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Tropical Calcific Pancreatitis (TCP) is a chronic non-alcoholic pancreatitis

characterised by extensive calcification. The disease usually appears at a

younger age and is more common in tropical regions. This disease’s

progression can lead to pancreatic diabetes, which can subsequently lead to

pancreatic cancer. The CASR gene encodes a calcium-sensing receptor (CaSR),

which is a GPCR protein of class C. It is expressed in the islets of Langerhans, the

parathyroid gland, and other tissues. It primarily detects small gradients in

circulating calcium concentrations and couples this information to

intracellular signalling, which helps to regulate PTH (parathyroid hormone)

secretion and mineral ion homeostasis. From co-leading insulin release,

CaSR modulates ductal HCO3− secretion, Ca2+ concentration, cell-cell

communication, β-cell proliferation, and intracellular Ca2+ release. In

pancreatic cancer, the CaSR limits cell proliferation. TCP-related four novel

missense mutations P163R, I427S, D433H and V477A, found in CaSR

extracellular domain (ECD) protein, which were reported in the mutTCPdb

Database (https://lms.snu.edu.in/mutTCPDB/index.php). P163R mutation

occurs in ligand-binding domain 1 (LBD-1) of the CaSR ECD. To investigate

the influence of these variations on protein function and structural activity

multiple in-silico prediction techniques such as SIFT, PolyPhen, CADD scores,

and other methods have been utilized. A 500 ns molecular dynamic simulation

was performed on the CaSR ECD crystal structure and the corresponding

mutated models. Furthermore, Principal Component Analysis (PCA) and

Essential Dynamics analysis were used to forecast collective motions,

thermodynamic stabilities, and the critical subspace crucial to CaSR

functions. The results of molecular dynamic simulations showed that the

mutations P163R, I427S, D433H, and V477A caused conformational changes

and decreased the stability of protein structures. This study also demonstrates

the significance of TCP associated mutations. As a result of our findings, we

hypothesised that the investigated mutations may have an effect on the
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protein’s structure and ability to interact with other molecules, which may be

related to the protein’s functional impairment.
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1 Introduction

Inflammation of the pancreas is referred to as pancreatitis.

Pancreatitis can be classified as acute or chronic (Whitcomb,

1999). Tropical Calcific Pancreatitis (TCP) is a juvenile form of

chronic calcific pancreatitis. It is only found in countries of the

tropical world such as India, Bangladesh, Sri Lanka, Nigeria,

Uganda, Africa, Brazil, and Thailand (Barman et al., 2003;

Choudhuri et al., 2008; Cyriac et al., 2012; Kangas-Dick et al.,

2016; Tan et al., 1980; Witt and Bhatia, 2008). Abdominal

pressure, ductal dilatation, large pancreatic calculi, and

pancreatic atrophy are all hallmarks of TCP (Lee and Raleigh,

2011; Paliwal et al., 2014). Progression of TCP may culminate in

the development of fibro-calculus pancreatitis (FCPD), a kind of

diabetes that occurs as the disease advances to its severe stages

(Kibirige et al., 2012; Mohan, 1998; Unnikrishnan and Mohan,

2015; Yajnik and Shelgikar, 1993). TCP is diagnosed by the

development of large pancreatic calculi, which can be detected via

endoscopic retrograde cholangiopancreatography-computed

tomography (Kangas-Dick et al., 2016; Barman et al., 2003;

Chari et al., 1994). Continued progression of this illness

increases the likelihood of pancreatic cancer and, as a result,

death from late discovery. Pancreatic cancer and TCP both have

an unclear aetiology (Chari et al., 1994; Barman et al., 2003).

Pancreatic cancer is the seventh leading cause of mortality

globally, the 10th leading cause of death in India, and the 5th

leading cause of death in the United States, according to reports

(Fitzmaurice et al., 2017). Hence early detection of TCP can

reduce the burden of pancreatic cancer.

Several gene SNVs associated with TCP have been

reported in the mutTCPdb database. (Singh et al., 2018).

Among these genes, one of the most prominent, CASR gene,

was discovered to be involved in TCP with four non-

synonymous coding SNVs (Murugaian et al., 2008; Paliwal

et al., 2014). These SNVs are located in exons 3, 4, and 5 of

the CASR gene and result in P163R, I427S, D433H, and

V477A protein sequence alterations. The CASR gene encodes

a calcium-sensing receptor (CaSR), a GPCR protein

belonging to the class C subfamily. GPCR Class C family

comprises Calcium-sensing receptor, Metabotropic

glutamate receptor, GABAB, and Taste 1 receptors

(Supplementary Figure S1; source: GPCRdb). A

phylogenetic analysis of class C GPCRs with G-protein

coupling and associated ligand types is shown in

Supplementary Figure S2 (source: GPCRdb) (Isberg et al.,

2016; Kooistra et al., 2021).

Calcium molecules bind to CaSR, allowing it to monitor and

regulate the quantity of calcium in the bloodstream. The receptor

is activated when a specific concentration of calcium is reached,

and the active receptor sends out signals to cease actions that

raise the amount of calcium in the blood. It detects minor

changes in circulating calcium concentration and couples

these details to intracellular signalling, resulting in the

regulation of parathyroid hormone (PTH) secretion and

mineral ion homeostasis (Xie et al., 2014).

The CASR gene is highly expressed in the parathyroid gland

and renal tubules. Calcium reabsorption from filtered fluids is

blocked by increased calcium binding to CaSR in renal cells. At

the same time, expression is shown in the pancreas, islets of

Langerhans, gut, skin, brain, heart, bone, lung, and other tissues

(Rácz et al., 2002; Pidasheva et al., 2004; Hendy and Canaff,

2016). CaSR plays a variety of physiological roles in digestive

processes such as gastric secretion, insulin release, secretion/

absorption, and fluid transport, as well as inducing cell apoptosis

in hepatic injury. CaSR activation can affect ductal HCO3-

secretion and Ca2+ concentration in pancreatic juice. CaSR

could stimulate cell-cell communication, β-cell proliferation,

and intracellular Ca2+ release to co-lead insulin secretion.

CaSR also inhibits cell proliferation in pancreatic cancer, and

CaSR mutations, with or without SPINK1, cause pancreatitis

(Pidasheva et al., 2004).

In a previous study, the CASR gene was identified as a

potential candidate gene in TCP, and combining a

SPINK1 gene mutation with a CASR gene mutation can

enhance the risk of TCP. CASR or SPINK1 genes SNV could

raise the risk of developing chronic pancreatitis (CP). Since high

intracellular calcium levels activate trypsinogen within acinar

cells, which results in pancreatic autodigestion and pancreatitis

(Murugaian et al., 2008; Xie et al., 2014). CaSR mutations are

most commonly associated with hereditary hypocalciuric

hypercalcemia, extreme hyperparathyroidism in neonates, and

autosomal dominant hypocalcemia (Pidasheva et al., 2004; Vahe

et al., 2017). CaSR variation can result in faulty receptors that are

unable to detect calcium levels, resulting in the production of

massive calculi, which is a common symptom of Tropical Calcific

Pancreatitis. CaSR is a 1,078 amino acid long protein with an

N-terminal signal peptide, an extracellular domain (ECD), a

seven-transmembrane (7TM) domain, and an intracellular

domain (ICD) (Figure 1) (Muto et al., 2007; Hendy and

Canaff, 2016). The extracellular domain (ECD) is further

subdivided into two ligand-binding domains (LBD1 and

LBD2) and one cysteine rich (CR) domain (Geng et al., 2016).
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The Venus flytrap domain, which includes the orthosteric

binding site for its ligand, is formed by LBD1 and LBD2. The

CaSR forms a homodimer, and both protomers are in open

conformation at rest. Anion (such as PO4
3-) binding promotes

the inactive conformation with an open cleft between both

protomers. In the active state, both protomers approach each

other and form a closed conformation in the association of

agonist binding (Zhang et al., 2016b; Geng et al., 2016). CaSR

contains four Ca2+ binding sites, one of which is located between

the homodimer interface and the other three of which are located

in ECD (Silve et al., 2005).

When the agonist binds to the CaSR, it causes ECD to

undergo large conformational changes and begin moving

toward each protomer, resulting in a closed-closed

conformation. These modifications then result in signalling

toward the 7TM domain. Because amino acid ligand alone is

insufficient to activate the receptor, metal ions Ca2+ or Mg2+ are

required for full activation, but the presence of metal ions alone

can promote receptor activation (Zhang et al., 2016a; Geng et al.,

2016; Ling et al., 2021).

The association of genotypic variation at the nucleotide level

could alter the 3D structure and functions of proteins, making

genomics increasingly important for human health. Single

nucleotide variations (SNVs) play a significant role in

phenotypic changes when they occur in the coding DNA

sequence of a biologically important gene, resulting in a non-

synonymous missense effect and a single amino acid change in

the protein sequence of the respective gene (Sunyaev et al., 2000;

Bhattacharya et al., 2017).

A molecular dynamics simulation study of protein can

provide insight into the details of atomic behaviour of protein

upon mutation in protein structure (Singh et al., 2019;

Chitongo et al., 2020; Shuaib et al., 2020; Navapour and

Mogharrab, 2021; Yadav and Singh, 2021). As a result,

motion analysis can be used to investigate the stability and

changes in the dynamic behaviour of proteins because of

mutation. The essential dynamics (ED) analysis, also

known as PCA (principal component analysis), is useful for

analysing the most concerted motions available from MD

simulation trajectories (Amadei et al., 1993; Amir et al.,

2019). A comparison of the essential dynamics of WT and

mutant proteins can provide an additional measure for

studying the impact of the mutation on protein stability

and functional changes.

This study investigated the effect of CASR gene SNVs

associated with TCP on protein structure and function. These

SNVs leads to mutations in protein sequence such as P163R,

I427S, D433H, and V477A (Murugaian et al., 2008).

FIGURE 1
(A) Domain organization of CaSR protein showing extracellular, transmembrane, and intracellular domain boundaries, (B) 3D structure of CaSR
Extra Cellular Domain (ECD) homodimer (PDB ID: 5FBK), (C) Monomer 3D structure of CaSR ECD, (D) Monomer 3D structure of CaSR ECD lateral
view (90°), and (E) Monomer 3D structure of CaSR ECD posterior view (180°). Figure (B) shows CaSR protein structure bound with metal ions Mg2+
(magenta) in LBD1 and at the interface of homodimernear LBD2. Figure (B) also shows Co-agonist L-tryptophan (TCR) (green) bound at the
interface of LBD1 and LBD2. Domains in figure (B), (C), (D), and (E) are represented as per color scheme used in figure 1 (A).
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SIFT, PolyPhen, CADD, PROVEAN, I-Mutant, and

PANTHER, along with other methods, were used to predict

the impact of SNV on structure and function. Using these

methods, all four mutations predicted to have a significant

impact on protein structure and function. To investigate the

atomic-level details and subsequent impact of SNVs on structure

and functions, 500 ns molecular dynamics simulations of WT

and mutant proteins were performed. In addition, essential

dynamics analysis for MD simulation trajectories was

performed to investigate the most concerted motion of the

protein as well as the effect of the mutation.

Based on the analysis we can summarize, out of P163R,

I427S, D433H, and V477A mutations P163R is destabilizing and

having significant impact on structure and function. This

mutation significantly impact protein structure evaluated

using various in silico measures, MD simulation, and essential

dynamics analysis. However, MD simulation studies of all

mutations also showed deviations from WT stability and

dynamics.

2 Materials and methods

2.1 Data collection

The CASR SNV data associated with TCP were retrieved

from the mutTCPdb database (https://lms.snu.edu.in/

mutTCPDB/index.php) (Singh et al., 2018). This database

consists 100 of TCP associated SNVs found in 11 genes from

the literature search. SNVs with TCP IDs tcp8461, tcp8462,

tcp8463, and tcp8464 were used in this analysis and

subsequent mutations in protein sequence were P163R, I427S,

D433H, and V477A respectively (Murugaian et al., 2008; Paliwal

et al., 2014).

2.1 1 In-silico non-synonymous SNP analysis
The non-synonymous SNP analysis was carried out to

predict mutation’s functional impact using various in-silico

methods and servers. These are categorized into sequence

based, structure based, and pathogenecity based methods.

2.1 2 Sequence-based methods
CADD (combined annotation dependent depletion) is a web-

based server that predicts the deleteriousness of variants across

the human genome (Rentzsch et al., 2019). Using this web

server’s single nucleotide variant (SNV) lookup form, scoring

and annotation of single nucleotide variant at the specific

location were accessed for SIFT (Sorting Intolerant from

Tolerant), PolyPhen (Polymorphism Phenotyping) and

PHRED (https://cadd.gs.washington.edu/snv).

SIFT is an algorithm that predicts whether amino acid

substitution will affect protein function based on amino acid

sequence homologies and physical properties. A SIFT score <

0.05 is predicted to be harmful. A substitution with a score ≥
0.05 is predicted to be tolerated. PHRED score is a scaled C-score

of ≥10, indicating that these are predicted to be the 10% most

deleterious substitutions that can be made to the human genome.

A score of ≥20 denotes the 1% most deleterious mutation, and so

on. PolyPhen is a tool that predicts the possible impact of amino

acid substitution on the structure and function of a human

protein based on physical and comparative considerations. It

predicts whether the substitution is “probably damaging”,

“possibly damaging”, or “benign”.

PROVEAN (Protein Variation Effect Analyzer) is a web-

based tool that predicts whether an amino acid substitution

affects the biological function of the CaSR protein (http://

provean.jcvi.org/). PROVEAN’s capacity to predict single

amino acid alterations was compared to that of the existing

tool CADD in this study (SHIFT, PolyPhen-2, and Phred quality

score). A PROVEAN value of 2.5 or higher is regarded neutral,

whereas a score of less than 2.5 is considered detrimental for a

nsSNP (Choi and Chan, 2015).

The PON-P2 (http://structure.bmc.lu.se/PON-P2/) tool

predicts the pathogenicity of amino acid substitutions; it is a

machine learning-based classifier for the classification of amino

acid features on human proteins. PON-P2 divides amino acid

variants into three categories: pathogenic, neutral, and unknown.

It also makes use of Gene Ontology (GO) annotations,

evolutionary conservation, and, if available, annotations of

functional sites. This tool can analyse various formats of

nsSNP and is easily accessible via amino acid substitution(s)

and one of Ensembl gene identifiers, UniProtKB/accession ID,

for identifier submission (Niroula et al., 2015).

PANTHER (Protein Analysis Through Evolutionary

Relationships) (http://www.pantherdb.org/about.jsp) is a

protein classification system designed to facilitate high-

throughput analysis by classifying proteins (and their genes).

It predicts the likelihood that a nsSNP will have a functional

impact on the protein. It calculates the length of time (in millions

of years) for a given amino acid that has been preserved to find

the lineage leading to the protein of interest, and the longer the

preservation time, the greater the likelihood of functional impact.

PANTHER-PSEP is the name of the method (position-specific

evolutionary preservation) (H. Tang and Thomas, 2016).

2.1.3 Structure-based methods
The I-Mutant is used to predict the stability changes upon

mutations (Capriotti et al., 2005). It is based on support vector

machine (SVM) and predicts the changes in DDG values

calculated from the Gibbs free energy value changes in kcal/

mol (Capriotti et al., 2005).

DUET (http://biosig.unimelb.edu.au/duet/) uses an

integrated computational approach to study the effect of

mutation (nsSNP) on protein stability in humans and other

genomes. DUET uses two complementary approaches, mutation

Cutoff Scanning Matrix (mCSM) and Site-directed mutation
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(SDM), in a consensus prediction. It integrates both the scores

using support vector machine (SVM). The combined value is in

the form of the actual free energy value ΔΔG. The input for the
DUET web server is the PDB structure file or 4-letter PDB code

along with single point mutation or systematic mutation. This

tool gives the DUET score and SDM and mCSM score in the

result. mCSM and SDM2 were used to study the protein stability

of the effect of mutation (Pires et al., 2014).

CUPSAT (Cologne University Protein Stability Analysis

Tool) (http://cupsat.tu-bs.de/) is a web server to predicts

impact of point mutations on protein stability. The model can

distinguish between secondary structure specificity and amino

acid environment based on its solvent accessibility. The tools

predict mutant stability by combining PDB structure with

existing and new protein structures (Parthiban et al., 2006).

The STRUM web server (https://zhanglab.ccmb.med.umich.

edu/STRUM/) predicts stability changes caused by non-

synonymous single-point mutations (nsSNP). It uses a

boosting algorithm to predict the fold stability change (G) of

protein molecules when they are mutated (Quan et al., 2016).

2.1.4 Pathogenicity based methods
PredictSNP (https://loschmidt.chemi.muni.cz/predictsnp/)

is a Consensus classifiers tool for predicting disease-related

mutations. It provides easy access to other tools for the

consensus classifier PredictSNP as well as annotations from

the Protein Mutant Database and the UniProt database. To

predict pathogenicity, it uses data in fasta format. Other

measures, such as MAPP, PHD-SNP, and others, are also

available through this server (Bendl et al., 2014).

REVEL (rare exome variant ensemble learner) is an ensemble

method for predicting the pathogenicity of missense variants that

is based on individual tools such as MutPred, FATHMM,

PolyPhen, VEST, SIFT, MutationAssessor, PROVEAN,

MutationTaster, LRT, SiPhy, GERP, phyloP, and phastCons.

To identify pathogenic variants among a list of rare variants,

pre-computed REVEL scores were provided for all possible

human missense variants. The REVEL score assigned to a

single missense variant can range from 0 to 1. Higher scores

indicate that the variant is more likely to be pathogenic

(Ioannidis et al., 2016).

2.1.5 Consurf evolutionary conservation analysis
The consurf web server (http://consurf.tau.ac.il) is a tool for

analysing the evolutionary pattern of macromolecule amino

acids or nucleic acids to determine the region important for

structure and function. ConSurf web server analyses sequence or

structure input and gathers homologs, infers multiple sequence

alignment and reconstructs a phylogenetic tree that reflects their

evolutionary relationship. The alignment can be done with

MAFFT-L-INS-I, PRANK, Muscle, or Clustalw. The

conservation scores for each residue were calculated using

Bayesian methods or Max. Likelihood (ML). Consurf

prediction scores range from 1 to 9, with 1 indicating a

variable region, 5 indicating an intermediate conserved region,

and 9 indicating a highly conserved region (Ashkenazy, 2016).

2.2 Sequence retrieval and analysis

The UniProt database was used to retrieve the protein

sequence of the human CASR gene (UniProt ID: P41180;

1,078 amino acid). Multiple sequence alignment was

performed for WT and mutant protein sequences using

multiple sequence viewer panels of Schrodinger’s maestro.

2.3 Retrieval of 3D protein structure and
modeling

At the time of this study, the CaSR ECD PDB crystal

structures were 5FBH, 5FBK, 5K5T, and 5K5S. This further

investigation made use of a crystal structure without mutation

(PDB ID: 5FBK, with a resolution of 2.10 Å) bound with Mg2+

and co-agonist tryptophan derivatives (Supplementary Figure

S3). The Swiss model (Waterhouse et al., 2018) was used to

generate a homology model for a missing loop based on the

PDB template (PDB ID: 5FBK A). The SwissModel PDB was

then used to obtain 3D protein structure coordinates for the

missing loop region (amino acids Asn336-Asp377). For each

mutation, mutated models were generated using

Schrodinger’s Maestro. Protein preparation was performed

on all WT and mutant protein structures using Schrodinger’s

protein preparation wizard (Madhavi Sastry et al., 2013). The

protein preparation step includes the following steps: The

protein was pre-processed for bond order assignment, the

addition of hydrogens, the formation of zero-order bonds to

metals, the formation of disulfide bonds, the filling of missing

loops and missing residues with Prime, the removal of water,

and the capping of the terminal. The protein structure was

refined by optimising the h-bond network with PROPKA at

pH 7.4 and minimization with Banks et al. (2005) force fields

(Jorgensen and Tirado-Rives, 1988).

2.4 Molecular dynamics simulation

Desmond (version 2020–1) was used to simulate the

molecular dynamics of the WT and mutant proteins. The

TIP3P solvation model was used to create the systems for

molecular dynamics simulation. For each system, periodic

boundary conditions were defined using a cubic box shape

and the buffer method with a distance of 10 Å. Ions were

strategically placed to neutralise the system. The Banks et al.

(2005) force field was used to create the systems for

molecular dynamics simulations.
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For each system, the molecular dynamic simulation was run

for 500 ns in triplicate. The energy was recorded every 1.2 ps, and

the trajectory was saved every 100 ps. The volume of the box was

equilibrated with the NPT ensemble at 300 K and 1.01325 bar

pressure. Before selecting the simulation option, the systems were

equilibrated using Desmond’s default relaxation protocol,

i.e., Relax model system. The molecular dynamics simulation

was performed with a 2 (fs) time step, Noose-Hoover chain

temperature coupling (relaxation time 1.0 ps), and Martyna-

Tobias-Klein pressure coupling (relaxation time 2.0 ps) of

Isotropic style. The short-range method for coulombic

interaction had a cutoff radius of 9.0.

2.4.1 Analysis of MD trajectories
Desmond’s simulation event analysis programme was

used to calculate various properties and measurements for

all MD trajectory analyses. Root Mean Square Deviation

(RMSD) provides information about the structural

conformation of a protein throughout the simulation. It

can indicate whether the simulation has equilibrated. The

calculation of root mean square fluctuation (RMSF) assists in

characterising the local changes or fluctuation around the

amino acids in the protein chain. During MD simulation, the

radius of gyration (Rg) indicates the compactness of the

protein and its folding. Solvent Accessible Surface Area

(SASA) is a key property of proteins that determines their

folding and stability. Secondary Structure Elements (SSE)

monitored throughout the simulation will aid in identifying

the distribution of SSE by residue index throughout the

protein’s structure. This analysis summarises the SSE

composition for each trajectory frame over the course of

the simulation. Hydrogen bonds (H-bonds) contribute to

protein stability in a positive way. The number of hydrogen

bonds in a protein indicates its stability. Salt bridges (SB) are

involved in protein stability and folding, and changes in salt

bridge contribution result in changes in protein stability.

2.5 Essential dynamics analysis

The essential dynamics analysis studies motions in the

essential subspace, which has only a few degrees of freedom

and is created by removing the overall translational and

rotational motion because these are irrelevant for their

internal motion. This returns atomic position expression

values in a cartesian molecular coordinate system. This

subspace describes the motions related to protein functions

(Amadei et al., 1993).

The eigenvectors and eigenvalues were calculated using

Schrodinger’s script “trj essential dynamics.py” with the

default parameters, as well as the cross-correlation matrix

plotted per-frame conformational deviations projected onto

the calculated modes (principal component space).

Eigenvectors (or principal components) represent positional

deviations, and the magnitude of atomic fluctuations is

associated with eigenvalues. As a result, the first principal

component has the greatest positional deviation. The majority

of the fluctuations are concentrated in a small subset of the few

top PCs. Maestro and PyMol were used to visualise major

protein motions. OriginPro 2021b was used to generate the

PCA plot. In addition, the Porcupine plot was created in

PyMol using the modevectors.py scripts. The Porcupine

plot depicts motion directionality in 3D space, the

geometry of 3D protein structure, and the magnitude of

spikes, which represents motion strength.

3 Results

3.1 Prediction of single nucleotide
variations impact using in-silico methods

The impact of non-synonymous SNVs was evaluated using

various in-silico tools, and the results are shown in Table 1,

which is a tabular record of SNV impact analysis. The results

of SIFT, PROVEAN, and PHD-SNP revealed that all four

mutations, P163R, I427S, D433H, and V477A, were predicted

to be deleterious. Except for D433H, which was neutral,

PredictSNP and MAPP analysis predicted that these

mutations were deleterious. PolyPhen

results >0.500 predicted that three mutations, P163R,

D433H, and V477A, were possibly damaging, with

PolyPhen scores of 0.906, 0.897, and 0.554, respectively.

With the highest PolyPhen score of 0.996, mutation I427S

was predicted to be probably damaging. CADD Phred

score >20 indicates that all four mutations, P163R, I427S,

D433H, and V477A, were the most deleterious, with the

highest score of 27.7 for I427S. PON-P2 prediction revealed

that mutations P163R, I427S, and D433H were pathogenic

with a score value > -0.8, and mutation V477A result was

unknown with a score of -0.65. PANTHER analysis revealed

that all four mutations were probably damaging with a score

of ≥0.57.
The I-Mutant server predicted the differences in Gibbs

free energy (DDG kcal/mol) between WT and mutant

proteins. As a result, the mutation I427S had the greatest

impact on structure stability, with a DDG value of -2.44 kcal/

mol. The other three mutations also had an effect on

structure, resulting in decreased stability with DDG values

of -1.30, -0.32, and -1.70 kcal/mol for P163R, D433H, and

V477A, respectively. As a result of the I-Mutant server

prediction, all four mutations have decreased protein

stability. Similarly, DUET and CUPSAT support the

findings of I-mutant, indicating that these mutations have

a significant impact on structure stability, as indicated by the

DDG values in Table 1. In terms of DDG values, mutant
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I427S has the highest degree of stability changes. According

to REVEL analysis, all four mutations were pathogenic.

3.1.1 Evolutionary conservation analysis
In addition to these prediction methods and tools, consurf

analysis results show the conservation of the amino acid at

positions P163 (score 8), I427 (score 6), and V477 (score 7),

except for D433 (score 1). This means that any changes to the

amino acids at these positions will result in structural and

functional changes to the protein. P163, I427, and V477 amino

acids are found in the buried region. In contrast, consurf

results show that amino acid D433 is present in the exposed

region (Figure 2).

3.2 Protein sequence and structure
analysis

Analysis of crystal structure (Supplementary Figures

S4,S5) revealed that P163R amino acid mutation occurs in

the coil region of LBD1, mutations I427S, and D433H occurs

in the helix of hinge region, and mutation V477A occur in

beta-sheet of hinge region. Overall, these four mutations

occurs in CaSR ECD. . Cys60-Cys101, Cys358-Cys395, and

Cys437-Cys449 were disulfide bridges in the 3-D structure,

as shown in Supplementary Figure S5 using horizontal

connections between amino acids. Supplementary Figure

S4 depicts a magnified view of CaSR ECD that includes

the metal ion binding site, co-agonist/ligand binding site,

superimposition of mutant residues, and a dissected view of

CaSR ECD. Supplementary Figures S4B,C) show binding site

residues analysis for the initial PDB structure (PDB ID: 5FBK

A) within a distance cutoff of 5.0 Å from the metal ion and

co-agonist, respectively. The H-bond interactions measured

for Mg2+ ion with amino acid residues were Ile81, Ser84,

Leu87, and Leu88.

Ser147, Ser168, Ser169, Ser170, and Glu297 had similar

interactions with co-agonist. Additionally, binding site

residues within a defined cutoff of 5.0 Å were displayed.

Superimposed residues at mutation sites were shown for both

wild type (WT) and mutants in Supplementary Figures S4D,E

depicts a dissected view of CaSR ECD to clearly distinguish the

position of secondary structures in 3D structure.

Each amino acid has the physicochemical properties required

for its structure and function. Thus, mutation of amino acids at

specific positions results in a change in physicochemical

properties. This change, however, may involve changes in size,

charge, interactions, and other properties. In this case, the

resultant residue increased in size, gained +1 charge, and

decreased in hydrophobicity due to the mutation P163R. This

mutation occurs in the protein’s ligand-binding domain 1

(LBD1), which may be involved in its functional activity.

Changes at this position may affect the protein’s function. The

D433H mutation causes an increase in size, and the WT residue

is negatively charged, whereas the mutant is positively charged.

In the case of V477A, there was a reduction in the size of the

mutant residue, which may be involved in less interaction and

thus be a cause of structural changes.

3.3 Molecular dynamics simulation study

The study of molecular dynamics simulation provides insight

into the atomic details of protein structure and its dynamical

TABLE 1 Tabular record of in-silico method analysis result to predict the impact of SNVs over structure and functions.

S. no. 1 2 3 4

mutTCPdb ID tcp8461 tcp8462 tcp8463 tcp8464

Mutation P163R I427S D433H V477A

Sift Deleterious (0) Deleterious (0) Deleterious (0.01) Deleterious (0)

PolyPhen Possibly damaging (0.906) Probably damaging (0.996) Possibly damaging (0.897) Possibly damaging (0.554)

CADD PHRED 26 27.7 27 26

PROVEAN Deleterious (−8.537) Deleterious (−4.878) Deleterious (−3.258) Deleterious (−3.377)

PON-P2 Pathogenic (−0.883) Pathogenic (−0.883) Pathogenic (−0.819) Unknown (−0.65)

PANTHER Probably_ damaging (0.57) Probably_ damaging (0.57) Probably_ damaging (0.57) Probably_ damaging (0.57)

I-Mutant (DDG kcal/mol) Decrease (−1.30) Decrease (−2.44) Decrease (−0.32) Decrease (−1.70)

DUET (DDG kcal/mol) Destabilising (−1.668) Destabilising (−3.704) Destabilising (−0.637) Destabilising (−2.1)

CUPSAT (DDG kcal/mol) Destabilising (−3.37) Destabilising (−7.85) Destabilising (−1.63) Destabilising (−5.05)

REVEL (expected accuracy) Pathogenic (−0.958) Pathogenic (−0.938) Pathogenic (−0.736) Pathogenic (−0.908)

PredictSNP (expected accuracy) Deleterious (−0.869) Deleterious (−0.655) Neutral (−0.752) Deleterious (−0.506)

MAPP (expected accuracy) Deleterious (−0.783) Deleterious (−0.589) Neutral (−0.653) Deleterious (−0.588)

PhD-SNP (expected accuracy) Deleterious (−0.875) Deleterious (−0.589) Deleterious (−0.589) Deleterious (−0.676)
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behaviour when structure changes (Chitongo et al., 2020; Li et al.,

2018; Mutt and Sowdhamini, 2016). The effect of gene SNVs

associated with TCP on its protein structure and functions was

determined using anMD simulation study for 500 ns in triplicate

of each protein system (WT, P163R, I427S, D433H, and V477A).

For each wild type and mutant, five protein systems were created

(P163R, I427S, D433H, and V477A). MD simulation trajectories

were examined for RMSD, RMSF, Secondary structure elements

(SSE), the radius of gyration, hydrogen bonds, salt bridges, SASA,

and protein-ligand interactions.

3.3.1 Mutation induced changes in
conformational stability

The RMSD analysis was used to examine the conformational

changes of protein atoms in comparison to the reference frame,

which provides an inside look at protein stability. The initial and

final frames of the MD simulation were visualised and aligned

using PyMol to calculate the RMSD for c-alpha atoms

(Supplementary Figure S6). This demonstrates the structure’s

deviation from its initial frame in 3D space.

In addition, all WT and mutant initial and end frames were

aligned separately (Supplementary Figure S6). The RMSD of

C-alpha atoms calculated with PyMOl for the initial and final

frames. The average differences in RMSD between initial and

final frames were 6.520Å (WT), 4.317Å (P163R), 6.512Å (I427S),

4.798Å (D433H), and 5.517Å (V477A).

For each of the five systems, triplicate average RMSD plots

for proteins and protein-ligand complexes were created

(Figure 3 and Supplementary Figure S7). The Protein

RMSD plot shows that the WT protein converged after

80 ns, P163R at 25 ns, I427S at 50 ns, D433S, and V477A at

100 ns. Throughout the simulation, the trajectories were

analysed to determine the average and standard deviation

in RMSD values (Figures 7A,B). This analysis depicts the

FIGURE 2
Evolutionary conservation analysis using Consurf webserver to predict the importance and impact of amino acidmutation at the respective site.
A conservation scale depicted in figure ranging from score 1 (variable) to 9 (Conserved) with color variation. Mutation site highlighted with Yellow
(P163R), Red (I427S), Blue (D433H), and Cyan (V477A) color.
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average RMSD values for each system as follows: 7.842 Å

(WT), 5.098 Å (P163R), 7.537 Å (I427S), 5.846 Å (D433H),

and 5.936 Å (V477A). Standard deviation (SD) of RMSD

indicates how far an RMSD deviates throughout the

simulation. SD measures of RMSD were calculated to be

0.928 Å (WT), 0.479 Å (P163R), 0.905 Å (I427S), 0.734 Å

(D433H), and 0.867 Å (V477A).

This analysis revealed that upon mutations, average and

SD of RMSD values were decreased compared to WT protein,

leading to conformational changes. Mutation P163R shows

the higher dgree of changes in RMSD measurements.

RMSD plots of the Protein-Ligand complex (Figures

3B–F) revealed that ligand binding behaviour changed as a

result of mutations. Ligand exhibited a distinct binding

pattern with residues at the binding site; it remains intact

for a specific period of simulation time before dissociating

from its primary binding site. This protein-ligand RMSD

plot shows comparable changes in RMSD and ligand binding

behaviour as a result of mutations.

3.3.2 Extended local fluctuation atmutation sites
The characterization of local changes along the protein chain

is referred to as RMSF. It computes RMSF using the individual

amino acid contribution. During the simulation, it aids in the

analysis of fluctuating or stable amino acids. The protein’s

terminal and loop regions are extremely mobile. The impact

of a specific amino acid mutation on protein structure was

investigated and compared using RMSF analysis from the

trajectories of all five protein systems (Figure 4). The average

RMSF values for WT and mutants P163R, I427S, D433H, and

V477A, were 2.139 Å, 1.837 Å, 2.224 Å, 2.09 Å, and 2.1 Å

respectively. The SD of RMSF were 1.256 Å, 1.281 Å, 1.429 Å,

1.469 Å, and 1.338 Å, respectively (Figures 7C,D). We also

looked for the RMSF value at the mutation-specific position

in each system and discovered that RMSF values increased upon

mutation at mutation sites compared toWT (Table 2), indicating

the deviation in fluctuations at mutation site. These findings

imply that there was changed local flexibility in the protein

structure and, as a result, decreased structural stability.

FIGURE 3
(A) RMSD plot of CaSR ECD protein C-alpha (Prot-CA) atoms throughout the simulation for WT and mutant proteins. (B–F) shows the RMSD
plot for Protein-Ligand complex for WT, P163R, I427S, D433H, and V477A, respectively, throughout the simulation.
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3.3.3 Variation in secondary structure elements
upon mutation

Protein SSE were monitored throughout the simulation and

summarised in the plot as a monitoring of each residue and its

SSE assignment over time and SSE distribution by residue index

throughout the protein structure (Supplementary Figures

S9–S11). Table 3 summarises the percent SSE data values

average out of triplicate. The distribution of SSE per residue

explains how much the specific secondary structure is conserved

during MD simulation. Protein SSE analysis revealed that the

overall secondary structure distribution shows reduction of

1.32% (P163R), 1.43% (I427S), and 0.8% (D433H) % total

SSE. While, mutation V477A shows slight (0.12%) increase in

% total SSE. However, the distribution over residue index reveals

a slight shift in SSE in relation to the amino acid position. In

addition, the percent SSE plot (Supplementary Figure S9)

revealed that in mutants P163R, I427S, and D433H, there was

a loss of two beta-sheets near 370 residues, followed by the

formation of an alpha-helix in mutant I427S around the same

position. There was a depletion of alpha-helix in mutant P163R

FIGURE 4
(A) RMSF plot of CaSR ECD protein C-alpha (Prot-CA) atoms throughout the simulation forWT andmutant proteins. (B–E) shows the RMSF plot
for mutant P163R, I427S, D433H, and V477A, respectively.

TABLE 2 Comparative average RMSF values (in angstrom) at mutation specific position throughout the simulation.

S. no. Residue position WT P163R I427S D433H V477A

1 P163 0.752 0.816 0.797 0.797 0.824

2 I427 0.825 0.809 0.854 0.725 0.686

3 D433 1.366 1.353 1.367 1.177 1.22

4 V477 1.489 1.196 1.557 1.464 1.422
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at 433 residue position, whereas two beta-sheets were present in

mutant I427S for a small fragment of simulation time near

residue 420. WT and mutant V477A SSE distributions differ

significantly over time. This analysis revealed that the mutants

163R, I427S, and D433H exhibit a shift in secondary structure

distribution throughout the simulation when compared to WT.

Supplementary Figures S10,S11, also shows differences in

positional SSE assignment over time.

3.3.4 Mutation associated behavior of unfolding
Protein compactness is measured using Rg values. When a

protein maintains its fold stably, the value of Rg is relatively

constant and low, and vice versa. It means that as a protein

unfolds during the MD simulation, the Rg increases. The Rg

data of WT and mutants were plotted and compared

(Figure 5A). The average Rg values for WT, P163R, I427S,

D433H, and V477A were 26.091 Å, 24.933 Å, 26.012 Å,

25.205 Å, and 25.372 respectively. Along with the average

Rg value, the standard deviation in Rg values for WT, P163R,

I427S, D433H, and V477A were 2.262 Å, 0.165 Å, 0.254 Å,

0.271 Å, and 0.249 Å,, respectively (Figures 7E,F). This

analysis showed mutant P163R has significant deviation in

Rg values.

3.3.5 Solvent accessible surface area
The solvent accessible surface area (SASA) was measured to

determine the effect of mutations on the folding or unfolding of

the structure due to hydrophobicity changes. Hydrophobic

residues are typically found in the protein’s core. The most

advantageous space is the core due to solvent contact on the

surrounding protein molecule. As a result, this phenomenon is

important in protein packing or folding. The results of SASA

analysis of WT and mutant (Figure 5B) show that mutation

P163R and D433H causes a significant decrease in average SASA

value. This behaviour causes the protein to fold tightly and to be

more stable in folding and conformational changes. Other

mutations, I427S, and V477A, have slight changes in SASA

values when compared to a time series analysis. However, in

terms of standard deviation, it was discovered that there is a

significant deviation in SASA values throughout the simulation

(Figures 7G,H). We concluded from this SASA analysis that

mutation caused protein system instability when compared to the

steady-state of WT protein.

3.3.6 Hydrogen bonds and salt bridge analysis
Intramolecular hydrogen bonds (H-bonds) and salt

bridges help proteins maintain their conformation. From

MD simulation trajectories, we calculated the

intramolecular H-bonds and salt-bridge of all proteins,

WT, and mutants (P163R, I427S, D433H, and V477A). The

graph in Figure 6 A shows the relationship between the

number of hydrogen bonds and the time frame. This

depicted the time series analysis of hydrogen bonds and

depicted the significant changes in the number of hydrogen

bonds over the specific time frame compared to WT. The

average H-bonds of mutants P163R and D433H were higher

than WT protein, while mutants I427S and V477A shows

slight decrease in average H-bonds observed during the

simulation. The standard deviation in H-bonds were

TABLE 3 Average protein secondary structure elements throughout
the simulation.

S. no. System % Helix % Strand % Total SSE

1 5FBK_A_WT 25.62 17.27 42.89

2 5FBK_A_P163R 24.6 16.97 41.57

3 5FBK_A_I427S 25 16.45 41.46

4 5FBK_A_D433H 25.51 16.57 42.09

5 5FBK_A_V477A 25.56 17.44 43.01

FIGURE 5
Plot (A) describing the radius of gyration (Rg), and (B) solvent accessible surface area (SASA), measurement of WT and mutant proteins
throughout the simulation.
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incresaed upon mutations (Figures 6I,J). Throughout the

simulation, the Salt bridge analysis plot revealed a

difference in the number of salt bridge interactions between

WT and mutant proteins (Figure 6B). Statistical measures of

salt bridge analysis (Figures 7K,L) show that the average value

of Salt bridge increased after mutation. However, when

compared to WT, the Standard deviation increased after

mutation.

3.3.7 Protein-ligand interactions
A time-series analysis of protein-ligand interactions was

performed using MD simulation trajectories, and a plot of

FIGURE 6
(A) H-bond interactions, and (B) Salt bridge interactions of WT and mutant proteins, measured throughout the simulation.

FIGURE 7
Statistical measure analyzed using MD simulation results. Plots showing triplicate average and standard deviations of RMSD, RMSF, Rg, SASA, H-
bonds, and Salt bridges calculations forWT andmutants. (A) Average RMSD, (B) Standard deviation in RMSD, (C)Average RMSF, (D) Standard deviation
in RMSF, (E) Average Rg, (F) Standard deviation in Rg, (G) Average SASA, (H) Standard deviation in SASA, (I) Average h-bond interactions, (J) Standard
deviation h-bond interactions, (K) Average salt bridge interactions, (L) Standard deviation in salt bridge interactions.
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amino acid residues interacting with the ligand was generated. The

protein ligand interaction result depicts the interaction of a specific

amino acid residue over the course of the simulation. In the case of

multiple types of interactions possible by a residue, the interaction is

considered a percentage (percent) value, which may be greater than

100 percent. Supplementary Figure S12 depicts ligand atoms in

contact with amino acid residues for at least 30% of the simulation

time. This interaction analysis could point to the effect of mutation

on ligand-binding behaviour in the binding pocket. Tryptophan

derivative is bound to the CaSR crystal structure at the orthosteric

binding pocket between LBD1 and LBD2 of the CaSR (Figure 1). PL

contact plot (Supplementary Figure S12) generated for the

interactions made between protein and ligand during the

simulation for more than 30% of simulation time, which showed

the key amino acid residues for each protein. WT protein has no

contact; mutant P163R has contacts with Ser147, Ser170, Ser171,

and Glu297; mutant I427S has contacts with Asp190 and Glu297;

mutant D433H has no contact; and mutant V477A has contacts

with Asp190 and Glu297.

3.4 Essential dynamics analysis

In this study, essential dynamics analysis was performed

using Schrodinger’s script, which was given the output of 10 PCs

fromMD simulation trajectories, as well as covariance data and a

cross-correlation matrix for eachWT andmutant protein P163R,

I427S, D433H, and V477A. We measured the variance for each

PC inWT and mutants (Supplementary Figure S13A) and found

that mutants I427S, D433H, and V477A have higher variance

than WT, except for mutant P163R.

The percent motion and percent aggregate motion of each

PC (Supplementary Figures S13B,C) revealed that PC1 and

PC2 percent aggregate motion changed significantly upon

mutation. while the total number of PCs showing percent

aggregation motion for each system shown in Supplementary

Figure S13C were 80.39 (WT), 76.19 (P163R), 86.02 (I427S),

85.32 (D433H), and 84.99. (V477A).

Furthermore, the top two PCs (PC1 and PC2) from eachWT

and mutant P163R, I427S, D433H, and V477A were analysed

because these PCs account for the majority of protein motion

during simulation. PC1 and PC2 were plotted on the X and Y

axes, respectively, and the results were compared (Figure 8). This

analysis revealed that mutants P163R, D433H, I427S, and V477A

had significantly different collective motions of PCs than WT.

This suggests that there was a change in protein dynamics, which

may have resulted in altered protein structure and function.

3.4.1 Cross-correlated motion of amino acid
residues

Cross-correlation analysis is useful for studying the dynamic

behaviour of each amino acid in a protein chain in relation to

FIGURE 8
Projection of C-alpha atoms in essential subspace alongwith the first two principal components (PC1 and PC2) obtained fromWT, P163R, I427S,
D433H, and V477A. Figure (A) shows PC1 and PC2 of WT only. In contrast, figures (B–E) shows first two principal components of mutants, projected
over WT principal components. (F) shows an overlay of WT and all four mutants PC1 and PC2 projection.
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other amino acids. For this, a cross-correlation matrix was

generated for WT and mutant proteins using Schrodinger’s

script (trj essential dynamics.py) (Figure 9). We observed

significant changes in corelated motion as a result of mutation.

3.4.2 Deviations in normal dynamics and protein motion

In addition, for the first twomajor components, we generated

the porcupine plot for WT and mutant proteins. The spikes

originating from CA atoms in protein represent motion

directionality with magnitude (Figure 10).

In-depth analysis of the porcupine plot of WT PC1

(Figure 10A) revealed that motion occurs in loops of LBD1,

LBD2, and the hinge region, followed by the helix of LBD2 and

beta sheets of the hinge region. The overall direction of motion was

in different directions, indicating the expansion of space between

domains. Simultaneously, the ligand was seen moving toward

LBD2. The porcupine plot of WT PC2 (Figure 10F) has less

motion than PC1. Motion occurs primarily in the loops of

LBD1, LBD2, and the hinge region, as seen in the figure, as well

as the helix of LBD2. In addition, ligand motion toward LBD1 was

observed. As previously stated, the overall motion of mutant protein

differed from that of WT protein, as shown in Figure 10. We

concluded from this analysis of correlated motion and dynamics

using a porcupine plot that the mutations P163R, I427S, D433H,

FIGURE 9
Cross correlations matrix obtained from essential dynamics of MD simulation trajectories for individual amino acid of (A) WT, (B) P163R, (C)
I427S, (D) D433H, and (E) V477A, respectively. The color gradient represents correlated motion, where blue indicates highly correlated motion, and
red indicates negatively correlated motion.
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and V477A cause deviations in normal dynamics and protein

motion when compared to WT. Furthermore, there were

significant changes observed from both PC for ligand dynamics

upon mutation. These changes could affect protein function and

dynamics, as well as ligand binding behaviour.

4 Discussion

TCP is a juvenile form of non-alcoholic chronic pancreatitis,

exclusively seen in tropical countries. It is associated with dense

intraductal calculi, severe abdominal pain, and further progress to

diabetes (Barman et al., 2003). TCP patients has high risk to

develop pancreatic cancer at later stage in lack of early detection

and treatment (Chari et al., 1994; Barman et al., 2003). TCP is an

idiopathic illness, and it remain unknown. Several gene SNVs have

been identified in TCP patients and a list of gene SNVs obtained

from literature survey reported in mutTCPdb database (Singh

et al., 2018). Among all, CASR gene SNVs identified as one of the

risk factors in TCP patients (Murugaian et al., 2008). CASR gene

encodes for a class-C GPCR protein Calcium sensing receptor

(CaSR), which has a significant role in pancreatic physiology. The

CASR gene is highly expressed in the parathyroid gland and renal

tubules of the kidney as well as the pancreas, islets of Langerhans,

intestine, skin, brain, heart, bone, lung, and other tissues show

expression (Rácz et al., 2002; Pidasheva et al., 2004; Hendy and

Canaff, 2016). CaSR involved inmonitoring and regulation of Ca2+

concentration in pancreatic juice by triggering ductal electrolytes

and fluid secretion. Hypercalcemia raises the risk of acute

pancreatitis by causing early activation of trypsinogen into

trypsin, resulting in autodigestion of pancreatic parenchyma

(Murugaian et al., 2008). Activation of CaSR results in

increased HCO3− secretion in the pancreatic ducts. Thereby

reducing the Ca2+ salt precipitation in duct lumen and

decreasing the risk of stone formation and pancreatitis (Rácz

et al., 2002). CaSR associated with several disorders like familial

hypocalciuric hypercalcemia (FHH), Neonatal severe

hyperparathyroidism (NSHPT), Autosomal dominant

hypocalcemia (ADH), Autoimmune hypocalciuric

hypercalcemia (AHH), and Acquired hypoparathyroidism

(AH). There were more than 200 mutations of CaSR have been

identified and categorized into inactivating (FHH/NSHPT type)

and activating (ADH type) mutations (Hannan and Thakker,

2013). The CASR gene may also be implicated in

carcinogenesis, notably in the colon, breasts, and prostate, as

well as cardiovascular and inflammatory illnesses, including

both digestive and respiratory ailments (Vahe et al., 2017).

Various genetic and environmental influences have been

described as causative factors for idiopathic pancreatitis.

SPINK 1 and CFTR gene have been found to be associated

with tropical calcific pancreatitis from various parts of the world.

Multiple reports from Kerala and rest of India have identified

SPINK 1, CFTR, CTRC, andMORC4/CLD locus genemutations.

Some studies have identified SPINK 1 mutations in up to 40% of

patients with idiopathic pancreatitis. The identifications of these

mutations have opened a new corridor in understanding the

FIGURE 10
Porcupine plots for the first two principal components from essential dynamics of WT, and mutant P163R, I427S, D433H, and V477A MD
simulation trajectories. Spikes for PC1 (Black) and PC2 (Red) originate from C-alpha atoms and represent the directionality of motions. The
magnitude of spikes indicates the strength of motion.
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etiopathogenesis of pancreatitis. However, lack of GWAS studies

on TCP may be the reason why it is still an unsolved mystery.

Mutation of CASR gene alone or in combination with

SPINK1 gene mutation can lead to pancreatitis. Muruganian

et al., in 2008 identified four novel CASR gene mutations in TCP

patients, which shows that CASR gene variants alone cause

idiopathic chronic pancreatitis. These four mutations (P163R,

I427S, D433H, and V477A) were inactivating mutations and

occur in Venus-flytrap domain of CaSR-ECD. A study also

revealed that CaSR expression was decreased in the case of

pancreatic cancer. Which suggests that activation of CaSR has

some key role in pancreatic cancer (B. Tang et al., 2016).

In this study, we used in-silico techniques and the

molecular dynamics approach to examine the influence of

CASR gene SNVs on structure and function. In-silico tools

and servers like SIFT, PolyPhen, CADD, PROVEAN,

I-Mutant, PANTHER, PON-P2, Duet, CUPSAT, REVEL,

PredictSNP, MAPP, PHD-SNP, and Consurf evolutionary

analysis conferred the deleteriousness, destabilising, and

pathogenicity of mutations based on sequence, structure,

and evolutionary conservation analysis. The in-silico SNV

impact analysis algorithm gives the result that all four

mutations (P163R, I427S, D433H, and V477A) were

predicted to be deleterious on protein function. The

Gibb’s free energy changes (DDG) upon mutation showed

destabilizing effects on the protein structure. Evolutionary

conservation analysis revealed that amino acid position of

P163, I427, and V477 are conserved. This suggests that

mutation at this location would result in structural and

functional changes in the altered protein. Also, these

mutations may lead to changes in physiochemical

properties of overall protein and subsequently results in

different structural and functional behavior.

Further investigation carried out at atomic-level changes

in various physical and structural characteristics of proteins/

amino acids using MD simulation study of WT and mutant

protein. Thus, we were able to observe a variety of

behavioural changes by computing the RMSD, RMSF, Rg,

SSE, H-bonds, salt-bridges, SASA, and Protein-ligand

interaction. The conformational changes between the WT

and mutant proteins are visulised using a time-series analysis

of the RMSD over the simulation (Figure 3). The RMSD plot

for protein-ligand complexes depicts the variation in ligand

binding behaviour as a function of binding site residues.

RMSF calculations of each amino aid residue in the protein

chain were used to study local measures of fluctuation

throughout the simulation. The RMSF plot (Figure 4),

which was created for WT and mutant proteins, aids in

inferring significant changes in peaks indicating

fluctuations. We observed an increase in RMSF value

upon mutations compared to WT protein. The radius of

gyration (Rg) is critical in determining protein stability and

folding pattern. The unfolding of the protein results in a

higher Rg value, whereas proper folding or compactness of

the protein results in a lower Rg value. Rg values observed

throughout the simulation, as well as a comparison plot

(Figure 5A) of WT and mutant Rg values, show clear

differences in protein compactness in all protein systems.

Result shows the decrease in protein compactness and

stability while increased unfolding of protein upon

mutations except for mutation P163R. SASA measurements

revealed that the mutation caused changes in the SASA value

of the protein (Figure 6B) when compared to the WT. SASA’s

average value decreased as a result of the mutation. Among all

mutations, P163R and D433H shows higher reduction in

SASA. This variation in SASA could significantly alter

protein folding and packing, resulting in altered protein

function and normal behaviour. Several interactions

contribute to thermodynamic stability and aid in protein

folding. Interactions such as H-bond and salt bridge are

important partners in this protein’s thermodynamic

stability. For such stability, a collective measure of

individual bond could be extremely valuable. Bonds are

essential for the formation of secondary structures in

proteins. These all changes could impact the protein’s

mechanism to achieve its function and signalling.

Additionally, ligand binding at binding pocket was also

deviated in mutant protein in comparison to native protein,

which will also affect the binding of small molecule and its

subsequent therapeutic effect.

Further, essential dynamics analysis of concerted motion

using MD simulation trajectories revealed the significant

changes in dynamic behavior of protein. The major

dynamic motions of protein from MD simulation

trajectories were studied using principal component

analysis and cross-correlation dynamics of concerted

motion. This provides additional measures for studying

the only motion that has a significant impact on protein

function and stability. We discovered an increase in percent

aggregate motion for the first two PCs after mutation, with

I427S being the most affected, followed by D433H, V477A,

and P163R. (Supplementary Figure S13). When comparing

P163R to WT, the overall percent aggregate motions for all

Top 10 Pcs were reduced. However, this mutation P163R is

still a significant cause of changes in protein normal motion

and dynamic behaviour. It was also discovered that due to

mutation, there is a significant deviation in the projection of

the first two PCs (Figure 8). Mutations P163R, I427S, and

V477A clearly showed a difference in PC1 and

PC2 projection over both PCs of WT, whereas mutation

D433H follows a somewhat similar pattern in PC data but

still showed significant differences compared to WT. Finally,

there were significant differences in the PCs of mutant

proteins compared to WT. The cross-correlation matrix,

in addition to this motion study, suggests major changes

in local fluctuations of protein residues, either positive or
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negative correlated motions. Overall, this study revealed that

these mutations have significant impact on protein structure

and subsequently affect the protein’s native function. This

study may further utilize to understand the pathophysiology

upon structural and functional changes of protein.

5 Conclusion

The CASR gene plays a significant role in the various

physiological processes of food digestion, regulation of

pancreatic secretions, homeostasis role of Ca2+ regulation, and

others. Mutations in the CASR gene associated with TCP are still

poorly untreated. Mutation in the CASR gene alone or

combination with the SPINK1 gene is involved in the cause of

pancreatitis or pancreatic cancer. CaSR mutations P163R, I427S,

D433H, and V477A, are associated with TCP and reported in the

mutTCPdb database. Several computational tools and methods

were utilized in this study to see the impact of SNVs.

The results of this study indicate that the mutations

P163R, I427S, D433H, and V477A have a significant

impact on protein structure. Various measures such as

deleteriousness, changes in Gibbs free energy (DDG)

value, pathogenicity, and atomic-level analysis of various

properties and measures using MD simulation were used.

Changes in the amino acid at these specific positions, based

on these observations, could harm its structural and

functional properties. The evolutionary conservation

analysis using the consurf server also suggests that the

amino acid residues P163, I427, and V477 were buried

and highly conserved. In contrast, amino acid residue

D433 was exposed and slightly conserved.

MD simulation, along with essential dynamics analysis,

also suggests that mutation P163R has a significant impact in

all MD simulation measurements when compared to other

mutations I427S, D433H, and V477A. However, in the end,

all mutations have a clear impact on the structural and

functional aspects of the protein. These amino acid

changes are thus a compelling cause of altered protein

functions and behaviours. Changes in co-agonist binding

behaviour at the orthosteric site and interactions with amino

acid residues can also be seen in the results. This study

contributes to a better understanding of the impact of

SNVs on structure and function, which may lead to the

development of biomarkers and therapeutics.
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