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ABSTR ACT: In the present study, recurrent copy number variations (CNVs) from non-tumor blood cell DNAs of Caucasian non-cancer subjects and gli-
oma, myeloma, and colorectal cancer-patients, and Korean non-cancer subjects and hepatocellular carcinoma, gastric cancer, and colorectal cancer patients, 
were found to reveal for each of the two ethnic cohorts highly significant differences between cancer patients and controls with respect to the number of 
CN-losses and size-distribution of CN-gains, suggesting the existence of recurrent constitutional CNV-features useful for prediction of predisposition to 
cancer. Upon identification by machine learning, such CNV-features could extensively discriminate between cancer-patient and control DNAs. When the 
CNV-features selected from a learning-group of Caucasian or Korean mixed DNAs consisting of both cancer-patient and control DNAs were employed to 
make predictions on the cancer predisposition of an unseen test group of mixed DNAs, the average prediction accuracy was 93.6% for the Caucasian cohort 
and 86.5% for the Korean cohort.
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Background
The aim of cancer prediction is to reveal genetic predisposition 
toward cancer before cancer occurs, so that vigilant prevention 
and rigorous monitoring may be practiced by those who are 
highly predisposed. Notably copy number variations (CNVs) 
have been associated with the risk toward individual can-
cers.1–23 However, although nearly half of the approximately 
100 highly penetrant cancer-predisposition genes are identi-
fied as CNVs related to cancers, many of the CNVs are rare 
CNVs instead of recurrent CNVs. Moreover, hitherto only 
a small proportion of genes overlapped by CNVs represent 
highly penetrant cancer susceptibility loci, and the vast major-
ity of CNVs are supposed to have low to moderate penetrance 
and contribute only modestly to diseases.24 Recurrent CNVs 
that might be associated with a generalized predisposition to 

different cancer are also unknown. Nonetheless, because rare 
CNVs are absent from a majority of genomes, only recurrent 
CNVs can provide a foundation for widely useful cancer pre-
diction. Accordingly, the present study has been directed to the 
detection of possible correlations between recurrent CNVs in 
the constitutional genome and generalized risk toward cancers 
that would enable the development of an effective method for 
predicting the genetic predisposition to cancers.

The search for useful recurrent CNV-cancer correlations 
requires a comparison of the recurrent constitutional CNVs 
found in cancer-patients and those found in control-subjects, 
so that distinguishing recurrent CNV-features that occur with 
unequal frequencies in the two groups may be identified and 
employed as prediction markers. In this regard, machine learn-
ing incorporating receiver-operating characteristic (ROC) 
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analysis, which was originally introduced to distinguish between 
meaningful radar signals and noise, and has since found impor-
tant application in diverse fields of clinical medicine,25–28 could 
furnish a particularly powerful tool for the selection of CNV-
features that can contribute to a distinction between individuals 
with different levels of predisposition to cancer.

Methods
Data collection. Human SNP array data on whole 

blood samples from cancer patients and ethnically matched 
healthy subjects obtained using the high resolution Affyme-
trix SNP6.0 platform were retrieved from the databases Gene 
Expression Omnibus (GEO)29 and caArray.30 In total, data 
on 640 samples belonging to Caucasian (47 control and 51 
cancer) and Korean (195 control and 347 cancer) datasets from 
9 separate studies7,31–38 were employed as shown in Supple-
mentary files 1 and 3.

Generation of segmented data. The program apt-copy 
number-workflow with default settings from Affymetrix 
power tools39 was employed to generate the CNV callings for 
each of a target batch of [control + cancer] samples analyzed. 
In the case of the Caucasian and Korean DNA samples, the 
averaged microarray data for 270 HapMap samples acquired 
using the SNP6.0 platform were supplied by Affymetrix and 
processed using apt-copy number-workflow to generate a ref-
erence template for determination of CN-gain or CN-loss. 
Segmentation of neighboring CNVs into CN-gain segments 
and CN-loss segments was performed based on the copy num-
ber values using circular binary segmentation (CBS) with the 
default parameters in DNACopy in R program.40 The genomic 
coordinates employed in the present study referred to human 
reference genome version hg19/GRCh37, and the annotation 
file used with the SNP6.0 platform was release version 32.

Identification of recurrent constitutional CNVs. 
To identify significantly recurrent CNVs, the GISTIC2 
algorithm which considers both the frequency and ampli-
tude of every CNV was employed with the options “-small-
mem 1–broad 1–brlen 0.5–conf 0.9–ta 0.2–td 0.2–twosides 
1–genegistic 1.” Only those CNVs with a log 2 ratio change of 
either 0.2 or -0.2 were included in CNV analysis. Also, 
only significantly recurrent regions with lengths greater than 
1  kb and less than 10  Mb, and with a q-value 0.25 were 
processed further. Samples from the Caucasian and Korean 
cohorts were calculated separately to avoid population-specific 
CNVs interfering with downstream analysis.

CNV analysis. To compare the general properties of 
CNVs in the control and cancer groups in each of the Cauca-
sian and Korean cohorts, the CN-gains and CN-losses were 
analyzed separately. The difference in the number of CNVs 
per sample between the control and cancer groups was tested 
using the Wilcoxon test. To test for difference in CNV length 
distribution between the control and cancer groups, the CNVs 
were divided into three classes according to their lengths, viz. 
the 20 kb class, 20 kb  CNV  100 kb class, and 100 kb  

class. The 2  ×  3 chi-square test was applied to assess the 
control-cancer difference regarding the distribution of the 
CNVs among these three classes.

Sample classification. To remove redundancy and pre-
vent over-fitting of the data, three subsets of the informative 
CNVs were selected as CNV-features for analysis: (a) CFS 
subset: CfsSubsetEval from the Weka package was employed 
together with BestFirst search method to select CNV-features 
that were highly correlated with the control or cancer class 
yet largely uncorrelated with each other; (b) frequency-based 
subset: CNV frequencies between control and cancer were 
compared using the chi-square test, and CNVs with signifi-
cantly different control and cancer frequencies were selected 
as CNV-features; and (c) classifier-based subset: the Clas-
sifierSubsetEval attribute evaluator from the Weka machine 
learning package was employed with decision table together 
with BestFirst search method to select the CNV-features. 
Based on each of these three sets of CNV-features, the Naïve 
Bayes classification method from the Weka package was used 
to generate a training model that was tested with 1,000 itera-
tions of twofold cross validation. To further test for robustness 
of the model, 10,000 permutated datasets were generated by 
randomly shuffling the group labels (“control” vs. “cancer”) for 
each sample within the original dataset, and the whole classi-
fication process was repeated for each permutated dataset. The 
significance of the original classification was calculated based 
on the distribution of correct prediction percentage from the 
10,000 permutations. The Naïve Bayes classification method 
was applied separately to the Caucasian and Korean datasets.

For each of the Caucasian and Korean datasets, the CFS 
classification process was also employed to classify the differ-
ences between different cancer types. For this purpose, only 
the cancer samples were analyzed, and the CNV-features 
were selected employing the CfsSubsetEval attribute evalua-
tor together with BestFirst search method. Naïve Bayes clas-
sification was again used to generate a training model that was 
tested with 1,000 iterations of twofold cross validation.

Sample clustering. The CNV-features selected using 
the CfsSubsetEval attribute evaluator together with BestFirst 
search method from the WEKA package were used for sample 
clustering purposes. Each dataset was clustered into control 
and cancer groups by employing Ward’s method of hierarchi-
cal clustering implemented in the pvclust package in R41 and 
subjected to 1,000 bootstrappings. k-means clustering was 
employed for cancer-type clustering by applying the k-mean 
package in R. Since the number of selected CNV-features was 
greater than two, the clusplot function in the cluster pack-
age was employed to display the clustering results for different 
cancer types. This function reduced the dimension of the data 
by principal component analysis (PCA) and yielded a plot of 
only the first two principal components.

Prediction of cancer-predisposition. To test the accu-
racy of prediction of cancer-predisposition based on recurrent 
CNV-features in the Caucasian cohort, normal subjects (N) 
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in the cohort were randomly divided in a trial run into two 
groupings that were equal in number when there were an 
even number of subjects; or, when there were an odd num-
ber of subjects, an extra subject was randomly allocated to one 
of the two groupings so that they differed in size by only a 
single subject. One grouping was randomly assigned to the 
learning-band, and the other grouping to the test band. Simi-
larly, for the cancer-patients (C), the CNVs from the colorec-
tal cancer-patients were randomly divided into two groupings 
that were either equal in size or different by only one patient; 
again one grouping was randomly assigned to the learning-
band, and the other to the test band. The glioma patient CNVs 
and the myeloma patient CNVs were treated the same way 
to finally yield an [N + C] learning-band and an [N + C] test 
band containing an equal or near-equal number of N or C 
samples. Thereupon, a set of correlation-based CNV-features 
were derived from the CNVs included in the learning-band. 
Applying this set of learnt correlation-based CNV-features to 
each and every individual in the test band using equation (1) 
yielded either a “true” or “not true” allocation of the individual 
into the normal or cancer class; altogether the predictions per-
taining to all the individuals in the test band would yield an 
accuracy estimate for this trial run based on equation (2).

By repeating the random separation of samples into the 
learning-band and test band 1,000 times, 1,000 independent 
accuracy estimates were obtained for the Caucasian cohort, the 
distribution and average value of which are shown in Figure 6A.  
The normal subject, and colorectal cancer, gastric cancer, and 
HCC patient samples in the Korean cohort were likewise ana-
lyzed to yield 1,000 independent accuracy estimates, the dis-
tribution and average value of which are shown in Figure 6B.

Results
Characteristics of recurrent CNVs. To apply machine 

learning to recurrent CNVs, recurrent focal constitutional 
CNVs, 1  kb–10  Mb in length, that have undergone either 
CN-gain or CN-loss relative to reference human genome 
were obtained using the GISTIC2 algorithm42 (see Methods) 
from Affymetrix single-nucleotide polymorphism (SNP) 6.0 
microarrays of the non-tumor white blood cell DNA of 47 
Caucasian non-cancer subjects and 26 glioma, 15 myeloma, 
and 10 colorectal cancer-patients,31–35 yielding a total of 353 
CNVs (Supplementary files 1 and 2). Recurrent focal consti-
tutional CNVs were similarly obtained from 195 Korean non-
cancer subjects and 101 hepatocellular carcinoma (HCC),  
95 gastric cancer, and 151 colorectal cancer-patients,36–38 
yielding a total of 535 CNVs (Supplementary files 3 and 4). 
The distributions of these recurrent CNVs among different 
chromosomes and their q-values are shown in Figures 1A and 1B.

The recurrent focal constitutional CNVs obtained from 
the Caucasian and Korean cohorts included both CN-gains 
and CN-losses. There were moderately more CN-gains in the 
cancer-patient samples compared to controls in the Caucasian 
cohort, but there was no significant difference between the 

cancer-patient and control samples in the Korean cohort 
with respect to CN-gains. In contrast, a strongly significant 
decrease in CN-losses with P  0.0001 in cancer-patient sam-
ples was observed in both the Caucasian and Korean cohorts 
(Fig. 2). When the CNVs were separated into small (20 kb), 
medium (20–100 kb), and large (100 kb) ranges, there were 
fewer large CNVs than small or medium sized ones in both the 
control and cancer-patient samples among both the Caucasian 
and Korean cohorts. As shown in Figure 3, the partition of 
CNVs among the small, median, and large groups in the can-
cer-patients was significantly different from that in the con-
trols, reaching P  0.0001 (calculated by chi-square test) with 
respect to CN-gains in the Caucasian cohort, and with respect 
to both CN-gains and CN-losses in the Korean cohort.

Distinguishing CNV-features. Three different approa
ches were employed to select sets of CNV-features that could 
effectively distinguish between the constitutional DNAs of 
control-subjects and cancer-patients by machine learning, 
including: (a) correlation-based feature selection (CFS) was 
used to generate correlation-based CNV-features43,44 that 
were highly correlated with either the “control” or “cancer” 
(viz. cancer-patient) class yet uncorrelated with one another; 
(b) frequency-based CNV-features were selected as CNVs 
that displayed significantly different frequencies in the control 
and cancer classes; and (c) classifier-based CNV-features were 
selected by means of the ClassifierSubsetEval feature evaluator 
in the Weka machine learning package.45 The 22 correlation-
based CNV-features derived from the combined Caucasian 
control and cancer samples, comprising 18 CN-gains and 
4 CN-losses (Table 1), were recruited from widespread loca-
tions rather than any localized region of the human genome 
(Fig. 1A). The same applied to the 30 correlation-based CNV-
features selected from the combined Korean control and cancer 
samples comprising 17 CN-gains and 13 CN-losses (Table 2;  
Fig. 1B), as well as the frequency- and classifier-based CNV-
features from both ethnic cohorts (Supplementary  files 5–8). 
A training model incorporating the three types of CNV-
features and making decision on sample classification into 
the “control” or “cancer” class based on Naïve Bayes yielded 
useful area under the ROC curve (ROC-AUC plotting true 
positive fraction versus false positive fraction) values for the 
Caucasian and Korean samples of 0.867–0.996, which were 
close to the maximum value of 1.0 and far above the null 
value of 0.5 (Table 3).

Figures 4A and B shows the distributions of the recur-
rent CNVs in, respectively, the Caucasian and Korean cohorts 
among “cancer” (viz. cancer-patient) and “control” (viz. con-
trol-subject) samples. In both graphs, the occurrence frequen-
cies of many of the recurrent CNVs in cancer samples (y-axis) 
were not greatly dissimilar to their occurrence frequencies in 
control samples (x-axis). Such CNVs, represented by open 
circles located between the two P ′ =  0.05 curves, would be 
limited in usefulness as markers for distinguishing between 
cancer and control samples. In contrast, the recurrent CNVs 
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that were selected as CNV-features by correlation-based, 
frequency-based, or classifier-based methods displayed a dis-
tinctly biased occurrence frequency, either displaying a high 
cancer frequency/control frequency (viz. “Can/Con”) ratio 
and distributed above the upper P  =  0.05 lines or even the 
upper P ′  =  0.05 lines; or displaying a low Can/Con ratio 
and distributed below the lower P  =  0.05 lines or even the 
lower P ′  =  0.05 lines. The biased-Can/Con ratios of these 
CNV-features, greater than 10 or smaller than 0.05 in some 
instances (Tables 1 and 2), readily furnished a rationale for 
their collective ability to extensively distinguish between the 
constitutional CNV-profiles of cancer-patients and those of 
control-subjects, resulting in high ROC-AUC values upon 
ROC analysis (Table 3).

The chromosomal locations of the correlation-based CNV-
features selected from the Caucasian and Korean samples are 
shown in Figures 1A and B bearing their respective A-series 
(viz. CN-gain) and D-series (viz. CN-loss) ID numbers. All of 
these CNV-features with the exceptions of Korean Nos. A182, 
A217, A299, A308, and D75 overlapped with known CNV 
regions recorded in the Database of Genomic Variants 2013.46 
There were limited identities between the Caucasian correla-
tion-based CNV-features in Table 1 and their Korean coun-
terparts in Table 2: only the bold-fonted Caucasian A102 and 
A237 CN-features in Table 1 overlapped with the bold-fonted 
Korean A147 and A333 CNV-features in Table 2, respectively.

The cancer samples from the Caucasian cohort included 
three types of cancers: glioma, myeloma, and colorectal 

Figure 1. Recurrent CNVs in non-tumor white blood cell DNAs of (A) Caucasian cohort, and (B) Korean cohort. Upper panel shows q-values of CN-gains 
and lower panel shows q-values of CN-losses; the q-values were generated by GISTIC2 such that a high “-log q-value” indicates a highly non-random 
event. The CN-gains (A-series) and CN-losses (D-series) selected for inclusion in the correlation-based CNV-features of the Caucasian and Korean 
cohorts are shown in Tables 1 and 2.
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cancer. Figure 5A shows that the CNV-feature contents in 
the three types of cancers were dissimilar. The cancer samples 
from the Korean cohort also included three types of cancers: 
gastric cancer, HCC, and colorectal cancer. Again, as shown 
in Figure 5B, the CNV-feature contents in the three types of 
cancers were dissimilar.

Three of the correlation-based CNV-features in Tables 1  
and 2 belonged to genes included in Network of Can-
cer Genes.47 Caucasian A50 was a CNV in the oncogene 
PIK3CA, a member of the family of lipid kinases capable of 
phosphorylating the 3′OH of inositol in phosphoinositides; 
these lipid kinases coordinate a diverse range of cell functions 
including proliferation, survival, vesicular traffic, and cell 
migration.48 Korean D27 was a CNV in the oncogene ABL2, 
a non-receptor tyrosine-protein kinase that plays an impor-
tant role in cell growth and survival,49 and Korean A319 was 
a CNV in AKT2, a serine/threonine kinase that plays a role 
in cell survival, insulin signaling, angiogenesis, and tumor 
formation.50

Prediction of predisposition to cancer. The results in 
Table 3 demonstrated that the correlation-, frequency-, and 
classifier-based CNV-features, selected through supervised 
machine learning employing labeled inputs in the form of 

Figure 3. Distribution of CNV lengths in three length groups: short (CNV  20 kb, white bars), medium (20 kb  CNV  100 kb, gray bars), and long 
(CNV  100 kb, black bars) in (A) Caucasian cohort and (B) Korean cohort. The percentage of CNVs in each group was calculated for the control and 
cancer cohorts and tested for difference using the chi-square test. 
Note: ***P  0.0001.

Figure 2. Boxplots of the number of CNVs per sample in the control and cancer groups of (A) Caucasian cohort and (B) Korean cohort. Statistical 
significance was determined using Wilcoxon rank test.

constitutional recurrent CNVs from cancer-patients and 
control-subjects, could provide competent, albeit 100%, 
discrimination between the non-cancerous blood DNAs of 
cancer-patients and those of non-cancer controls. The necessary 
next step was to test whether such CNV-features selected from 
labeled inputs could make useful predictions on unseen, unla-
beled input DNA samples. For this purpose, the combined 
cancer-patient and control DNA samples of the Caucasian 
or Korean cohort were randomly separated into a learning-
band and a test band (see Methods). Correlation-based CNV-
features were selected from the labeled learning-band, and 
employed to predict the risk factor R for each DNA sample in 
the unlabeled test band according to equation (1).

	 Pr (cancer|features)log
Pr (normal|features)

R
 

=  
 

	 (1)

	 Pr (cancer|features) = Pr (features|cancer) × Pr (cancer)
	 Pr (normal|features) = Pr (features|normal) × Pr (normal)

where Pr(cancer|features) is the posterior probability of mem-
bership in the cancer (viz. cancer prone) class given the CNV 
data of a test band sample; Pr(normal|features) is the poste-
rior probability of membership in the normal (viz. non-cancer 
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Table 1. Correlation-based CNV-features for Caucasian samples.

CNV ID GENOMIC REGION CYTOBAND CANCER  
FREQ.

CONTROL  
FREQ.

CAN/CON  
RATIO

GENE/LOCI

A6 chr1:17082580-17093244 1p36.13 0.51 0.09 5.67 MST1L

A18 chr1:196790519-196801642 1q31.3 0.73 0.3 2.43 CFHR1

A33 chr2:91774012-91778756 2p11.1 0.94 0.21 4.48 Centromere

A46 chr3:155483565-155492176 3q25.31 0.06 0 NA C3 or f33

A50 chr3:178883723-178885918 3q26.32 0 0.21 0 PIK3CA

A102 chr7:76303499-76309667 7q11.23 0.02 0.43 0.05 Intergenic

A111 chr8:1360723-1362790 8p23.3 0 0.28 0 Intergenic

A122 chr9:686583-694566 9p24.3 0 0.26 0 KANK1

A129 chr9:68713481-68753608 9q21.11 0.73 0 NA LOC100132352

A139 chr10:46918173-46989538 10q11.22 0.25 0.02 12.5 FAM35BP, SYT15

A149 chr11:1961189-2022483 11p15.5 0.16 0 NA MRPL23, H19

A173 chr12:34467864-34523670 12p11.1 0.08 0.89 0.09 Centromere

A176 chr13:19319636-19400859 13q11 0.35 0 NA Centromere

A227 chr19:41365625-41375784 19q13.2 0.04 0 NA Intergenic

A237 chr21:11123429-11126187 21p11.1 0.82 0 NA Centromere

A242 chr21:48069120-48129895 21q22.3 0.45 0 NA PRMT2

A243 chr22:16102481-16395149 22q11.1 0.29 0 NA LINC00516, POTEH

A249 chr22:22447034-22453683 22q11.22 0 0.45 0 Intergenic

D17 chr1:152768559-152776742 1q21.3 0.04 0.34 0.12 LCE1D

D41 chr3:195422280-195429688 3q29 0.16 0 NA MIR570

D89 chr11:4967240-4970264 11p15.4 0.08 0 NA OR51A4

D93 chr11:73581673-73590246 11q13.4 0 0.26 0 COA4, PAAF1
 

prone) class given the test CNV data; Pr(features|cancer) is 
the likelihood function of the test CNV data given member-
ship in the cancer class; Pr(features|normal) is the likelihood 
function of the test CNV data given membership in the nor-
mal class; Pr(cancer) and Pr(normal) are the prior distribu-
tions of cancer and normal samples, respectively, within the 
learning-band.

On this basis, a test band sample being tested is pre-
dicted to be normal (viz. “non-cancer prone”) if R  0, can-
cer (viz. “cancer prone”) if R  0, or indeterminate if R = 0. 
Accordingly, for any cancer sample in the test band, a predic-
tion of R  0 would represent a “true” prediction, whereas a 
prediction of R  0 would represent a “not true” prediction. 
On the other hand, for any normal sample in the test band, a 
prediction of R  0 would represent a “not true” prediction, 
whereas a prediction of R  0 would represent a “true” predic-
tion. Therefore, in any trial run, the accuracy of prediction for 
the run would be given by the total number of “true” and “not 
true” predictions:

	

+

= ×
+

[True predictions of control]
[True predictions of control]

Accuracy 100%
[Total predictions of control]
[True predictions of cancer]

� (2)

By repeating 1,000 times the random separation of sam-
ples into learning-band and test band 1, each time selecting 
CNV-features from the learning-band samples and using 
them to make predictions on all the test band samples, 1,000 
accuracy estimates as well as their average accuracy were 
obtained. For each of the Caucasian and Korean cohorts, 
the 1,000 accuracy estimates obtained from the 1,000 repeat 
runs all exceeded 80%, yielding an average accuracy of 93.6% 
for the Caucasian cohort, and 86.5% for the Korean cohort  
(Fig. 6). These results confirmed the usefulness of extracting 
CN-features from the constitutional DNAs prepared from 
the normal blood cells of a learning-band of subjects with 
high and low cancer-predispositions, and employing these 
CN-features to make predictions on the individual level of 
cancer-predisposition among test subjects belonging to the 
same ethnic group.

Discussion
When the recurrent constitutional CNVs in the non-cancer-
ous white blood cells of cancer-patients and those of controls 
from both the Caucasian and Korean cohorts were analyzed, 
significant differences at the level of P  0.0001 were found 
between cancer-patient and control DNAs with respect to the 
number of CN-losses and CNV size distributions (Figs. 2  
and 3), pointing to the feasibility of distinguishing between 

http://www.la-press.com


Copy number variation-based cancer risk prediction 

7Genomics Insights 2014:7

high cancer-predisposition genomes and low cancer-predis-
position genomes on the basis of their recurrent CNV-pro-
files. Application of machine learning to an analysis of their 
recurrent CNV-profiles confirmed the presence of CNV-
features with biased-Can/Con ratios with P ′  0.05 (Fig. 4),  
suggesting that they were preferentially enriched in either 
cancer-patient DNAs or control-subject DNAs. The find-
ing of such a significant fraction of biased-Can/Con CNVs, 
amounting to 5% of total recurrent CNVs in the Caucasian 
or Korean samples, was a surprising one. The capability of 
these biased-Can/Con CNVs for extensively distinguishing 
between the DNAs of cancer-patients and control-subjects 

(Table 3), or making possible 85% accurate classification of 
unlabeled test DNAs into high and low cancer-predisposition 

Table 2. Correlation-based CNV-features for Korean samples.

CNV ID GENOMIC REGION LENGTH  
(BP)

CYTOBAND CANCER  
FREQ.

CONTROL  
FREQ.

CAN/CON  
RATIO

GENE/LOCI

A17 chr1:144008324-144013581 5258 1q21.1 0.23 0.02 11.5 Intergenic

A51 chr2:132366274-132452986 86713 2q21.1 0.2 0.01 20 Intergenic

A132 chr6:161032508-161068029 35522 6q26 0.16 0.35 0.46 LPA

A147 chr7:76303499-76308210 4712 7q11.23 0 0.05 0.00 Intergenic

A148 chr7:97405580-97420636 15057 7q21.3 0.01 0.07 0.14 Intergenic

A151 chr7:110175088-110177523 2436 7q31.1 0.01 0.11 0.09 Intergenic

*A182 chr8:140566271-140583019 16749 8q24.3 0.01 0.21 0.05 Intergenic

A184 chr9:16911092-16913776 2685 9p22.2 0.02 0 NA Intergenic

A215 chr11:58833238-58835701 2464 11q12.1 0.08 0.28 0.29 Intergenic

*A217 chr11:69329675-69351720 22046 11q13.3 0.03 0 NA Intergenic

A258 chr14:101515428-101529413 13986 14q32.31 0.01 0.09 0.11 MIR cluster

A265 chr14:106980636-107003597 22962 14q32.33 0.38 0.62 0.61 Intergenic

A267 chr15:20180946-20186638 5693 15q11.1 0.4 0.06 6.67 Centromere

*A299 chr17:12894795-12900382 5588 17p12 0 0.04 0.00 ARHGAP44, 
ELAC2

*A308 chr18:2262552-2263726 1175 18p11.32 0 0.05 0.00 Intergenic

A319 chr19:40783234-40786732 3499 19q13.2 0.13 0.01 13.00 AKT2

A333 chr21:11123429-11126187 2759 21p11.1 0.4 0.06 6.67 Centromere

D27 chr1:179078208-179203917 125710 1q25.2 0.02 0.13 0.15 ABL2

D30 chr1:196741305-196770682 29378 1q31.3 0.02 0 NA CFHR3

D41 chr2:219313355-219433596 120242 2q35 0 0.19 0.00 VIL, USP37, 
RQCD

D69 chr5:788049-863796 75748 5p15.33 0.02 0 NA ZDHHC11

*D75 chr5:125932873-125966005 33133 5q23.2 0.01 0.22 0.05 PHAX

D82 chr5:180329360-180380190 50831 5q35.3 0 0.02 0.00 BTNL8

D91 chr6:74221700-74234042 12343 6q13 0 0.18 0.00 EEF1A1

D93 chr6:150042816-150075171 32356 6q25.1 0 0.16 0.00 NUP43, 
PCMT1

D97 chr7:38297824-38319338 21515 7p14.1 0.11 0.56 0.20 TARP

D155 chr11:7813449-7829919 16471 11p15.4 0.01 0 NA OR5P2

D200 chr16:11912686-11927917 15232 16p13.13 0 0.16 0.00 BCAR4

D229 chr19:15983972-16013337 29366 19p13.12 0.02 0 NA CYP4F2

D242 chr19:53603953-53641568 37616 19q13.42 0.01 0 NA ZNF160, 
ZNF415

Note: *These CNV regions do not overlap with any CNV region in the Database of Genomic Variants 2013 (DGV; http://projects.tcag.ca/variation/).

Table 3. AUC values for Caucasian and Korean samples attained 
with distinguishing CNV-features.

BASIS OF CNV-FEATURES CAUCASIAN  
n = 98

KOREAN  
n = 542

CFS 0.996 ± 0.001 0.975 ± 0.002

Frequency 0.991 ± 0.007 0.958 ± 0.009

Classifier 0.986 ± 0.014 0.867 ± 0.016

http://www.la-press.com


Ding et al

8 Genomics Insights 2014:7

Figure 4. The occurrence frequencies of CNV-features selected by correlation, frequency, and classifier-based methods among the cancer and control 
samples of (A) Caucasian and (B) Korean cohorts. Solid triangle, CNV-feature selected by both correlation and frequency methods; solid circle, selected 
only by correlation method; open triangle, selected only by frequency method; solid triangle plus solid inverted triangle, selected by correlation method, 
frequency method, and classifier method; open triangle plus open inverted triangle, selected by frequency method and classifier method; open circle, not 
selected by any of the three methods. Chi-square based probability P of cancer and control frequencies being equal is 0.05 between the two dashed 
lines representing P = 0.05, and 0.05 outside these two dashed lines. The two solid lines representing P ′ = 0.05, where P ′ stands for P value after 
Bonferroni correction, likewise separate the in-between region of P ′  0.05 and the outer regions of P ′  0.05.

Figure 5. Distribution of correlation-based CNV-features in the non-tumor white blood cell DNA of (A) cancer-patients from Caucasian cohort and 
(B) cancer-patients from Korean cohort bearing different types of cancers. k-means clustering was employed to cluster the different types of cancer-
patient DNAs according to their contents of correlation-based CNV-features using the kmean package in R. Since the number of correlation-based CNV-
features was greater than two, the CLUSPLOT function51 in the cluster package in R was used to reduce the dimensions of the data by PCA to produce 
the graphical output in terms of only the first two principal components. Different types of cancer-patients are indicated by color: colorectal cancers are 
represented by blue circles; glioma by green triangles; myeloma by red squares; gastric cancer by blue squares; and HCC by red triangles.
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classes (Fig. 6), was a straightforward consequence of their 
biased-Can/Con ratios. Interestingly, these biased-Can/
Con CNVs could in fact be detected without machine learn-
ing, simply by plotting the occurrence frequencies of all the 
recurrent constitutional CNVs in cancer-patient and control-
subject DNAs as in Figure 4, where these biased-Can/Con 
CNVs would be readily located outside or very close to the 
two P ′  0.05 lines. Therefore, biased-Can/Con ratios were 
intrinsic properties of this fraction of recurrent CNVs. The 
advantages of machine learning resided in furnishing a sys-
tematic procedure for identifying such CNVs and facilitating 
their application to the prediction of cancer predisposition.

The basic principle of the CNV-feature based pre-
diction method (Fig. 7) is that, by assembling a large 
learning-band of labeled DNAs from cancer-patients and 
control-subjects of the same ethnic group, and selecting 
distinguishing CNV-features from them, the members of 
this band can be ranked on either a numerical or percentile 
R-scale based on their R-scores as estimated by means of 
equation (1). This R-scale serves as a standard for this eth-
nic population, so that the R-score of any test subject from 
the same ethnic population estimated using the same set 
of distinguishing CNV-features selected from the learning-
band will provide an indication of the test subject’s rela-
tive predisposition to cancer. If the test subject’s R-score is 
high on the scale, either within or close to the R-score zone 
containing a majority of the learning-band cancer-patient 
samples, his/her predicted predisposition to cancer will be 
high. On the other hand, if his/her R-score is well below 

the R-score zone containing a majority of the learning-band 
cancer-patient samples, his/her predicted predisposition to 
cancer will be low. An intermediate R-score will be indica-
tive of an intermediate predisposition to cancer.

As a novel method for predicting cancer-predispo-
sition, the use of biased-Can/Con recurrent CNVs is 
expectedly open to multiple refinements. Thus, although 
Affymetrix SNP 6.0 microarrays of non-tumor DNA pre-
pared from blood were employed in the present study as the 
source of distinguishing CNV-features, other DNA plat-
forms including whole genome sequencing and AluScans,52 
which can reduce the amount of sample DNA required, 
may also serve as source sequences for the selection of dis-
tinguishing CNV-features. Likewise, although three types 
of cancers were analyzed for each of the Caucasian and 
Korean cohorts in this study, the comparative advantages 
and disadvantages of employing either more or fewer can-
cer types to establish the R-scale yet remain to be defined 
with enlarged assemblies of cancer-patient and control-
subject DNAs. The possibility that the use of more cancer 
types might be preferred for the detection of a generalized 
predisposition to different types of cancers, whereas use of 
fewer cancer types might be preferred when the aim is to 
define predisposition to a narrow range of cancers, deserves 
to be explored. As well, because the incidence of cancers 
typically increases with age, non-cancer subjects likely 
have to reach some minimum age before their DNAs can 
be meaningfully included in a learning-group representing 
DNAs of low cancer predisposition.

Figure 6. Prediction accuracies of cancer occurrence in (A) Caucasian and (B) Korean cohorts using correlation-based CNV-features. For each of the 
cohorts, the DNA samples were randomly separated into a learning-band and a test band. Correlation-based CNV-features were selected from the 
learning-band, and employed to predict the classification of each sample in the test band into the high or low cancer-predisposition classes according 
to equation (1) (see Methods). By repeating the random separation of samples into learning-band and test band 1,000 times, and each time making 
predictions on every sample in the test band, 1,000 accuracy estimates were obtained for each of the two cohorts. The minimal distribution of the  
1,000 accuracy estimates obtained, and their average values are indicated on the graphs.
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Conclusions
In the present study, the recurrent constitutional DNAs of 
cancer patients and non-cancer subjects were examined with 
the aim of selecting CNV-features by means of machine learn-
ing that can be applied to cancer prediction. In doing so, the 
CNV-features selected were found to display biased-Can/Con 
ratios indicative of markedly unequal occurrence frequencies 
among cancer-patient DNAs compared to non-cancer subject 
DNAs. These CNV-features have allowed an extensive dis-
crimination between cancer-patient DNAs and non-cancer 
subject DNAs, and furthermore the high-accuracy prediction 
of the predisposition to cancer of unlabeled test subjects based 
on CNV-features selected from a mixed reference group of 
labeled DNAs consisting of cancer-patient DNAs and non-
cancer subject DNAs.

The cancer biological implications of the existence of recur-
rent constitutional CNVs with biased Can/Con ratios represent 
a challenge to cancer research, for the causes for their biased 
Can/Con ratios are not well understood; among the CNV-
features in Tables 1 and 2, only Caucasian A50 is known to be 
connected with oncogene PIK3CA, Korean D27 with oncogene 

ABL2, and Korean A319 with oncogene AKT2. In view of this, 
some of the CNV-features could be connected with potential 
oncogenes or tumor suppressor genes, or genes that take on 
oncogene or tumor suppressor roles when they act together in 
synergistic groups or networks. They might also include con-
textual genes that establish genomic contexts that enhances or 
abates tumorigenesis; such genomic contexts might also impact 
on wider aspects of cancer biology such as tumor progression, 
genomic stability, metastatic potential, tumor response to 
drugs, radiation, or immunotherapy, etc. In-depth investiga-
tions of the roles played by recurrent constitutional CNVs with 
biased-Can/Con ratios are clearly needed to advance not only 
the prediction but also the understanding of cancers.

The utility of machine learning in revealing relationships 
between recurrent constitutional CNVs and cancers demon-
strated in the present study is potentially applicable to other 
human diseases with a significant genetic component. Hith-
erto, genome-wide association studies (GWAS) have focused 
above all on the disease associations of SNPs. However, on 
account of the large number of SNPs encountered in human 
genomes, a large sample size is needed for SNP-based GWAS 
to overcome the problem posed by multiple testing.53,54 In 
contrast, the number of recurrent constitutional CNVs is typi-
cally much lower. Accordingly, a smaller sample size could suf-
fice for CNV-based GWAS, and the GWAS-identified CNVs 
also could be followed up more readily by thorough investiga-
tion to elucidate the roles they play in disease etiology.

Abbreviations
Can/Con, cancer frequency/control frequency; CBS, circular 
binary segmentation; CFS, correlation-based feature selec-
tion; CNVs, copy number variations; CN-gains, copy number 
gains; CN-losses, copy number losses; GWAS, genome-wide 
association studies; HCC, hepatocellular carcinoma; ROC, 
receiver-operating characteristic; ROC-AUC, area under the 
ROC curve, SNP, single-nucleotide polymorphism.
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