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Abstract: Bounded rationality is one crucial component in human behaviours. It plays a key role
in the typical collective behaviour of evacuation, in which heterogeneous information can lead to
deviations from optimal choices. In this study, we propose a framework of deep learning to extract
a key dynamical parameter that drives crowd evacuation behaviour in a cellular automaton (CA)
model. On simulation data sets of a replica dynamic CA model, trained deep convolution neural
networks (CNNs) can accurately predict dynamics from multiple frames of images. The dynamical
parameter could be regarded as a factor describing the optimality of path-choosing decisions in
evacuation behaviour. In addition, it should be noted that the performance of this method is robust
to incomplete images, in which the information loss caused by cutting images does not hinder the
feasibility of the method. Moreover, this framework provides us with a platform to quantitatively
measure the optimal strategy in evacuation, and this approach can be extended to other well-designed
crowd behaviour experiments.

Keywords: deep learning; crowd behaviour; evacuation

1. Introduction

As one of collective behaviours under extreme conditions, the crowd congestion in
case of emergencies is routinely related to disasters, such as clogging stampede [1–3]. It
becomes significant to investigate collective patterns and individual behaviours in such
cases. Furthermore, relevant researches could also help bridge the gap between individual
decisions and collective behaviours under extreme conditions. To achieve this, many
researchers have been investigating collective behaviours in simulations and experiments
for decades [1–5]. In the evacuation scenario, irrational behaviours are inevitable in decision-
making [6–8], in which diverse behaviour patterns emerge [9]. In principle, “rationality”
could describe an optimal strategy that will bring a maximum payoff at both individual
and whole levels in game theory [10,11], which can be quantified by, e.g., minimizing
escape time in evacuation behaviour [8,12]. Henceforth in the paper, we try to measure the
optimality of exit decisions related to escape time in evacuation.

Without sufficient information from environments or enough capacities in a close
space, optimality of path-choosing decisions made by each individual will also depend on
others’ decisions, which can lead to the deviation from optimum strategies or generally
introduce heterogeneous decision-makers [13–18]. Here, the deviation from optima is
highly related to strategies of processing information [11,19–21], which is regarded as one
possible origin of the bounded rationality [10]. In our study, we specify one of crucial
factors as processing heterogeneous information [12,22–25]. It includes environment-related
attributes and dynamics of surrounding pedestrians [6,26,27]. To combine them into a
concrete case, we established a simulation model to describe a typical evacuation behaviour
in a close space [12]. Although many works were applying macroscopic or microscopic
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models to study the evacuation behaviours [2,9,28–30], to evaluate individual strategies,
micro-models represented by Social force model, CA model, and magnetic field force
model [31–33] could give a more accurate description of individual behaviours [34–38].
Thus, to measure the deviation from optimum decisions, we further build a deep learning
framework based on the CA evacuation simulation, in which the optimality of exit decisions
is quantified as a dynamical parameter in our CA simulations [12], and more details are
shown in Section 2.1.

For the past few years, the development of sensor technology and the improvement of
microchip computing power have been yielding unusually brilliant results in diverse fields.
It makes things feasible that is collecting abundant data and using state-of-the-art machine
learning methods to process them in evacuation behaviours [25,39–43]. Deep learning
(DL), a branch of artificial intelligence (AI), efficiently integrates statistical and inference
algorithms and thus offers opportunities to uncover hidden structures of evolution in
complex data and to describe it with finite dynamical parameters. Therefore, a combination
of DL algorithms and spatio-temporal models for evacuation based on bounded rationality
is a promising option. The existing researches mainly focus on applications of DL in
designing evacuation strategies based on data [44–46]. The other potential application is to
train deep neural networks(DNNs) on simulated data sets and transfer them into real data
sets to evaluate realistic situations or recognize the hidden signals, which has been verified
in both physics and epidemiology [47–49]. Based on the methodology, as Figure 1 shows,
we first introduce DL into the evacuation model to measure the optimality of decisions in
such extreme scenes.

Deep CNNs

generated from CA model with diverse parameters
Dynamical Parameters

Test Maps

Evacuation Maps

Qu
esti
on

Answer

Train

…

Figure 1. Flowchart of learning dynamical parameters in evacuation models and estimate their values
in other cases. The left panel shows evacuation maps simulated from a CA model and they are inputs
of a neural network. The middle panel represents a generic neural network model which can be
specified as a deep CNN model in our case. The rightest panel contains two parts, in which the upper
one is testing maps which is from simulations but can be conveniently extended to real observed
images, and the bottom icons indicate the key dynamical information the well-trained neural network
can predict. Here it is a rational factor but can be generalized to more dynamical parameters.

In this paper, we use replicator dynamics to simulate the evacuation, which combines
the bounded rational behaviour and rational decision-making [11,12,50,51]. Adopting the
simulation model proposed in Ref. [12], we deploy a DNN model to extract dynamical
parameters that determine individual behaviour in a CA model describing evacuation
behaviours. To train deep convolution neural networks (CNNs), we prepare data sets
with various dynamical factors from multi-frame images generated by CA models, which
specifically means training the deep CNN on images cut from the whole evolution process.
In addition, this framework has been evaluated on four different CNN models and has been
further examined on the data set consisting of incomplete images cut from original images.
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2. Materials and Methods
2.1. Cellular Automaton Modeling Evacuation with Bounded Rationality

A cellular automaton model was proposed for simulating the pedestrian flow with
bounded rationality in a two-dimensional system [12]. The underlying structure is a L× L
cell grid, where L is system size. The state of a cell can be empty or occupied by one
pedestrian exactly or wall. The Moore neighbor is adopted in CA models, and pedestrians
update their positions by transition matrices P(i, t), where Pm,n(i, t) means the possibility
that pedestrian i moves from t time at position (x(i, t), y(i, t)) to next time-step position.
Neighbors’ directions are labeled by (m, n), where m, n = 1, 2, 3 represents the row and
column index of 9 directions. Thus, (1, 1) means the direction of upper left, (1, 2) is the
upper, (1, 3) is the upper right and (2, 2) represent the center and the others are defined in
a similar fashion. Each cell could be either empty or occupied by a wall or a pedestrian.
Pedestrians at each time step can choose to move into a new location or stop. Once we
choose one location of the exit, the cellular automata updated synchronously can simulate
the escape process [32,52].

The model escape rules gives as follows: Set the position of exit (x, y) and generate
N(t) population distribution at a L× L lattice. At the t = 0 time, disaster turns out and
individuals begin to move; at the t time step, the individual i move to next position as
matrices P(i, t) at t + 1 time step. Update all individuals synchronously, and the conflict
will be handled by compared transition possibilities; Handle Conflicts. The conflicts occur
when two or more persons want to move into the same position, and what we do to
handle the conflicts is to compare their transition possibilities Pm,n(i, t) which reflects
their willingness to move. For example, the individual j and k both want to move into
position (x, y), and the corresponding possibility for j is Pm,n(j, t) and k is Pm′ ,n′(k, t).
If Pm,n(j, t) > Pm′ ,n′(k, t), then the individual j move successfully and k stayed where it was,
and vice versa. For equal cases, one is randomly selected. It can be easily extended to the
situation of many people. For individuals whose destination is an exit at the next time
step, they escape successfully and are removed from the space to reduce the population as
N(t + 1) = N(t)− 1. If N(t) = 0, all individuals exited and stop evolution; Else, update
transition matrix according to the above strategies.

The extreme situation of escaping from disasters constrains people’s behaviour, in
which only intuition or social habits remains, no long term trade-off. The replicator dy-
namics modeling [50,51] links different behaviours, whether practical or spiritual, during a
escaping process. It reforms the transition possibility P(i, t) as,

Pm,n(i, t) =
Bm,n(i, t)Rm,n(i, t)

∑ B(i, t)R(i, t)
(1)

where R(i, t), B(i, t) means weights from rational and bounded rational part respectively.
They differ for different individual i at different time step t, which means these two matrices
will be updated with evolution. The definition of components in matrix Rm,n(i, t) =
Om,n(i, t)Em,n(i, t),

Om,n(i, t) =

{
1 empty
ε occupied

, Em,n(i, t) =

{
α exit
ε nothing

(2)

which means if one position (m, n) around the individual i at t time is empty, Om,n(i, t) = 1,
whereas the value is ε. And the Em,n(i, t) = α only holds when the exit direction is indicated
by (m, n). For each individual, there is a relative location of the exit, that location will be
assigned into one of 9 directions mentioned before depending on which one has the smallest
azimuth between the direction and the exit. The other directions take the value ε and the ε
is a minimum value that the calculation accuracy can reach. The parameter α represents
attraction of exit to persons who want to escape, or the importance of information of
exit position in the model. As Ref. [12] shown, the increasing of parameter α will induce
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decreasing of escape time and eventually saturates at individual and system levels, which
indicates that α is a potential indicator of measuring the optimality in evacuation behaviour.
Thus, we named α as the rational parameter in such a CA model. To measure the optimality
of path-choosing decisions in crowd behaviour is to extract the corresponding rational
parameter α in our case.

The definition of bounded rational part Bm,n relies on dynamic information from the
others which leads to deviations from optima. The transport theory inspires us that escape
dynamics needs more information on persons’ position and velocity distribution, the basic
variables in transport theory. Considering the full information cannot easily be observed
by individuals, the mean-field approximation (MFA) can provide a global perception for
the people on move, which shows Bm,n(i, t) = 1 as rational choices, Bm,n(i, t) = nm,n(i, t)
as influencing by the crowds. The rational indicates transition possibilities only decided
by R(i, t), that contains neighbours’ states and the direction of exit, or other objective
environments. The crowd defines nm,n(i, t) = ∑m,n N(i, t)/∑All N(i, t), where N(i, t) is the
population distribution at t time. The definition shows the proportion of individuals in
(m, n) orientation as a mean-field approximation, and people will be attracted to the direc-
tion with more density. We use it to mimic the “crowd” behaviour for individuals, which
also means people can potentially get more population density information. The crowd
effect induced by population affects human behaviour indirectly since people can gather
and process information from the environment [22,25]. In this work, the distribution is dis-
crete and the individual can process them as background, that’s what the above definition
means. People’s perception of the distribution is reduced to the average value in a certain
direction, a mean background field, as what statistical physics did in a many-body system.

2.2. Data-Set Generation and Network Capacity

The data sets that we prepared for training the neural networks are from the CA model
included a total of 50,000 images. Out of the 50,000, there are 5 different initial populations
ρ0 ranging from 0.1 to 0.5, each with 10,000 images generated. Out of the 10,000 images
with each initial population, there are 100 different values of rational parameters α ∈ (0, 5)
and 100 frames of evolution in Time-step T ∈ [1, 100] for each parameter. Each image
represents one snapshot of the evacuation process in a square form with a side length of 24,
so each image we generated has 576 pixels. Each pixel of an image is either 0 or 1, where 0
represents empty space and 1 represents an individual present at that spot.

The main architecture of CNNs we used in this study is shown in Figure 2. Images
generated from a CA model are fed to the input layer, the Conv2D layer is following after
one input layer, and the MaxPooling layer is used to coarsening features extracted from
CNN. The second Conv2D layer could be expanded to more CNNs whose performance is
demonstrated in Section 3. The fully connected layers before the output layer are applied
to process signals from preceding CNNs. The Droupout module and L2 regularization are
deployed to alleviate the possible over-fitting. To prepare inputs for the above CNN model,
we select 10,000 as a standard batch size of samples, in which 2000 samples are from 5 initial
population panels and mixed in one training data-set. Out of 2000, we label all 100 rational
parameters α to each frame and prepared 20 groups from different frame selections. It
means we prepare different numbers of consecutive frames as training data sets, which
helps us to evaluate the performance of CNNs to extract the dynamical information from
the collective behaviour. Starting with frame No. 36 as Figure 3 shown, we cut the following
one frame as the first channel of 2000 samples, and then cut different numbers of frames
(ranging from 1 to 32) after the first frame to form diverse channels of image inputs.
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Figure 2. The CNN model we used to learn rational parameters from evolution. The fist module
is the input layer which transfers 2-dimensional images into the following convolutional modules
termed as Conv2D layers. A Conv2D layer includes 3× 3 kernels and the ReLU activation function.
The MaxPooling operation is only implemented after the first Conv2D layer and the Dropout is
adopted to avoid the possible over-fitting. Between the final output layer and Conv2D layer, there is a
Flatten operation to convert 2-dimensional intermediate data into a list which can be transferred by
a fully-connected layer for output values. The fully-connected layer is named as Dense.

T = 36 T = 37 T = 38 T = 50

…

Evacuation Process 

… …

Figure 3. The simulation of an evacuation process with parameters L = 24, α = 10, ρ0 = 0.37. The
orange sites represent the individuals and the white areas are empty spaces. The black solid line
indicates the wall constrains the behaviours that occur in a closed room and the only exit locates at
the rightest.

3. Results
3.1. Validating CNN Models

To find a relative optimal CNN model to learn rational parameters from training data
sets, we first examined the performance of different Convolution operations in our CNN
models. In the examination, we set eight consecutive frames as eight channels per sample
and tested different CNN models containing 1, 2, 3 and 4 convolution layers. The perfor-
mances are demonstrated in Figure 4, in which the training and validation losses (mean
square error, MSE) are decreasing with training. In Figure 4, the simple CNN model
behaves distinct over-fitting after the first five epochs, which is understandable that the
relative concise model tends to over-fit on a large data-set. Although the models with three
and four convolution layers have small training losses as the other models show, their vali-
dation losses are highly unstable. It could be interpreted as the lack of training data causes
under-fitting. The CNN model with two convolution layers is comparatively superior,
for its stable performance both on training and validation data sets. Thus, in the following
contents, we choose the 2-layer CNN model visualized in Figure 2 for further investigations.

3.2. Extracting the Dynamical Parameter via Deep Learning

In Figure 5, we demonstrate the testing performance of the CNN model on different
numbers of consecutive frames. The MSE and R2 = 1− SSres/SStot are chosen to evaluate
the results learnt from different consecutive evolutions, where SSres is the sum of squares
of residuals between predictions and ground truths and SStot is the total sum of squares
in testing data-set which is proportional to the variance of the data. By increasing the
number of the frame from 1 to 32, the prediction of rational parameter αp tends to reach the
ground truth α. As a relatively ideal result, eight consecutive frames achieve a testing loss
of 0.062 and R-squared value 0.9771. It should be mentioned that while increasing the frame
number does increase overall accuracy by a marginal degree, the amount of data (here is
time, in real-life applications) required to analyze in these models grows disproportionately
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against model accuracies. Selecting frame numbers as low as possible is more realistic for
generalizing our framework to assist real-life applications to react more quickly.

(a) (b)

(c) (d)

Figure 4. The training histories of the CNN models with 1, 2, 3 and 4 convolution layers correspond to
(a–d). The blue lines are the loss on the validation data-set and the red line shows the corresponding
loss on the training data-set.

1 2 3 4 6 8 10 12 14 16 20 24 28 32
Frames

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
Testing MSE

0.90

0.92

0.94

0.96

0.98

1.00
Testing R2

Figure 5. Testing performance on different numbers of consecutive frames. The blue dots are the
correlation coefficients of the ground truth and predictions from the neural network. The red points
indicate the corresponding mean square error on the testing data set.

To analyze sensitivity of the CNN model to extract rational parameter α under diverse
population densities, we tested the CNN model on five initial population ρ0 data-sets.
To achieve the purpose, we prepare 2000 images from each ρ0 using the same method
as previously introduced, but here we feed images from each ρ0 value into the model
separately rather than mixed together. Five well-trained models are tested and shown
in Table 1, in which results reveal that for all ρ0 values we examined, the R-squared of
evaluations were all above 0.98, while a 2000-image mixed model gives 0.95.
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Table 1. Test accuracy on different initial population densities.

ρ0 0.1 0.2 0.3 0.4 0.5 Mixed

MSE 0.0150 0.0397 0.0134 0.0233 0.0095 0.0914

MAE 0.0387 0.0609 0.0401 0.0541 0.0289 0.2350

R2 0.9881 0.9899 0.9910 0.9852 0.9913 0.9565

Now, we are concerned about a more realistic scenario, in which evacuation informa-
tion is partially missing. In reality, the observations of collective behaviour are routinely
noisy and(or) incomplete. How to process and understand the hidden behaviour patterns
is one of the urgent topics in, e.g., stewardship [53] and social networks [54]. The CNN is
trained on parts of the images we prepared before. This means that the side length and
position of the prepared images are set to be different instead of the number of the frame.
In concise, we select a square area with a given side length off from the 24 by 24 images we
generated and determine the position of the image part by defining the coordinates of the
upper left corner on the original image. Using the same 10,000 images and 2-layer CNN,
the input images are set with side lengths from 8 to 24 (Images of side lengths less than 8
contain too little information to train a 2-layer CNN model). In Figure 6, results show that
the longer the side length, the more accurate the prediction is, which is consistent with the
information completeness. With regard to the position of cut images, the top left corner
and right centre (where the exit is) are tested. The inspection using different side lengths as
a sample shows the obvious advantage of providing information at the outlet. In addition,
when monitoring the exit, a 12 by 12 image section can achieve an accurate prediction of
the entire situation with MSE = 0.094 and R2 = 0.982, which is close to the performance of
training on complete images.

8 10 12 14 16 18 20 22 24
Side Length

0.0

0.1

0.2

0.3

0.4

0.5
Testing MSE

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000
Testing R2

Figure 6. Testing performance on different side lengths of images cut from the top left corner. The blue
dots are correlation coefficients of the ground truth and predictions from the neural network. The red
dots indicate the mean square error on testing data set.

3.3. Robustness Examinations

In addition to the dynamical factor α, other factors can also affect the evacuations,
such as the initial population density and number of exits. In Figure 7, we validate our
approach on these two cases. In Figure 7a, we use the same deep CNN model to learn
the initial population densities from a series of intermediate processes which are (24, 24, 8)
images. With the same size of data set, the testing performance is MSE = 6.73× 10−4 and
R2 = 0.906. It achieves an acceptable performance, but not good as the prediction task
to α. It is understandable that the only dynamical parameter of simulations is α which is
more important than the initial condition for the intermediate processes. Concerning the
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double-exit case, we set two symmetric exits on both sides of the location in the single-exit
case, and they have the same widths as the single one. In addition, under the same CNN
model and size of data set, we get the testing performance as MSE = 0.053 and R2 = 0.973.
It is comparable to the single-exit case. The predicted α and ground truth are plotted in
Figure 7b, they are consistent with each other.

(a) (b)

Figure 7. Robustness examinations. (a) The predicted initial population densities and their corre-
sponding ground truths at the same dynamical factor α = 5.0; (b) The predicted dynamical factors
and their corresponding ground truths in the double-exit case at the same initial population density
ρ0 = 0.5. The colors of dots label the value of ground truths.

3.4. Measuring Deviations from the Optimal Decision

With a well-trained CNN model, we can predict the rational parameter in such evac-
uation behaviour α that reflects the importance of the exit information to individuals.
The crowd rule was introduced to characterize a bounded rational behaviour [12], in which
the deviation from optima is measured in our framework. With the same processing as
Section 2 to prepare data-sets, we generated 10,000 images under the crowd rule. In a
transfer learning manner, the well-trained CNN model learnt on a data-set with optimal
strategy is transferred to predict the rational parameters on the data-set with the crowd
rule. As Table 2 shows, predictions of rational parameters on different initial population
densities reveal a distinct deviation which is δα, in which the base-line α = 2.475. The effect
of the crowd rule on the rational behaviour is to reduce the influence of the exit information
or equivalently is to strengthen the importance of the population density in evacuation.
With population increasing, the deviation from optima δα changes from negative to positive,
that is from overestimating rational parameter under small population to underestimating
it under large population. In other words, the bounded rationality induced by the crowd
rule in evacuation behaviour is quantitatively characterized as the deviation δα.

Table 2. Predictions of the dynamical parameter on different initial population densities.

ρ0 0.1 0.2 0.3 0.4 0.5 Mixed

αp 2.514 2.509 2.445 2.424 2.348 2.448

δα 0.039 0.034 −0.020 −0.051 −0.127 −0.027

4. Conclusions

In this study, based on a CA model which generates spatio-temporal maps describing
the evacuation process, we propose a deep learning framework to extract the optimality
and its deviation induced by heterogeneous information. The latter is introduced in a
replicator dynamics describing the bounded decision-making. The well-trained deep CNN
accurately predicts dynamical factors from multi-frame images generated by the CA model.
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In addition, it should be noted that the performance of this machine is robust to incomplete
images corresponding to global information loss.

This framework provides us with a platform in which the optimality of decision
is measured as a dynamical parameter in evacuation simulations, and the latter can be
simulated by replicator dynamics. It should be noted that deep CNN is just one of the
machine learning approaches that can learn the dynamical factor from replicator dynamics.
Besides, the Bayesian method can also achieve our goal [55,56]. Although the CNNs
can capture the spatial correlations more naturally in image-type data, it still deserves to
compare the performances of different methods in the future. Furthermore, the scheme
could also be generalized to other well-designed experiments. It has potentials to be used
in recognizing potential collective patterns and avoid trampling if we trained on observed
image data-sets from experiments or the real world. On the other hand, combining online
games with the deep learning framework, it can help us to measure the optimality of
individual or group decision in more human behaviours [57–60]. Because the evacuation
simulation provides us with a platform in which the human instinct dominates behaviours
under extreme scenes [23,61,62]. It brings opportunities to effectively investigate human
behaviours without complex social relations, which will help us to understand the diverse
and fascinating collective behaviours that occur in both virtual and real space (social
network, financial network and social norms, these virtual social connections naturally
incubate the collective behaviour; as for the real space, collective modes are common in
urban dynamics, traffic flow, and pedestrian dynamics [63,64]). An online game simulating
multi-players in evacuation has been developed and the measurement results will be
released in our future works. In summary, this study provides an insight into measuring
human decisions with deep learning approaches in collective behaviours.
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