
learned combinations of items. Those subsets of neurons being
strongly associated to other neurons of the population (through
J1), they contribute to the activation of the population in response
to the combination of items.
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The behavior of the network is tested according to a priming
protocol very similar to those used in experiments in human and
non-human primates, used to probe the dynamics of activation
of targets when processing combinations of primes (Balota and
Paul, 1996; see Lavigne et al., 2011 for a review). Like in many cor-
tical network models, the current model describes neural spiking
dynamics in realistic biophysics terms, with populations of neu-
rons coding for items in memory (Amit et al., 1994; Brunel, 1996;
Amit and Brunel, 1997; Pouget et al., 2000; Mongillo et al., 2003;
Curti et al., 2004; Romani et al., 2006). The types of activities of
the populations of neurons are explained by reverberating acti-
vation between excitatory neurons connected with potentiated
synapses (Amit et al., 1994; Amit and Brunel, 1997). Here, during
a trial, the presentation of the context and stimulus corresponds
to an external input to the corresponding populations of neurons,
which exhibit elevated spike rates (strong perceptive response).
After the context and stimulus offset, the corresponding neurons
exhibit retrospective persistent activity that remains stronger than
spontaneous activity. This behavior reproduces the elevated fir-
ing rates of neurons following the presentation of the stimulus
they code for, as reported in non-human primates (Fuster and
Alexander, 1971; Miyashita, 1988; Miyashita and Chang, 1988).
Such retrospective stimulus-specific activity is regarded as the
activation of items in working memory following their presenta-
tion (Amit and Brunel, 1997; Brunel and Wang, 2001; Haarmann
and Usher, 2001; Renart et al., 2001; Amit et al., 2003). Following
the presentation of the context and stimulus, neurons of the
corresponding populations are sufficiently activated to activate
in turn neurons coding for different but associated items. This
behavior reproduces the increasing firing rates of neurons coding
for associates to the stimulus presented before their actual pre-
sentation (prospective activity), also as reported in non-human
primates (Miyashita, 1988; Miyashita and Chang, 1988; Sakai and
Miyashita, 1991; Erickson and Desimone, 1999; Rainer et al.,
1999; Tomita et al., 1999; Naya et al., 2001, 2003a,b; Yoshida
et al., 2003; see Fuster, 2001). Such prospective activity, which
takes place above the level of spontaneous activity, is regarded
as the recall of knowledge according to the stimuli presented
(Brunel, 1996; Lavigne and Denis, 2001, 2002; Mongillo et al.,
2003; Lavigne, 2004; Lavigne and Darmon, 2008). Here, prospec-
tive activity is generated not by a single stimulus but rather by
a combination of a context and a stimulus (Figure 4; Fusi et al.,
2007; Rigotti et al., 2010a,b; Lavigne et al., 2011, 2012, 2013).

Performing the XOR-like rule requires the network to activate
the population of neurons that code for the response learned in
combination with the presented context and stimulus according
to the XOR-like rule (e.g., R1 for C1 and S1). After presentation
of C1 and S1, the activation of R1 is expected to be larger than
the activation of the alternate response R2. We therefore com-
pare the levels of prospective activities of neurons coding for the
two responses after presentation of a given combination of con-
text and stimulus (here C1S1). The performance of the network
is tested after Hebbian learning, after IS learning, and after IS
learning with mixed-coding neurons.

In the case of Hebbian learning, the presentation of the pair
of context and stimulus triggers a perceptive response followed
by retrospective activity of the neurons coding for them. Due to

the Hebbian synaptic matrix, retrospective activity of the con-
text and stimulus leads to the prospective activity of the two
responses (Figure 4A). However, the network does not discrim-
inate between the two responses that are activated at the same
level, failing to perform the rule. This is because Hebbian learn-
ing generates a homogeneous distribution in the values of synapse
potentiation between any pair of neurons coding for a context,
a stimulus and a response, regardless of the dendrite considered
(Figure 2I).

In the case of IS learning, the population coding for the
expected response—learned in combination with the context and
stimulus—exhibits a higher level of prospective activity than the
population coding for the other response (Figure 4B). The IS
learning algorithm generates dendrite-specific values of synap-
tic efficacy, which in turn contribute to the different amounts of
dendritic currents that correspond to the different combinations,
depending on the response the post-synaptic neuron codes for.
This allows the network to perform the rule by discriminating
between the two responses in accordance with the combination
of context and stimulus.

To summarize, the geometrical representation of the XOR
problem shows that, in the case of Hebbian learning, the differ-
ence between the prospective activities of neurons coding for the
two possible responses (R1-R2) is null in the plane describing the
space of contexts and stimuli (Figure 4E). IS learning extends the
space of responses to the third dimension, where the activities of
neurons coding for R1 and R2 become differentiated.

SYNERGISTIC EFFECTS OF IS LEARNING AND OF MIXED-CODING
NEURONS
The computing of XOR-like combinations has been shown to be
possible in connectionist models thanks to additional neurons
that are organized within a hidden layer and that perform non-
linear integration of the inputs before the intervention of the
output neurons (e.g., Rumelhart and McClelland, 1986). Along
these lines, recent experiments have reported that the prefrontal
cortex includes large numbers of neurons that code for abstract
combinations of stimuli and responses (Bongard and Nieder,
2010; Rigotti et al., 2013). Computational modeling has shown
that these mixed-coding neurons allow XOR-like combinations
to be performed at the network level, in a similar way to the func-
tion of the hidden layer (Rigotti et al., 2010a,b, 2013; Bourjaily
and Miller, 2011a,b, 2012).

In the present model, on the one hand, coding neurons are
attributed randomly to the contexts, stimuli or responses (e.g.,
R1), on the basis of their relation to single stimuli or response.
Coding neurons are those that receive inputs (Isel) and fire when-
ever the single stimulus or response is present. They are not
selected as a function of any a priori responsiveness to partic-
ular combinations of several items (e.g., C1S1). On the other
hand, non-single-item (NSI)-coding neurons do not respond to
any single context, stimulus, or response. Different NSI-coding
neurons have different types of dendrites that make some of
them responsive to some combinations of context and stimu-
lus. For example, a neuron receiving three synaptic inputs from
each group of neurons coding for C1 and S1 would be activated
by the combination of C1 and S1 (neuron b of Figure 4C). This
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FIGURE 4 | Attractor states and behavior of the cortical network model

selecting a response according to a learned combination C1S1R1 and

to the following protocol: neurons at spontaneous activity in absence

of selective input for 50 ms; presentation of Context 1 and Stimulus 1

for 200 ms and delay period in absence of selective input for 150 ms).

(A–C) Average spike rate of populations of neurons (averaged over ten
trials) coding for the contexts, stimuli and responses (same color as in
Figure 1). (A) Case of classic Hebbian learning: neurons coding for R1 and
neurons coding for R2 both exhibit prospective activity and are not
discriminated. (B) Case of inter-synaptic learning: neurons coding for R1
exhibit higher prospective activity than neurons coding for R2. (C) Example
of connectivity to two post-synaptic excitatory neurons that are not
selective to any single stimulus or response (NSI-coding neurons) and that
do not respond (a) or respond (b) to combinations of context and stimulus:
a, receiving only two synaptic inputs from neurons coding for C1 (purple)
and S1 (blue) within one of its dendrites (black line), is not activated when
the C1S1 combination is presented; b, receiving three synaptic inputs from
each group of neurons (C1 and S1), each within two dendrites (green
lines), is activated when the C1S1 combination is presented. During

learning of a rewarded combination (e.g., C1S1R1), in the pool of
NSI-coding neurons, some neurons are not activated by the combination
(a) while others are activated (b, mixed-coding neurons). (D) Case of
inter-synaptic learning with mixed-coding neurons: The contrast between
prospective activities of neurons coding for R1 and R2 is larger than in
case of inter-synaptic learning alone (rate of neurons coding for R1 with
inter-synaptic learning alone (B) are reported for clarity, black curve).
(E) Geometrical representation of the non-linear separability of responses
in the space of contexts and stimuli for the XOR-like rule. The axes
indicate the type of context (C1 or C2, x-axe) and of stimulus (S1 or S2,
y-axe) presented to the network. The z-axe indicate the difference
between average spike rates of neurons coding for R1 and for R2 (contrast
of prospective activities) during the delay following the presentation of a
context and a stimulus. After Hebbian learning, gray circles indicate a null
contrast (see A connected by a gray line). After IS learning, the contrast is
expanded up (green circles) and down (red circles) the z-axe (full black
arrows; see B connected by a green line). After inter-synaptic learning with
mixed-coding neurons, the contrast is further expanded up and down the
z-axe (dotted black arrows; see D connected by a green line).

mixed-coding neuron would then be activated during a rewarded
trial (e.g., C1S1R1). From this starting point, the IS learning algo-
rithm considers its up-state and potentiates synapses connecting
this mixed-coding neuron to neurons coding for C1, for S1 and

for R1. Mixed-coding neurons are the object of IS learning in
the same way as neurons that are activated directly in relation to
the rewarded response R1 (green) (other mixed-coding neurons
are activated by the combinations C1R1 and S1R1 while learning
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the C1S1R1 combination). As a result, the synapses between
mixed-coding neurons that respond to the combination C1S1 and
neurons coding for R1 are strongly potentiated (Figure 4C).

After IS learning, all mixed-coding neurons that respond to
the C1S1 have potentiated synapses with C1 and S1. As a con-
sequence, when C1 and S1 are presented to the network, the
populations of neurons coding for C1 and S1 will exhibit ret-
rospective activity, and associated mixed-coding neurons will
exhibit prospective activity (Figure 4D). Given that those mixed-
coding neurons also have potentiated synapses with neurons
coding for R1 (through J1), their prospective activity will inten-
sify prospective activity of the neurons coding for R1. They
behave as if they increase the size of the population R1 and mag-
nify its response to the C1S1 combination. More precisely, only
mixed-coding neurons that where responsive to the C1S1 combi-
nation prior to learning have, after learning, potentiated synapses
with neurons coding for R1. After learning, those mixed-coding
neurons that help intensify the activity a population of coding
neurons (R1) are the ones that better respond to the related
combination C1S1. As a result, mixed-coding neurons behave in
synergy with neurons coding for R1 and increase the selectivity
of the population R1 to combinations that are effectively learned
(e.g., C1S1).

More generally, during learning of the C1S1R1 combination, a
fraction of NSI-coding neurons receive synaptic inputs by combi-
nations of C1 and S1, C1 and R1, S1 and R1, or, less frequently,
C1, S1, and R1. Considering here the most frequent and simplest
cases of mixed-coding neurons that are responsive to combina-
tions of two items (C1S1, C1R1, or S1R1, respectively), IS learning
creates populations of mixed-coding neurons that have synapses
potentiated with neurons coding for C1, S1, and R1. The same
mechanism happens during learning of the C1S2R2, C2S1R2, and
C2S2R1 combinations.

The effect of mixed-coding neurons was tested using the
same network architecture as in Figure 1D, with 2.5% of the
NSI-coding neurons responsive to learned combinations (mixed-
coding neurons) selected for IS learning. After learning, their
activity during processing of (e.g.,) C1S1 combination was mea-
sured as the one of the population coding for R1 (mixed-coding
neurons contributed to 10% of the size of the population of neu-
rons in prospective activity in response to C1S1. To compare
ceteris paribus with the case of IS learning without mixed-coding
neurons (B), the populations size is kept constant at 400 neu-
rons. Results show that mixed-coding neurons increase the level
of prospective activity of the population coding for the response
R1 after presentation of the context C1 and stimulus S1, according
to the learned combination C1S1R1 (Figure 4C). The discrimi-
nation between responses R1 and R2 is improved compared to
IS learning alone (see Figure 4E for a geometrical representa-
tion). Results show that the combined effects of IS learning and
of mixed-coding neurons improve the network performance in
the processing of XOR-like combinations.

DISCUSSION
The present study proposes an inter-synaptic learning algorithm
of XOR-like combinations in randomly connected networks. IS
learning takes into account recent experimental evidence on

synaptic potentiation of groups of synapses at the level of den-
dritic branches (Govindarajan et al., 2011; see Iannella et al.,
2010; Fu et al., 2012). The IS learning algorithm formalizes the
inter-synaptic amplification of potentiation and of depression of
synapses as a function of the other synapses that are co-active
or not within a dendrite. It causes some dendrites to specialize
to respond preferentially to some learned combinations of inputs
than to others.

SYNERGISTIC EFFECTS OF IS LEARNING AND NON-LINEAR DENDRITIC
INTEGRATION
The performance of the network relies on a synergy between non-
linear integration of functionally linked synaptic inputs within
dendritic branches, and inter-synaptic learning within these same
branches that amplify potentiation (or depression) of groups of
synapses with correlated (or uncorrelated) activity. The synergy
between processing and learning is reciprocal: IS amplification of
potentiation or depression depends on the number of co-active
synapses in each dendrite, and non-linear dendritic integration
is proportional to the number of co-active synapses and to their
efficacy. The mathematical formalism of these joint mechanisms
shows that IS learning of combinations according to a XOR-
like rule does not requires network pre-wiring. Instead, effective
learning is possible based on totally random distributions (1)
of the synapses in the different dendrites of the dendritic arbor,
(2) of the resulting types of dendrites in the different neurons,
and (3) of the neurons in the different populations coding for
the items. IS learning therefore depends exclusively on the cor-
relational structure of the rewarded combinations of inputs and
responses. It amplifies the potentiation or depression of synapses
only as a function of the learned combinations of context and
stimulus at the level of the individual dendrites. This in turn
makes dendrites able to respond more strongly to certain specific
combinations of synaptic inputs. We have shown that non-linear
dendritic integration is necessary for IS learning to be efficient
on the dendritic response. We have described the simplest case of
linear IS, with both probabilities of potentiation aij(D) (Equation
7) and of depression bij(D) (Equation 10) depending linearly on
the number of synapses n. Non-linear IS learning could amplify
even further the efficacy of synapses that are co-active in the same
dendrite or in different dendrites.

The combination of IS learning at the level of dendrites and
of the fact that neurons have only a subset of the possible types
of dendrites (here 50 dendrites over several millions of different
types of dendrites) result in neurons that are more responsive to
particular combinations of items than to others. The learned spe-
cialization of neurons makes them able to respond preferentially
to some of the learned combinations. This allows the network,
when presented with a combination of context and stimulus, to
select the response that is appropriate for the XOR-like rule. Once
the combinations have been learned, the response selection relies
solely on the combination processed.

NON-LOCAL IS LEARNING AND GLOBAL PROCESSING OF
COMBINATIONS
The IS learning rule dictates how potentiation and depression
of synapses is amplified as a function of the activity of the
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pre- and post-synaptic neurons, and also as a function of the
activity of other pre-synaptic neurons within the dendrite consid-
ered. IS learning generates variable levels of synaptic potentiation
depending on the type of dendrite considered. Different values
of potentiation can exist between pre- and post-synaptic neurons
from two given populations, even though the pre-synaptic neu-
rons all come from the same population and the post-synaptic
neurons also come from another population. With respect to a
given post-synaptic neuron, the efficacy of synapses—from pre-
synaptic neurons that code for other items—depends on the type
of dendrite considered. This is due to the fact that IS learning
depends on all of the synapses grouped within the same dendrite.
The IS learning algorithm updates synaptic efficacy by amplify-
ing potentiation or depression of each given synapse as a function
of the activity of its pre- and post-synaptic neurons and also of
other pre-synaptic neurons having contact within the same den-
drite. On this basis, the IS learning rule is non-local and optimizes
a given synapse efficacy as a function of the activity of other
synapses with several other neurons coding for different items,
depending on the combinations of these items.

The performance of the network in processing XOR-like com-
bination rules relies on its ability to activate a given item not only
as a function of another item but as a function of the combina-
tion of other items. After random connectivity and IS learning
within dendrites, each population of neurons coding for a given
item comprises sub-groups of neurons that better respond to par-
ticular combinations of inputs than to others. When presenting
a context and a stimulus to the network, the corresponding pop-
ulations exhibit a perceptive response followed by retrospective
activity. This triggers prospective activity of the population cod-
ing for the response learned within the same combination, at a
higher level than the one of the other response. Due to IS learn-
ing, different states are reached depending on the combinations of
context and stimulus presented, that differ in the level of prospec-
tive activity of the two responses (Figure 4B). This is not the
case with Hebbian learning that generates states that do not dif-
fer in terms of the level of prospective activity of the responses
(Figure 4A). The prospective activation of a given response is
based on the global pattern of retrospective activity of a context
and a stimulus that are combined together.

SYNERGISTIC EFFECTS OF IS LEARNING AND MIXED-CODING
NEURONS
Processing of XOR-like combinations has been reported to ben-
efit from the existence of mixed-coding neurons (Rigotti et al.,
2010a,b, 2013; Bourjaily and Miller, 2011a,b, 2012). In the model
proposed here, the addition of mixed-coding neurons to IS learn-
ing increases the contrast between the adequate and inadequate
responses to a given combination of context and stimulus. IS
learning and mixed-coding neurons act in synergy to enhance the
performance of the network. First, IS learning applies to those
mixed-coding neurons that better respond to combinations of
items effectively learned, and not to mixed-coding neurons that
respond to combinations not learned. Second, mixed-coding neu-
rons that have potentiated their synapses with neurons coding for
combined context, stimulus, and response (e.g., C1S1R1) inten-
sify the prospective activity of the adequate response R1 and

enhance the contrast between prospective activities of R1 and
R1. Those mixed-coding neurons therefore contribute to increase
the selectivity of the network to combinations of context and
stimulus.

IS learning could also reduce the number of mixed-coding
neurons that are necessary to perform a given rule, and enhance
the ability of mixed-coding neurons to perform more complex
rules. In the current study, the most frequent cases of mixed-
coding neurons responsive to combinations of C1S1, C1R1, or
S1R1 have been considered. The mixed-coding neurons activated
by one of these combinations have been considered as neurons
coding for R1, S1, or C1, respectively. An additional category of
NSI-coding neurons can also respond to combinations of three
items (Context-Stimulus-Response: e.g., C1S1R1). Those neu-
rons would not behave like those coding for items, but would
form additional populations coding for specific combinations of
three items. Such mixed-coding neurons have dendrites with a
maximum number of synapses from neurons from three differ-
ent populations: four synapses from C1, four from S1, and four
from R1 (instead of, e.g., four from C1 and four from S1). Such
neurons are rare and the importance of their role in enhancing
the performance of the network will be considered in a further
study.

GENERALIZATION TO CONTEXT-DEPENDENT COMBINATORIAL
PROCESSING
Behavioral responses to a given stimulus can vary depending on
the processing of other stimuli, motivations and goals (Drea and
Wallen, 1999; Platt and Glimcher, 1999; Handel and Glimcher,
2000; Wise and Murray, 2000; Wallis et al., 2001; Hobin et al.,
2003; see Salinas, 2004; Muhammad et al., 2006). The activation
of items in working memory generating responses can be experi-
mentally measured in humans with semantic priming protocols.
Priming effects correspond to response times for processing target
words that are shorter when targets are associated with preced-
ing prime words than when they are not (Meyer et al., 1972;
Schvaneveldt and Meyer, 1973; see Neely, 1991; Hutchison, 2003).
The resulting priming effect is assumed to measure recall as a
function of the level of activation of the target by the preceding
prime, which depends in turn on the strength of the prime–
target association (Abernethy and Coney, 1993; Coney, 2002;
Hutchinson et al., 2003; Frishkoff, 2007; see Chiarello et al., 2003)
estimated prior to testing (McRae et al., 1997; Cree and McRae,
2003; see Nelson et al., 1999).

Recent studies have suggested that priming effects are not
systematic, but rather depend on the specific tasks given to par-
ticipants, as they presumably activate contextual representations
that orient the processing of information (Bermeitinger et al.,
2008, 2011; Kiefer and Martens, 2010; see Gollwitzer and Kinney,
1989; Kiefer, 2007; Rothermund et al., 2008; Martens and Kiefer,
2009; Spruyt et al., 2009). Multiple priming experiments show
that the activation of a target by a prime depends on another
contextual prime, depending on their association with this target
(McNamara, 1992; Balota and Paul, 1996), on the primes-target
delays (Lavigne and Vitu, 1997; Lavigne et al., 2011) and on the
strength of the association between each prime and the target
(Lavigne et al., 2012, 2013; see Lavigne et al., 2011 for a cortical
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network model). In particular, the target is activated in a con-
text of two associated primes, whereas it is not activated if very
weakly associated (Lavigne et al., 2011, 2012, 2013) or almost not
associated (Khalkhali et al., 2012) with the primes. Such contextu-
ally dependent priming effects, visible when the primes are weakly
associated to the target, could correspond to supra-threshold acti-
vation of the target under the condition that two primes are
presented (see Lavigne et al., 2011 for a model). In this case, a sim-
ple non-linear integration of the activations generated by the two
primes can be effective to activate the target, while a single prime
is not sufficient to activate the target. In that case, supra-threshold
activation of the target by the two primes can arise whatever the
primes considered as long as they are associated with the tar-
get. In other words, the activation of a target does not depend
on any particular combination of specific primes, but rather on
the cumulative activation whatever the primes involved. However,
complex contextual rules dictate that a target will only be acti-
vated by precise combinations of specific primes, and that other
prime combinations will not activate the target even though they
are each individually associated with it.

Though context-dependent activation does not necessarily
involve XOR-like combinations, the IS learning algorithm could
improve the performance of the network in discriminating
between a particular response to a stimulus in a given context
from a set of responses that are also associated with this stimu-
lus but in different contexts. In the priming protocol simulated
here with the context and stimulus as primes, IS learning gen-
erates stable states of the network that are representative of the
learned combinations, by discriminating the level of prospective
activity of the responses in different states. A consequence is that,
after presentation of a context and a stimulus, the evolution of
the state of the network indicates that the context selects which
response is more activated by the stimulus. The context selects
a subset of possible trajectories within the attractor landscape
describing the different possible responses that can be activated
by the stimulus. Contextual processing would then correspond to
the selection of some trajectories within the attractor landscape.
More generally, the IS learning algorithm provides us with a com-
putational framework to describe how every context or stimulus
can be a selector of which dynamics can exist and which cannot.
An interesting insight is that a context would not only activate
a response in addition to the stimulus, but would enable a path
through which a stimulus can activate a response.
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