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Introduction: COVID-19 has prompted the extensive use of computational models to un-
derstand the trajectory of the pandemic. This article surveys the kinds of dynamic simulation
models that have been used as decision support tools and to forecast the potential impacts
of nonpharmaceutical interventions (NPIs). We developed the Values in Viral Dispersion
model, which emphasizes the role of human factors and social networks in viral spread
and presents scenarios to guide policy responses.
Methods: An agent-based model of COVID-19 was developed with individual agents
able to move between 3 states (susceptible, infectious, or recovered), with each agent
placed in 1 of 7 social network types and assigned a propensity to comply with NPIs (quar-
antine, contact tracing, and physical distancing). A series of policy questions were tested to
illustrate the impact of social networks and NPI compliance on viral spread among (1) pop-
ulations, (2) specific at-risk subgroups, and (3) individual trajectories.
Results: Simulation outcomes showed large impacts of physical distancing policies on
number of infections, with substantial modification by type of social network and level of
compliance. In addition, outcomes on metrics that sought to maximize those never infected
(or recovered) and minimize infections and deaths showed significantly different epidemic
trajectories by social network type and among higher or lower at-risk age cohorts.
Conclusions: Although dynamic simulation models have important limitations, which are
discussed, these decision support tools should be a key resource for navigating the ongoing
impacts of the COVID-19 pandemic and can help local and national decision makers deter-
mine where, when, and how to invest resources.
(Sim Healthcare 17:e141–e148, 2022)

Key Words: Coronavirus, COVID-19, human factors, decision support tools, health policy,
dynamic simulation models, system dynamics models, agent-based models.
The COVID-19 pandemic has prompted the extensive use of
computational models to understand the trajectory of the pan-
demic, as well as increased public awareness ofmodeling. Early
on in the pandemic, models from the United Kingdom,1

China,2,3 and elsewhere4–6 provided policy professionals with
information about the likely scale of the epidemic, the impor-
tance of case detection, and the mitigation strategies capable of
avoiding overrun of health services. More complex computa-
tional models incorporating biological, behavior, social net-
works, and spatial characteristics of areas have also been
developed as the pandemic has evolved.7–12 Othermodels have
focused on case detection, contact tracing, and optimal testing
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regimes13–16; impacts of on emergency departments and the
provision of health care, as well as supply chains for personal
protective equipment17–21; likely impacts of vaccination cover-
age on subsequent infections22 and reinfections23; strategies
for educational settings24–26; and impacts on environment
and economic indicators.27,28 In response to model forecasts,
policy makers in many regions implemented a range of inter-
ventions, including widespread testing and contact tracing,
and nonpharmaceutical interventions (NPIs), such as quaran-
tine, contact tracing, and physical distancing. The combined
impact of these interventions has been the reduction of
COVID-19 cases to a fraction of what they would have been.
It is also likely that these interventions would not have been
implemented as confidently had there not been insights available
from computational models to inform policy professionals.

These computational models are generally described as
dynamic simulation models (DSMs) and offer a way to study
real-world complex dynamical systems using artificial com-
plex dynamical systems. Simple DSMs have a long history in
infectious disease epidemiology29 in the form of aggregate dif-
ferential equation models.30 More complex DSMs, such as
agent-based models (ABMs), have also been used to map epi-
demic spread.31

Policy professionals are now beginning to turn to
postpandemic recovery. Although public health experts routinely
use simple DSMs to understand the epidemiology of disease
outbreaks, the usefulness of DSMs for considering policy and
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service responses to complex chronic disease outcomes is not
widely understood.32 This is despite DSMs having a long his-
tory in other disciplines, such as engineering, ecology, physical
sciences, and business, where they are considered a key tool in
developing and refining hypotheses, priority setting, and guid-
ing decision making.32 Policy makers can use DSMs to answer
the kinds of complex questions that are emerging in the recov-
ery phase of the COVID-19 pandemic. Dynamic simulation
models can power decision support tools to help policy profes-
sionals determine optimal policy combinations, manage compli-
ance challenges within diverse populations, control secondary
outbreaks, and handle downstream psychosocial and health
impacts in a postpandemic society.

TWO TYPES OF DSMs
Dynamic simulation models are computer representations of
the real world. Dynamic simulationmodels include system dy-
namics models (SDMs), ABMs, and discrete event models.33

The first two of these are particularly important for the
COVID-19 epidemic.

System Dynamics Models
System dynamics models are top-down aggregate models

that divide a population (or a system) into “compartments” or
“stocks” that represent states of the system being studied.
Mathematical representations are then specified to describe
howmembers of one stock change state and “flow” to another
stock over time. Investigating how stocks change over time is
equivalent to studying how the system dynamically changes
its state. This can be visualized using a “stock and flow” diagram,
sometimes called a compartmentmodel diagram in epidemiology.

In the context of the COVID-19 pandemic, so-called SEIR
models have figured prominently, where a population is di-
vided into 4 states: those susceptible (S), those exposed to
the virus (E), those infected (I), and those who die or recover
(R; Fig. 1A). The rate at which individuals in the population
move from one stock to another is determined by a set of differ-
ential equations, with the manipulation of parameters (changing
FIGURE 1. A, Traditional SEIRS SDM (top). B, Enhanced SEIRS SDM
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flow rates between stocks) allowing the investigation of different
assumptions and scenarios, and the impacts of selected public
health interventions. Traditional SEIRmodels oversimplify viral
spread in a population, overlooking important factors such as
symptomatic versus asymptomatic spread, health service capac-
ity, policy responses to suppress infection, and human factors
impacting policy compliance. However, SDMs (and ABMs, as
described hereinafter) can take account of these important fac-
tors by incorporating additional stocks and flows to capture
distinct pathways having policy relevance. For example, an en-
hanced SEIR model might also incorporate stocks relating to
asymptomatic spread and new variables to express the effect
of human factors on flow rates (Fig. 1B).

Agent-Based Models
Agent-based models are computer representations of the

real world based on the behaviors and interactions of autono-
mous “agents.” In a population health context, these agents
are individuals in a population, although in other disciplinary
contexts agents could be cars, components of amachine, animals,
or corporate entities.33 Agents change state with time, based on
defined mathematical rules, which may be stochastic or deter-
ministic, and the behavior of agents and populations can be ob-
served over time as agents interact in a simulated context.

For example, an individual might be in 1 of 4 states: sus-
ceptible, exposed, infected, and recovered (Fig. 2). (Note that
this ABM has additional states relating to policy interventions,
which are discussed in more detail below). Agent-based
models offer a bottom-up approach to modeling a complex
dynamical system, with system-level behavior emerging from
agent interactions. Agent interactions can be aggregated to
represent patterns of population change, permitting the explo-
ration of population-level patterns. However, because ABMs
are built with heterogeneous agents, individual life trajectories
can also be explored, yielding tangible examples of simulated
lived experiences. Similarly, individuals who are outliers on
particular measures—for example, in a social network, or on
a distribution representing the propensity to comply with
incorporating human factors (bottom).
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FIGURE 2. Agent architecture for the VIVID ABM incorporating human factors.
physical distancing guidelines—can be identified and studied
as “exceptions to the rule,” yielding insights about policy effec-
tiveness and guiding sensitivity analyses of parameters.

Unlike SDMs, ABMs can capture the heterogeneity and
complexity of individual behavior and social interaction. For
example, an individual may be in either a susceptible, exposed,
infectious, or recovered state, but this may be affected by indi-
vidual medical vulnerabilities or by individual values, behav-
iors, and social contexts. Like people, agents may be more or
less introverted in personality, more or less likely to need to
travel to work, more or less likely to trust health authority ad-
vice, and more or less connected in social networks. Such hu-
man factors are vital considerations in assessing the likelihood
of an individual being in a given state, are central to under-
standing viral spread, and are naturally incorporated into
ABMs. Capturing specific human factors in models also allows
decision makers to investigate the potential impacts of policies
targeting specific behaviors on subsequent trends in disease
outcomes. Because ABMs allow for the exploration of complex
interactions among a range of individual-level factors, there
are corresponding challenges in designing and validating such
models that are more pronounced than for SDMs.

DYNAMIC SIMULATION MODELS IN POLICY CONTEXTS
Limitations of Standard Approaches to Policy Making, Implementation,
and Evaluation

Traditional approaches for developing and evaluating pol-
icies for public health interventions have important limitations
when applied to the complex psychosocial problems associ-
ated with the COVID-19 pandemic. Current methods assume
that relationships between exposures and outcomes are inde-
pendent, unidirectional, linear, and constant through time.
However, complex problems are characterized by interaction
and feedback, and complex human problems also involve chang-
ing behavior over time, which violate these assumptions.34,35

Traditional program logic models and statistical methods also
overlook or understate population dynamics, behavioral dynam-
ics, service or workforce dynamics, variation in how intervention
impacts change over time, and the nonadditive effects of com-
bining interventions.36 These limitations can lead to unrealis-
tic expectations about the potential impact of evidence-based
interventions in real-world settings.

An Important Role for Computational Modeling and Simulation
In comparison with traditional techniques used in health

research, DSMs allow for the conceptualization and computa-
tional description of complex nonlinear dynamical systems,
including interaction effects between independent variables,
Vol. 17, Number 1, February 2022
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such as constructive feedback cycles and dampening mecha-
nisms. Dynamic simulation models can capture real-world
complexity and are unhindered by the simplifying assump-
tions of the traditional restricted potential outcomes approach
approximated in randomized controlled trials. Dynamic sim-
ulation models, developed in collaboration with policy stake-
holders, use a variety of sources of evidence, such as research
studies, expert and local knowledge, lived experience, and rou-
tinely collected data to map and quantify complex problems.37

The resulting dynamic models can then be used as interactive
“what if” tools to test the likely impacts of different scenarios
and combinations of interventions over the short and long
term, before they are implemented in the real world.36,37 This
“testing before investing” approach is normative in engineer-
ing contexts, and technology has advanced to the point that
it can also be used in health policy contexts.

Using DSMs in decision support tools does not preclude
the use of traditional program evaluation approaches. Rather,
DSMs augment traditional approaches. Dynamic simulation
models are particularly useful when they are continually vali-
dated using systematic data monitoring to determine the extent
to which model outputs correspond with real-world outcomes
and how intervention strategies are tracking against forecast
outcome targets. Information from monitoring and evaluation
can be used to refine model parameters and assumptions to im-
prove predictions and guide decision making in a responsive
and iterative way. It is also important that stakeholders who
use models for decision making are able to trust the outputs
from DSMs and that the assumptions underlying the model
structure are robust, transparent, and publicly accessible.38 This
involves building models via a participatory process, with key
stakeholders guiding the design and validation of a given model
structure, drawing on best evidence and current data, provided
by subject matter experts from a range of disciplines.37,39
THE VALUES IN VIRAL DISPERSION MODEL
Incorporating human factors into epidemiological models has
not been common in health policy analysis. However, consider
how prosocial, political, and personal values affect trust in ex-
perts, fear of adverse effects, vulnerability to misinformation,
and willingness to comply with public health recommenda-
tions. Human values directly influence compliance with public
health guidelines, as well as the measures that determine what
counts as policy success in grappling with public health chal-
lenges (Fig. 1). With the right tools, the influence of human
factors can be incorporated into modeling efforts. Previous
models developed by coauthors have demonstrated the
© 2021 Society for Simulation in Healthcare e143
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importance of human values inmodeling of artificial societies, in-
cluding factors relating to social equity, empathy, prosociality, re-
ligion, race, and sexuality.40

The Values in Viral Dispersion (VIVID)model is an ABM
developed by the authors that aims to provide practically
useful computational simulations of human factors in man-
aging the COVID-19 pandemic. (The model is available
here and see additional model outputs, Supplemental Digi-
tal Content 1, http://links.lww.com/SIH/A658). The VIVID
model investigates the impact of human factors—including
NPIs, compliance-promoting trust in experts, and social
networks—on the trajectory of COVID-19 in an artificial
population (here, we set the population to 1000 individuals
for the purposes of illustration). The VIVID model can also
be calibrated to represent any population of policy interest: a
city or state, schools or university campuses, business parks,
or shopping malls.

CHARACTERISTICS OF THE VIVID MODEL
The VIVID agents move between 3 states: susceptible, infec-
tious, or recovered (Fig. 2). Individual agents are assigned a
propensity to comply with NPIs and are placed in a social net-
work that governs interpersonal contact. A summary of model
parameters is provided in the Table. The VIVID model is able
to model the dynamics of disease diffusion through a range of
standard network types, including random interaction, interaction
based on distance, ring-lattice networks, small-world networks,41

scale-free networks,42 networks based on coparticipation in
scheduled events (eg, classes in schools), and social networks
based on a variety of types of ties (eg, being related, living in
the same apartment, shopping at the same supermarket, or at-
tending the same sports event).

Like other ABMs,7–9,11,12 the VIVIDmodel evaluates 3NPIs,
separately and in combination: quarantine, contact tracing, and
physical distancing. Quarantine refers to lockdown, shelter-in-
place, self-isolation, and stay-at-home policies, and the VIVID
model distinguishes between quarantine for those who are non-
symptomatic and quarantine for those who have COVID-like
symptoms. This intervention prevents individuals from interacting,
thereby reducing likely exposure and subsequent infection, subject
to individual compliance. Contact tracing refers to identifying every
individual who has come in contact with a confirmed case of
COVID-19 in the previous 14 days and prevents these individuals
from interacting in their social network (again, subject to compli-
ance). Finally, physical distancing refers to individuals remaining at
least 2 meters from others, avoiding physical greetings and crowded
spaces, and practicing good hygiene. The intensity of each of these
NPIs can be modified to compare and contrast different interven-
tion scenarios, for example, the proportion of the population
complying with physical distancing, an individual agent's pro-
pensity to physically distance (expressed as a probability), and
the duration (in days) of contact tracing scale up.

The VIVID model permits the user to select outcomes of
interest, which will likely differ depending on the policy con-
text. For example, some policy analysts working in health ser-
vice settings may be focused on the number of infections and
deaths to anticipate required capacity. Others may be inter-
ested in the impact on disease transmission of changing the in-
tensity of NPI advice. However, othersmay bemost concerned
e144 Computational Simulation for the COVID-19 Pandemic
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about levels of compliance with NPIs. Here, we illustrate the
VIVID ABM by a series of policy questions related to different
levels of analysis.

SIMULATION OUTCOMES: POPULATION LEVEL
Policy question #1:Which NPIs should be used, and with what
intensity, to optimize 2 outcome metrics: (1) to minimize the
number infected (valuable when thinking of entire popula-
tions) and (2) to maximize a compound outcome metric mea-
suring the distance between positive and negative outcomes,
that is (total never infected + total recovered) – (total deaths + to-
tal reinfected)? The firstmetric (infectedmetric) can go above the
population count, which is 1000, because of reinfections, but can-
not go below zero. The second metric (compound metric) has a
maximumof 1000 but can go below zero if the number of deaths
and reinfections exceeds the count of those who were never in-
fected or recovered after infection. If the compound metric is
1000, this indicates that NPIs were effective in preventing deaths
and reinfections and a perfect outcome for this population—
all agents have either recovered from an infection or have
never been infected. If the compound metric is less than
1000, this indicates the number of deaths and reinfections rel-
ative to those never infected or recovered. A value of 0 would
suggest an equal number of agents in the population who have
never been infected or recovered and agents who have died or
been reinfected. A value of −1000 would indicate the worst
outcome for the population—where all agents have either ex-
perienced reinfection or have died.

A first step in answering policy question #1 is to deter-
mine the parameters (independent variables) most strongly as-
sociated with each outcome metric (dependent variables; see
additional model outputs, Supplemental Digital Content 1,
http://links.lww.com/SIH/A658). Outputs from the model
suggest that the parameters accounting for the most variance
in the infected metric (number of infections) are a propensity
to engage in physical distancing, individual contact rate, and
level of infectivity. In contrast, the parameters accounting for
the greatest variance in the compoundmetric (the distance be-
tween positive and negative outcomes) were the age above,
which one is more likely to die from an infection. This suggests
that limiting exposure of older people by limiting interactions
will be associated with the highest number of those never in-
fected (and recovered) and the lowest number of reinfections
and deaths and that physical distancing and contact rates
among younger age cohorts are relatively less important.
Change the metric, which reflects human values and defines
what counts as strategic success, and the public health recom-
mendations also change.

A second step in answering policy question #1 is to under-
stand how parameters, such as contact tracing, social distancing,
and population demographics, affect outcomes over time (Fig. 3).
Figure 3A uses the infected metric to show a typical infection
curve over several model runs, varying network types, social
distancing compliance, and whether contact tracing is in place.
As one would expect, higher levels of social distancing flatten
the curve, preventing critical care overrun, and contact tracing
flattens it further. Note that network types play a clear role in
the infection curve. A network structure in which agents are
connected to spatially nearby agents (“BasedOnDistance” in
Simulation in Healthcare

. Unauthorized reproduction of this article is prohibited.

http://links.lww.com/SIH/A658
http://links.lww.com/SIH/A658


TABLE 1. Summary of the VIVID Model Parameters*

Parameter Name Description

Model inputs

Contact tracing history The no. previous days that contact tracing efforts will trace back [possible values: (0,14)]

Contact tracing reporting compliance min The minimum likelihood that an agent will report symptoms to a contact tracing body
[possible values: (0,1)]

Contact tracing reporting compliance max The maximum likelihood that an agent will report symptoms to a contact tracing body
[possible values: (contract tracing reporting compliance min, 1)]

Contact tracing quarantining compliance min The minimum likelihood that an agent who was contact notified (notified of having contacted an
infectious agent recently) will quarantine based on this information [possible values: (0,1)]

Contact tracing quarantining compliance max The maximum likelihood that an agent who was contact notified (notified of having contacted an
infectious agent recently) will quarantine based on this information [possible values:
(contract tracing quarantining compliance min, 14)]

Symptomatic quarantine compliance min The minimum likelihood that an agent will choose to quarantine when noticing symptoms
[possible values: (0,1)]

Symptomatic quarantine compliance max The maximum likelihood that an agent will choose to quarantine when noticing symptoms
[possible values: (symptomatic quarantine compliance min, 14)]

Testing compliance min The minimum likelihood that an agent will agree to be tested when selected for random testing
[possible values: (0,1)]

Testing compliance max The maximum likelihood that an agent will agree to be tested when selected for random testing
[possible values: (testing compliance min, 14)]

Physical distancing compliance min The minimum compliance an agent might have with physical distancing protocols [possible values: (0,1)]

Physical distancing compliance max The maximum compliance an agent might have with physical distancing protocols [possible values:
(physical distancing compliance min, 14)]

Model outputs

Day The day of the simulation

Total no. reinfected The cumulative no. agents who have been reinfected (infected, recovered, then infected again)

Death count The cumulative no. agents who have died

No. quarantined through contact tracing The cumulative no. agents who have quarantined due to contact tracing

No. infections prevented through physical distancing The cumulative no. transmissions that were prevented via physical distancing

Infection count The cumulative no. infections including reinfections and first time infections

Recovered from immunity count The cumulative no. infections that have been avoided via immunity (gained from recovery or vaccine)

Total recovered count The cumulative no. recoveries

No. never infected The no. agents who have never been infected

No. susceptible The no. susceptible agents on the current day

No. uninfected in quarantine The no. agents who are isolating while uninfected on the current day

No. infectious The no. infectious agents on the current day

No. infected in quarantine The no. agents who are isolating and are infected on the current day

No. recovered The no. recovered agents on the current day

Individual agent outputs Each agent can also output their day to day stories
*Table describes the model inputs that we varied for one model experiment. For the continuous variables, we selected categorical values to be translated into the continuous variables. For
example, for high physical distancing compliance, we set “physical distancing compliancemin” to 0 and “physical distancing compliancemax” to 1. For low physical distancing compliance,
we set “physical distancing compliance min” to 0.5 and “physical distancing compliance” to 1. Ranges for these parameter were used to create a uniform distribution, from which the in-
dividual compliance values were drawn for each agent. Variables that were left constant for this experiment are not shown.
Fig. 3) tends to have the highest curve, and a random network
reaches a similar height. The distance network can be
interpreted as one where people are connected to those who
are similar to them (and hence closely situated in the social
and/or geographic space). A “small-world” network structure
in which most of an agent's links are locally proximate and in-
terconnected with some long-range links that considerably
shorten the path distance interconnecting distant social spaces
has a much flatter curve than the other network structures.
Public health experts can use network analytics to identify
the structure of physical contact networks in groups or regions
for which they have special responsibility and can use the
VIVID model for planning purposes.

In Figure 3B, we explore the compound metric (the differ-
ence between positive and negative outcomes). Because our
preliminary analysis found that age demographics accounted
for most of the variance for this compound metric, Figure 3B
varies age demographics instead of physical distancing compli-
ance. In Figure 3B, while the trends associated with contact
Vol. 17, Number 1, February 2022

Copyright © 2022 by the Society for Simulation in Healthcare
tracing and network structures from 3A still hold, we see
an extreme dichotomy for different age cohorts (those aged
50–90 years and those aged 20–26 years). The policy rele-
vance of this finding bears on whether NPIs should be advo-
cated equally for all age groups or whether more stringent
social distancing and contact tracing policies should be used
for specific demographic groups (eg, older people and those
who interact with them) based on risk, allowing less stringent
physical distancing among demographic groups at lower risk
(eg, those of younger age). Like any ABM, the VIVID model
can consider the impacts of a wide variety of conditions on out-
come measures (see additional model outputs, Supplemental
Digital Content 1, http://links.lww.com/SIH/A658, for addi-
tional examples for the number never infected and the timing
of contact rates on number of infections).

SIMULATION OUTCOMES: SUBGROUP LEVEL
In addition, some pressing public health policy questions call
for more granular insights, particularly when it is suspected
© 2021 Society for Simulation in Healthcare e145
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FIGURE 3. COVID-19 progression under varying policies. A
(top), Infections relative to physical distancing, contact tracing, and
network type. B (bottom), Compound metric relative to age group,
contact tracing, and network type. For further explanation, see text.
or known that an infection differentially impacts subgroups of
people. Analysis of the trajectories of population subgroups is
possible using the VIVID ABM. For example, decision tree
analysis43 based onmodel outputs can uncover pathways through
the pandemic, isolate specific scenarios and subgroups of interest
to policymakers, and score outcomes usingmetrics (see additional
model outputs, Supplemental Digital Content 1, http://links.lww.
com/SIH/A658 for an example of a decision tree analysis).

SIMULATION OUTCOMES: INDIVIDUAL LEVEL
The VIVID model can also explore the trajectories of individ-
ual agents in the model, allowing focused analyses to answer
questions such as: policy question #2:How do policy level rec-
ommendations relate to experiences of individuals?

Figure 4 depicts individual outcomes, with each individ-
ual either “alive” or “dead” (shape) and having an individual
propensity to comply with NPIs (color). Runs are clustered
into 10 facets based on infection severity (“less” or “very” deadly
for horizontal facets) and social network type (for vertical facets).
Within each of the 10 facets, individuals are located according to
infectivity (vertical axis) and the percentage of low-compliant
agents in the population (horizontal axis). Each marker repre-
sents an individual outcome and corresponds to a set of experi-
ences that can be uncovered and narrated.

Consider the individual life narrative for one particular
outlier (indicated by the red arrow in Fig. 4). This individual
is in the facet representing a very deadly infection spreading
in a random contact network. Relative to the other agents in
that facet, this agent has a high propensity to comply with NPIs
e146 Computational Simulation for the COVID-19 Pandemic
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(the dark blue color), was alive at the end of the simulation
(the circular marker shape), survived a highly infectious vari-
ant of the virus (the vertical axis), and managed all this in a
context where almost 40% of the population was low in NPI
compliance (the horizontal axis).

By drilling down into the simulated data, we find that this
agent was susceptible on day 3, became asymptomatically in-
fectious on day 11, was diagnosed and quarantined on day
26, and eventually fully recovered. Being able to explore indi-
vidual trajectories provides policy analysts with specific exam-
ples of putative “lived experience” and accompanying insights
into how to conceptualize individual-level impacts of particu-
lar policy combinations.

More generally, the clustering of deaths (relative to agents
remaining alive) can also be informative. Figure 4 shows a
higher clustering of deaths for the “very deadly” compared with
the “less deadly” scenario, even among agents with higher levels
of compliance with NPIs in environments also with higher
overall levels of compliance (indicated on the x-axis). In con-
trast, for a “less deadly” virus, lower agent compliance in envi-
ronments with high levels of compliance shows clusters of
agents who remained alive at the end of the simulation, but
clustering of deaths among agents with lower compliance in
environments with lower compliance. This implies that simi-
lar types of individual behavior (eg, a propensity to comply
with public health advice) can have a different outcome de-
pending on the overall level of responsiveness to public health
advice in the population (and social network) in which the in-
dividual resides.

SIMULATION OUTCOMES: VIRTUAL EXPERIMENTS
Finally, it is possible to use ABMs to run virtual experiments to
address policy question #3: What is the best combination of
NPIs given a specific metric that matters to most people af-
fected by policies? Experimenting in this way is usually impos-
sible in real-world situations, and when it is possible, it is
typically highly unethical. An artificial society makes virtual
experimentation both possible and safe, although ethics chal-
lenges about the design and use of models remain.

The VIVID model can also be used to compare specific
scenarios, identifying the conditions under which these sce-
narios would result in optimal outcomes under, say, the com-
pound metric (see additional model outputs, Supplemental
Digital Content 1, http://links.lww.com/SIH/A658). For exam-
ple, are there higher scores on the compound metric when
there is (1) stringent shelter-in-place or quarantine for those
in higher-risk age cohorts and low social distancing among
all other cohorts or (2) high social distancing for the whole
population? This comparison is an instance of a policy choice
that is common in public health analyses: do we identify
high-risk subgroups and intervene to lower the risk for associated
individuals, or do we lower the average risk for the entire popu-
lation? Both essentially shift the risk distribution between sub-
groups but in different ways expressing different value-laden
priorities. The VIVID ABM offers measures and analyses at
the levels of population, subgroups, and individuals that gener-
ate insights to support complex decision processes of this kind.
As noted previously, the VIVID model also allows flexibility in
terms of reparameterizing the model for specific populations
Simulation in Healthcare
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FIGURE4. Individual status at the end of the simulation.Note: “Less deadly,” likelihood of death of less than0.5 among agents 50 years
or older; “more deadly,” likelihood of death of 0.5 or greater among agents 50 years or older. Likelihood of death among agents youn-
ger than 50 years was set as 0.
of subgroups and can be modified to accompany developments
in the understanding of COVID-19 pathogenesis given a rapidly
evolving understanding of this virus.
CONCLUSIONS
In coming months, and indeed in the longer term, officials
with responsibility for countless organizations will need to an-
swer strategic policy questions like those discussed previously,
in preparation for making difficult decisions relating to the on-
going impacts of the COVID-19 pandemic. Impacts will likely
be evident across a range of chronic disease outcomes, social
and health service contexts, and education and economic set-
tings. Understanding the psychosocial impacts of changes to
human behavior and social interaction will also be important
in framing policy responses, and all of this must be navigated
within the context of limited resources and a global economic
recession.

Well-designed simulations of population health outcomes,
calibrated to a particular context and then used as a platform for
virtual experimentation, will be central to guide decision mak-
ing. When human lives are at stake, this is a more ethical way
to conduct policy evaluation than trial-and-error approaches.
These tools can help local and national decision makers deter-
mine where, when, and how to allocate investments and with
what intensity. Computational modeling and simulation should
be seen by population health and policy professionals as a key
resource for making decisions during the COVID-19 pandemic
and future public health crises.
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