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Abstract

Learning is a process that helps create neural dynamical systems so that an appropriate output pattern is generated for a
given input. Often, such a memory is considered to be included in one of the attractors in neural dynamical systems,
depending on the initial neural state specified by an input. Neither neural activities observed in the absence of inputs nor
changes caused in the neural activity when an input is provided were studied extensively in the past. However, recent
experimental studies have reported existence of structured spontaneous neural activity and its changes when an input is
provided. With this background, we propose that memory recall occurs when the spontaneous neural activity changes to an
appropriate output activity upon the application of an input, and this phenomenon is known as bifurcation in the
dynamical systems theory. We introduce a reinforcement-learning-based layered neural network model with two synaptic
time scales; in this network, I/O relations are successively memorized when the difference between the time scales is
appropriate. After the learning process is complete, the neural dynamics are shaped so that it changes appropriately with
each input. As the number of memorized patterns is increased, the generated spontaneous neural activity after learning
shows itineration over the previously learned output patterns. This theoretical finding also shows remarkable agreement
with recent experimental reports, where spontaneous neural activity in the visual cortex without stimuli itinerate over
evoked patterns by previously applied signals. Our results suggest that itinerant spontaneous activity can be a natural
outcome of successive learning of several patterns, and it facilitates bifurcation of the network when an input is provided.
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Introduction

One of the most important features of the brain is the ability to

learn and regenerate an appropriate response to external stimuli.

By modification of the synaptic strength, output responses to input

stimuli are memorized. Accordingly, these input-output (I/O)

mappings are embedded in synaptic structure. A wide variety of

neural network models have been proposed to study how a

synaptic structure is formed for memorizing the given I/O

mappings. In most of the previous studies on unsupervised

learning [1–3], inputs were supplied as the initial states for neural

activity, whose temporal evolution results in the generation of the

desired outputs. Similarly, in supervised learning with multi-layer

neural networks [4], inputs are provided as the initial states to an

input layer, and the neural activity in the output layer is

determined on the basis of the inputs. In this manner, an input

determines the initial states of the system, while an output is given

by an attractor of the neural activity dynamics. Here, the learning

process changes the dynamical system so that the postulated

output is generated by the attractor to which the neural activity is

attracted under the initial conditions. Each output pattern is thus

memorized as an attractor, and this process is often referred to as

‘‘memories as attractors.’’

In these studies, the input is specified only as the initial neural

activity. Hence, neural activity dynamics cannot be determined

accurately in the absence of inputs since the initial values for

neural activity are chosen on the basis of the inputs. However,

many studies have indicated that for understanding the function-

ing of the brain, it is important to induce neural activity in the

absence of inputs. In particular, recent studies have shown that in

the brain, structured neural activity is observed even in the

absence of external stimuli [5]; such an activity is termed

‘‘spontaneous activity.’’ After input is provided, this spontaneous

activity is modified so that an appropriate output response is

generated. In recent experiments [6] on an olfactory system, the

neural dynamics have been studied in the presence and absence of

odor stimuli. Steady states of the neural activity, which are

different from the rest state, are generated for different odor

stimuli; the neural activity returns to the rest state upon removal of

the external stimulus. Hence, an input modulates spontaneous

activity to generate an output rather than determines the neural

state as the initial state. These observations strongly indicate a

novel I/O representation in the neural activity dynamics, which

also includes spontaneous activity.

In this paper, we propose a novel viewpoint of the memory of I/

O mapping, in order to verify the aforementioned postulate. For

this purpose, we present the following questions: Can we construct

an appropriate neural network model to demonstrate the learning

process under biologically plausible assumptions? If so, under what

conditions would learning be possible? Then, what types of

spontaneous activity, which can change the desired output

depending on the corresponding input, are shaped? What changes
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in the neural activity can bring about the output when an input is

provided?

In the present study, we find the answers to these questions by

adopting a layered neural network model for reinforcement learning

along with multiple time scales for synaptic plasticity and the

associative reward-penalty algorithm (ARP) [7] [8]. We demon-

strate that the proposed model can memorize the maximum

number of I/O mappings when the time scales of the plasticity of

the forward and backward synapses satisfy a certain condition.

In our theoretical framework, an output for a given input is

represented by an attractor of the neural dynamics in the presence

of the input; this attractor may differ from that in the absence of

the input. The nature of the attractor changes with the input and

such a qualitative change in the attractor with the parameters of a

dynamical system is referred to as ‘‘bifurcation’’ in the dynamical

systems theory. Hence, the input-induced change in the attractor is

represented as bifurcation in the dynamical systems theory. In

other words, an input can be considered a bifurcation parameter

for neural activity dynamics. Dynamical systems are generally

represented by the flow structure in the state space, and hence this

flow structure changes with the input so that a state that represents

a given target output is generated. In this dynamical-system

perspective, learning helps in the formation of an appropriate flow

structure through bifurcations caused by changes in the strength of

the applied input. When an I/O mapping is memorized, the

neural dynamics undergo bifurcation, and the spontaneous

dynamics attractor is converted into an attractor representing

the desired output for a given input. When the learning process

progresses, the neural dynamics are modified so that the

aforementioned ‘‘bifurcation’’ occurs.

We show that in the absence of an input, the neural dynamics

itinerate over several states corresponding to each of the

memorized output patterns after many targets have been learned.

This theoretical finding is in remarkable agreement with recent

experimental report [9]. This report states that in the absence of

stimuli, the spontaneous neural activity in the visual cortex

itinerates over patterns evoked by the visual signals. We analyze

how the flow structure of the neural network is shaped by the

learning process and discuss the possible relationship between our

results and recent experimental observations of the external-

stimuli-induced modification of spontaneous activity.

Methods

Architecture of Our Model
We construct a neural network model for learning, on the basis

of the following two conditions that satisfy the biological

requirements for the normal functioning of the brain: (i) different

error information for different individual neuron should not be

required. In other words, individual error information is used

commonly to all neurons. For example, in the error back-

propagation algorithm [4], one of the most popular learning

algorithms for neural networks, information corresponding to each

of the output neurons is required. In the case of biological learning

with a neural system, however, it is difficult to transmit the

specified information to each neuron. (ii) I/O mappings should be

learned one by one sequentially, i.e., a new I/O mapping should

be learned only after the previous mapping has been learned while

preserving the previously learned mappings. In contrast, in most

learning algorithms for neural networks, many mappings are

simultaneously and iteratively learned by gradually changing the

synaptic strength until all the mappings are memorized.

In order to satisfy the above-mentioned conditions, we

introduce a layered network model consisting of input, hidden,

and output layers along with ARP algorithm for reinforcement

learning (Fig. 1) [7] [8]. In this model, several I/O mappings are

learned one by one with only a single error signal that is defined as

the distance between the activity pattern of the output neurons and

a given target pattern. During the learning process, the plasticity of

the synaptic strength varies with the magnitude of the error signal,

in accordance with the Hebbian and anti-Hebbian rules.

In particular, we adopt the following model with N neurons in

each layer. Three types of synapses are considered: excitatory

forward synapses (FSs), excitatory backward synapses (BSs), and

mutually inhibitory intralayer synapses (ISs). FSs connect the

neurons in the input layer to those in the hidden layer and the

neurons in the hidden layer to those in the output layer. BSs

connect the neurons in the output layer to those in the hidden

layer, while ISs connect the neurons within a given layer (hidden

or output layer). This architecture is similar to that of a simple

recurrent network (SRN) [10] [11]. As opposed to the study on

temporal evolution of I/O mappings in an SRN, the present study

deals with the shaping of neural dynamics in the presence and

absence of the input through learning process.

Neural Dynamics
The neural activity in the input layer is fixed at an input pattern

I , an N-dimensional vector whose element takes the value 0 or 1
and the magnitude of the vector is g (Eq.1). We use the rate-coding

neuron model for the neural activities in the other layers (Eq.2),

because this is simple but general model that has been used widely

and is well suited for dynamical-system analysis.

xi~gIi (I [ f0, 1g) (in the input layer) ð1Þ

tNA _xxi~1=(1zexp({buizh)){xi (in the other layers) ð2Þ

Figure 1. Schematic representation of the network architecture
of our model. FS (BS) represents the interlayer forward (backward)
excitatory synapse, and IS represents the mutually inhibitory intralayer
synapse. Error signal represents the difference between an output and a
target pattern and regulates the plasticity of all subsequent FSs and BSs
(Eq.3) (green arrows and ellipses).
doi:10.1371/journal.pone.0017432.g001
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where xi is the firing rate of neuron i, and ui is the input current

applied to the neuron i. The input current is given by

uhid
i ~

XN

j~1
JFS

ij xin
j z

XN

j~1
JBS

ij xout
j z

X
j=i

JISxhid
j for the

neurons in the hidden layer and uout
i ~

XN

j~1
JFS

ij xhid
j zP

j=i JISxout
j for the neurons in the output layer. Here,

JFS
ij (JBS

ij ) is the strength of the forward (backward) synapse from

a presynaptic neuron j to a postsynaptic neuron i. JIS is the strength

parameter for the mutually inhibiting IS; this parameter assumes a

fixed and identical value for all ISs (set at 21.0) except for self-

connected synapses (set at 0.0). tNA is a time scale of neural activities

and is set to 1 in the present case. We also analyze the dependency

of memory capacity on the relationship among the three time scales

in the system: the time scale for neural dynamics and the time scale

for the plasticity of FSs and BSs. The other parameters are set as

follows: b~42, h~2:5, g~1:0, and N~10. Because of the

competition through the ISs, only one (or very few) neuron(s) in

each layer is (are) excited, and this results in a sparse neural activity

pattern. Once an input pattern is given as a boundary condition, the

evolution of neural activities in the hidden and output layers are

determined by the above-defined dynamical systems. Hence, each

input modifies the flow structure of neural dynamics composed of

neurons in the hidden and output layers, resulting in modifying the

neural dynamics on the basis of this flow structure.

Synaptic Plasticity
Synaptic plasticity is necessary for learning in a neural network.

As mentioned earlier in the text, we maintain the strength of the

ISs constant for simplicity and vary the strengths of the FSs and

BSs. For each input pattern defined above, we prescribe a target

pattern j as an N-dimensional vector whose element takes the

value 0 or 1, and choose sparse patterns in which only one neuron

is activated as inputs and targets. In the learning task, the neural

activity in the output layer is described as the N-dimensional

vector X out, and the error E~jX out{jj2=N is minimized. We

adopt two schemes for synaptic plasticity: multiple time scales and

the ARP algorithm for reinforcement learning [7] [8]. First, the

time scale of the plasticity of FSs (tFS) is different from that of the

plasticity of BSs (tBS). Second, the synapse pattern that generates

the target output is strengthened, in accordance with the Hebbian

rule; otherwise, it is weakened, as per the anti-Hebbian rule. In

accordance with the ARP, we assume that the synaptic dynamics

depend on the activities of the pre- and postsynaptic neurons as

well as on R determined from the error signal E, as

tp _JJp
ij~Rp(xi{r)xj (J§0) (p~FS or BS) ð3Þ

RFS~
1 for EƒE

{1 for EwE

�
RBS~

0 for EƒE

{1 for EwE

�
ð4Þ

Here, r is the spontaneous firing rate (set at 0.1) and e is set at

10{4. The sign of R changes with the magnitude of the error

signal E between the output pattern and the target pattern. When

the output pattern is close to the target pattern, i.e.,

E~jX out{jj2=NƒE, the synaptic plasticity follows the Hebbian

rule, which is derived by substituting RFS~1 and RBS~0 in

(Eq.3). This plasticity stabilizes the ongoing neural activity pattern.

Note that during this stabilization process, only the strength of the

FS varies, and hence, memories of the I/O mappings are

embedded in the FSs. In contrast, when the output pattern is

distant from the target pattern, i.e., EwE, the synaptic plasticity

follows the so-called anti-Hebbian rule, and hence, the ongoing

neural activity pattern is destabilized. Note that with the above

form (xi{r)xj , the synapse shows negligible changes when its pre-

synaptic neuron j is in a low-firing state. In our model, we require

only a single error term for all neurons; this is in strong contrast to

error back-propagation, which requires the computation of a large

number of error terms, i.e., as many error terms as the output

neurons. Brief and the preliminary report of this model is given in

the proceeding [12].

In most neural network studies, only two time scales are

considered: one for neural activities and the other for synaptic

plasticity. In this study, we consider a variety of time scales for

synaptic plasticity and introduce two time scales for the plasticity

of the FSs and BSs. As will be shown later, I/O mappings are

successfully memorized when the difference between the time

scales is appropriate.

Results

Neural Dynamics in the Learning Process
We show that our model can learn I/O mappings based on our

perspective. An example of the learning process is shown; the time

series of the strength of some synapses, that of the neural activities

in the output layer and that of the error signal during the learning

process are shown in Figure 2. As the initial conditions for the

network, we set tNA~1, tBS~16, and tFS~64 and assign the

synaptic strength a random value with a uniform distribution

between 0 and 1, except in the case of the ISs.

When the error is large (0vtv300 in Fig. 2), the neural

dynamics itinerate between different patterns since the present

neural activity becomes unstable as per the anti-Hebbian rule. The

target pattern is searched during this itineration. We term this

period ‘‘search phase’’ in what follows. At t*300, the magnitude

of the error reduces to a sufficient extent, i.e., the output dynamics

of the neural activity are within the neighborhood e of the target,

where the synaptic plasticity changes from the Hebbian rule to the

anti-Hebbian rule. Once this occurs, the neural activity is

stabilized as per the Hebbian rule (300vtv700), and the output

activity remains close to the target, in accordance with the

Hebbian rule; because of this, the synapses between active neurons

are continuously strengthened until a new target is generated

(Fig. 2). This period is called ‘‘stabilization phase.’’ At t*700, we

switch the input and the corresponding target patterns to generate

new input-target pairs. Then, the distance between the output

pattern and the target pattern increases again, and therefore, the

search process progresses according to the anti-Hebbian rule

(700vtv950) until the stabilization phase is initiated as per the

Hebbian rule at t*950 when the output activity is close to the

target. Furthermore, at t*1200, we switch the input and the

target pattern to generate the third input-garget pairs and the

learning process progresses in the same manner as mentioned

above. In this manner, the neural activity can be made to

approach the target and the target learning can be achieved by

making the synaptic plasticity alternately anti-Hebbian and

Hebbian, depending on the error. Note that in this phase, the

target is learned in the flow structure in the presence of the

corresponding input, but not in the absence of the input, i.e., an

attractor in the presence of an input, but not an attractor in the

absence of an input, is formed by the learning process.

Memory Capacity through the Learning Process
We discuss the memory capacity through the learning process.

For specificity, we use the following procedure for counting the

Spontaneous Dynamics Shaped by Learning
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number of memories: After each learning step, which consists of a

search phase and a stabilization phase, we apply each of the inputs

learned so far and check whether the output pattern matches the

corresponding target pattern for most of the initial neural activity

values, by fixing the synaptic strength. Here, ‘‘most’’ means that the

fraction of the initial values reaching the target pattern is greater

than one-half. (If this threshold value is changed, the number of

memories is modified. However, the results below are not essentially

changed, as long as it is neither too smaller nor too large.)

In other words, when the I/O mapping is memorized, the

neural activity comes close to the target by applying the input,

irrespective of the state before applying the input. The number of

memorized targets increases with the sequence of learning steps

(i.e., the number of I/O mappings provided) and reaches a

saturation value (or decreases) because of the loss of the earlier

memory (Fig. 3). Then, the memory capacity is determined from

the maximum number of memorized sets in the entire learning

process.

In our model, the I/O mappings to be learned are provided

sequentially, and the learning process where each mapping is

provided only once is mainly analyzed. However, it is also possible

to learn the mappings repeatedly. In our model, the synaptic

strength is not limited, and therefore, the magnitude of synaptic

connections between the active neurons would increase unlimit-

edly as a result of repeated learning. In the results shown below,

we change the initial condition for the synaptic strength to 0,

except in the case of the ISs, before the commencement of the

learning process in order to prevent the initial network from being

infected.

Dependence of Memory Capacity on Timescales
As has been mentioned before, there are three time scales in our

model: tNA for changes in the neural activity and tBS and tFS for

the plasticity of the BSs and FSs, respectively. We analyze the

dependence of the memory capacity on tNA, tBS, and tFS.

Specifically, we compute the capacity by fixing tNA and tFS and

study the dependence of the memory capacity on tBS. In Figure 4,

the memory capacity is plotted as a function of tBS for various

values of tFS. We confirm that the memory capacity is small for

any tBS, unless tFS is sufficiently larger than tNA; this is because

there is no method for preserving the information about previously

learned patterns that are embedded in the FSs. Thus, we focus on

the capacity in the case of tFS&tNA in Figure 5. Interestingly,

each capacity curve in the plot shows a peak when the time scale

satisfies the condition tNA%tBS%tFS , where the capacity is *N,

which is equal to the number of neurons in each layer. Since the

present model adopts the sparse coding principle, N is the

maximum possible memory capacity. When tBS approaches tNA

or tFS, the capacity is considerably smaller than the maximum

capacity. Furthermore, after scaling logtFS , the capacity curves

nearly overlap with one another. By this scaling, the position of the

peak is independent of tFS unless tNA%tFS.

In the search phase, the synaptic plasticity in the learning

process modifies the flow structure in the phase space of the neural

state so that the neural activity searches the target by itinerating

various patterns including the learned target pattern. We focus on

when the output activity come close to one of the previously

learned target patterns in the search phase. Since this pattern

differs from the current target pattern, the flow structure attracting

to the previous target pattern may be destroyed by the synaptic

plasticity, as stated by the anti-Hebbian rule. Thus, the flow

structure in the phase space of the neural state that supports the

attraction to the previously memorized pattern may be destroyed.

In general, the longer the output pattern stays close to a state

corresponding to a previously learned pattern, the stronger is the

destabilization of the attractive flow to the state. Hence, the degree

of destabilization of the previous memory is expected to increase

with the residence time of the pattern in the corresponding state.

Indeed, as shown in Figure 5, the residence time, when plotted as a

function of tBS , decreases to a minimum when tBS corresponds to

the maximum memory capacity and increases as tBS approaches

either tNA or tFS . This trend is consistent with the dependence of

the memory capacity on tBS .

Now we discuss the condition tNA%tBS%tFS. Either, tFS or

tBS determines the time scale for the change in the flow structure

itself, whereas tNA determines that of the neural dynamics of a

certain fixed flow structure. Moreover, because the search for the

target is based on the change in the flow structure, as per the anti-

Hebbian rule, the time scale of the search phase is effectively

Figure 2. Dynamics during the learning of three input-output
(I/O) mappings. I/O mappings are learned in the search phase by the
anti-Hebbian rule (0vtv300, 700vtv950, and 1200vtv1700) and in
the stabilization phase by the Hebbian rule (300vtv700,
950vtv1200, and 1700vtv2100). Color bars on the top of figures
and above the time series in B) represent each set of input/target
patterns. A) Dynamics of some FSs are shown. These lines represent FSs
from neurons in hidden layer to the neurons to be activated in targets
in output layer. These neurons are referred to as the target neurons. In
particular, each color (green, blue and red) represents FSs to each target
neuron (1st, 2nd and 3rd target) respectively. Three lines increasing
rapidly are FSs from activated neurons in hidden layer to the target
neurons. B) Raster plot of neurons in the output layer is shown. The
ordinate shows the index of the neurons in the output layer. Red bar
represents the high activity of each neuron (xiw0:9). Blue (green) bar
behind the Raster plot indicates the output corresponding to the first
(second) target. C) Time series of the amplitude of the error signal
between the output and target patterns. Distance d between the
output pattern X out and the target pattern j by the normalized
Euclidean norm (d~jX out{jj2=N) as a function of time is plotted.
doi:10.1371/journal.pone.0017432.g002
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determined by tFS or tBS. If tBS*tNA, the flow structure in the

phase space is modified during the neural activity change, and

hence, the approach the target pattern is often hindered. Indeed,

the search for a new target pattern takes a longer time to complete

as tBS approaches tNA, and the residence time in the previously

memorized patterns increases. This results in a decrease in the

memory capacity.

On the other hand, the time scale of the memory decay is

determined by tFS because the memory information is embedded

in the FSs (Eq.4). Here, tBS*tFS indicates that the time scale of

the search phase is equal to that of the memory decay; during the

search for the target, the memory of the previously learned

mappings is destroyed. Thus, the condition tNA%tBS%tFS must

be satisfied for successive learning.

Here, we briefly discuss the dependence of memory capacity on

the number of neurons N . As long as the sparse firing in the

hidden layer is satisfied, the maximal capacity is expected to be

approximately N, if the timescale relationship between tFS and

tBS is fine-tuned on the basis of N. Even without such fine-tuning,

the capacity increases roughly with 0:67N when tFS~64 and

tBS~16 (some parameters are scaled by 1=N; details can be found

in the caption of Fig. 6). Hence, a rather high capacity is achieved.

However, with an increase in N , the learning time increases, as the

phase space in neural activity to be searched increases with N . In

fact, when N§30 the search time is so long that the memory is

often destroyed during the search phase, unless the parameters tFS

and tBS are fine-tuned. Here after, we fix N~10 to discuss the

neural activity dynamics.

Shaping of Spontaneous Activity by Learning
Now, we analyze how the networks memorize the I/O

mappings, by imposing the condition tNA%tBS%tFS . We set

tBS~8, tFS~64, and tNA~1, under which conditions the

capacity is close to the maximum possible value.

There are two types of modifications in the neural dynamical

system in our model: modification through learning (i.e., change in

the synapse strength) and that by the injection of the input (i.e.,

change in the input strength). To understand these modifications,

we first analyze the modification of spontaneous dynamics by the

learning process and then study the modification upon the

injection of an input. The abovementioned modification and

analysis are discussed in the present and subsequent subsections,

respectively. To be specific, we examine the typical orbits of neural

activity in the absence of any input, by considering a dynamical

system with fixed synaptic strength in the early and late stages of

the learning process. Figures 7, 8, and 9 show examples of typical

orbits in the attractors, determined on the basis of the results of the

4th, 8th, and 9th learning steps. After targets 1, 2, 3, and 4 are

learned, the neural activity in the output layer in the absence of

any input is itinerant over three patterns that are close to three of

the target patterns before the neural activity reaches a fixed point,

as shown in Figure 7. The output activity approaches targets 3, 4,

and 1 successively before converging to the fixed point. This

itinerancy over the targets at transient time is commonly observed

Figure 3. The number of memories through the learning process. The number of memorized sets at each learning step is plotted for three
different values of tBS , by fixing tFS at 64. Red, green, and blue lines represent the number of memorized sets for tBS~1 (identical to that tNA),
tBS~20 (maximum memory capacity), and tBS~128, (larger than at tFS), respectively. Dotted line represents the maximum possible number of
memorized sets, i.e., the number of all learned I/O relations. A) Number of memorized sets at a single learning process. Memory capacity at each value
of tBS is defined by the maximum number of memorized sets in the learning process, as shown by colored circles. B) Number of memorized sets
averaged over learning processes. The number of learned sets is calculated by averaging over 100 learning processes for each value of tBS . Error bars
indicate the standard deviations.
doi:10.1371/journal.pone.0017432.g003

Figure 4. Memory capacity as a function of tBS for various
values of tFS Memory capacity curves as a function of tBS are
shown (See text for the definition of capacity). The other
time scale, tNA, is fixed at a unit value. Memory capacity shows a peak
when tBS satisfies the condition tNA%tBS%tFS If tFS is sufficiently
large, our model can memorize almost all learned sets (N~10) at the
time scale satisfying this condition. Here, Tmem at each tFS is scaled by
tFS , i.e., Tmem=tFS is constant. Computed from the average over 100
learning processes for each tBS .
doi:10.1371/journal.pone.0017432.g004
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for several initial conditions in the orbits in the early stages of the

learning process.

As the learning progresses further, two prominent changes are

observed in the neural dynamics in the absence of inputs. First,

there is an increase in the number of attractors in the system. As

shown in Figure 10, the number of fixed-point attractors increases

with the number of learned mappings. With a further increase in

the number of the learning steps, however, the number of fixed-

point attractors begins to decrease, as these attractors are replaced

by one or more limit-cycle attractors. A limit cycle, however, does

not always appear, but its emergence depends on the earlier

learning process.

The limit-cycle orbit itinerates over target patterns as an

attractor; in contrast, the orbits in the fixed-point attractor are

transient. Figure 8 shows an example of an orbit at a limit-cycle

attractor without inputs after eight I/O mappings are learned,

such that the orbit (not a transient orbit as shown in Fig. 7)

itinerates over the targets in the cyclic order 1, 2, 4, 7, and 5

(12475). Here, we describe a limit cycle itinerating over targets in

the order a, b, c (abc) for simplicity. Note that the number of

itinerated targets is not always equal to the number of learned

targets; further, the order of itineration over the targets is not same

as the order of target learning, but depends on each trial of the

learning process. For example, after learning five sets, some of the

limit-cycle attractors cover all the memorized patterns (12345),

while some others cover the memorized patterns only partially

(123). In addition, some limit cycles are highly complex and visit

the neighbors of the same targets a few times during a given cycle

in the order (1345712589), as shown in Figure 9. In this sense, the

flow of neural activities in the absence of inputs ‘‘prepares’’ for the

target output pattern to be stabilized by the inputs. These itinerant

dynamics in the absence of inputs may correspond to the

spontaneous activity dynamics in the brain, as will be discussed

later.

In the learning process, the flow structure of the neural

dynamics is modified so that the neural dynamics in the absence of

inputs come closer to the learned target patterns. We compute the

distance between a target and an output neural activity by starting

from a given initial condition for the neural activity. Here, we

define Dmin as the minimum distance between the a target and the

output activity in the time course, averaged over a variety of initial

neural states after each learning step (See caption of Fig. 11).

Figure 11 shows the plot of the aforementioned minimum distance

versus the number of learning steps. As the learning process

progresses, the minimum distance between the output activity and

each target learned so far successively decreases. This indicates

more orbits from initial points in the phase space come close to the

target patterns, after the target patterns are learned. This decrease

is observed only when the condition tNA%tBS%tFS is satisfied.

Indeed, when tBS*tFS or tBS*tNA, the distance between the

output activity and a few latest targets is small, but the distance

between the output activity and the earlier targets is large. This

observation suggests that traces of previous memories have already

been erased (Figure S1).

Bifurcation with the Input Strength
To close the Results section, we study how the attractor of

neural dynamics changes from the attractor for spontaneous

activity to that representing the desired output when the input

Figure 5. Scaled capacity curve and residence time curve. Scaled
capacity curve (i) and residence time curve (ii) when tFS is large (64, 96,
and 128) are plotted. Capacity and residence time are plotted as
functions of the ratio of the logarithms of tBS and tFS and not as
functions of the logarithm of tBS . Here, the residence time is scaled by
tFS . Vertical pink and blue lines represent the values of tBS satisfying
the conditions tBS~tNA and tBS~tFS respectively. All capacity curves
show a peak at the same value of logtBS=logtFS , where the residence
time takes the minimum value. Here the residence time is defined as
the time at which the output neural pattern is closer to the given target
than the threshold distance. To be specific, we set the threshold
distance between the output and target at 0.9.
doi:10.1371/journal.pone.0017432.g005

Figure 6. Capacity dependence on N. Capacities for various
numbers of neurons N are plotted. Each capacity is measured after
learning the maximum number of I/O mappings (i.e., the number of
neurons in each layer N). The time scales are tFS~64 and tBS~16,
which is independent of N , while Tmem,r,E are in proportion to 1=N .
doi:10.1371/journal.pone.0017432.g006
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Figure 7. Temporal evolution of neural activity in the case of fixed point. The spontaneous neural dynamics and the evoked one after four
I/O mappings are learned are plotted. A) The time courses of the distance between the neural activity of the output and each target are plotted. Here,
only the time courses representing the neural dynamics in the absence of input are plotted. The distance is defined as Dn~jX out{jnj2=N , The
curves in different colors represent the distance from each target, while the black curve shows the distance from an unlearned target pattern, for
reference. B) Neural activity in the output layer is represented as a point in the three-dimensional space and is projected from the N-dimensional
space consisting of neural activities in the output layer by obtaining the product of the output activity and the target pattern(s). Each axis represents
the product of neural activity and the corresponding target pattern, defined by axis1 = X out:j1, axis2 = X out:j3 , and axis3 = X out:j4 . The orbits of
neural activities after learning I/O mappings are plotted. The black line and circle represent a transient trajectory and a fixed-point attractor in the
absence of inputs, respectively. The colored (red, green, and blue) lines and circles represent the trajectories and fixed-point attractors in the
presence of inputs, respectively, with each color indicating the corresponding input. In the absence of an input, the neural activity once approaches
some fixed point corresponding to the given target outputs and then departs, before finally converging to the fixed-point attractor. Upon the
application of an input, the fixed-point attractor becomes unstable, and hence, the neural activity is attracted to a new fixed point, thereby giving rise
to a target output corresponding to the input.
doi:10.1371/journal.pone.0017432.g007

Figure 8. Temporal evolution of neural activity when the attractor without inputs is a limit cycle. The spontaneous neural dynamics and
the evoked one after learning eight I/O mappings are plotted, same as Fig. 7. A) The time courses of the distance between the neural activity of the
output and each target are plotted. Notations are same as Fig. 7 A. The time courses after transient time are plotted for focusing on limit-cycle
attractor. B) Neural activity in the output layer is represented as a locus in a three-dimensional space, projected from the N-dimensional space
consisting of neural activities in the output layer, by obtaining the product of the output activity and the combined target pattern(s). Each axis
represents the product of the neural activity and the corresponding combined target patterns w, defined in the figure. Plotted by using the same
notations used in Fig. 7. The black curve is not a transient orbit but a limit cycle in the absence of inputs. The colored curves represent the transient
trajectories when inputs are applied under two initial conditions (black squares), which are not the initial conditions for the limit cycle. In the
presence of an input, the limit-cycle attractor collapses, and the neural activities reach fixed points, giving rise to the corresponding target outputs.
These fixed points are represented by circles in different colors, while transient trajectories from only two initial points are shown here. However,
trajectories from all points on the limit-cycle reach the corresponding target with the application of a given input. On the other hand, the limit cycle
attractor in the absence of inputs approaches and deviates from the points matching the targets, which are fixed points in the presence of inputs as
mentioned above. The bifurcation from the spontaneous limit-cycle attractor to the evoked fixed-point attractor is plotted in detail in Fig. 12.
doi:10.1371/journal.pone.0017432.g008
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strength is increased. We show that when an input is applied, the

attractor of the spontaneous activity dynamics bifurcates into a

fixed-point attractor that represents the corresponding target, we

also demonstrate, that depending on the input pattern, a distinct

attractor corresponding to each target pattern is generated.

Examples of such changes are shown in Figures 7, 8, and 9,

where the attractor without inputs is a fixed point or a limit cycle.

When an input is applied and its strength is increased, bifurcation

occurs such that the original attractor (without the input) becomes

unstable, and a stable fixed point representing the correspondent

target pattern emerges. To carry out bifurcation analysis, we vary

the input strength g continuously instead of choosing the large

input value adopted in the learning process, and study the

corresponding changes in the attractor. When the spontaneous

attractor is a fixed point, it remains stable up to a certain value of

g. With an increase in g beyond the threshold, saddle-node

bifurcation to a novel fixed-point attractor occurs. When the

Figure 9. Temporal evolution of neural activity when the attractor without inputs is a complex limit cycle. The spontaneous neural
dynamics and the evoked one after learning nine I/O mappings are plotted, same as Figs. 7 and 8. A) The time courses of the distance between the
neural activity of the output and each target are plotted as Fig. 8. B) An example of complex spontaneous activity dynamics. Neural activity in the
output layer is represented as Fig. 8. Each axis represents the product of the neural activity and the corresponding combined target patterns w,
defined in the figure. The plot shows the locus of neural activity, which yields a complex limit cycle in the absence of inputs. Green circles represent
the learned targets patterns. The limit cycle approaches some of the targets more than once.
doi:10.1371/journal.pone.0017432.g009

Figure 10. Change in the number of attractors during the
learning process. Numbers of fixed-point attractors (green line) and
limit-cycle attractors (blue line) and the total number of attractors (red
line) in the absence of inputs as a function of the number of learning
steps, i.e., number of learned targets, are plotted. In the early stages of
the learning process, the number of fixed-point attractors increases,
while in the later stage (after 5 or 6 learning steps), the number of fixed-
point attractors decreases (fixed-point attractors are replaced by limit-
cycle attractors).
doi:10.1371/journal.pone.0017432.g010

Figure 11. Change in the minimum distance between the
activity and the target during the learning process. Dmin(Jn)
gives the minimum distance between the neural activity X and the
target Jn , averaged over phase space in the absence of inputs. Here, X
and Jn include the activity of the neurons in the output and hidden
layers. The target J becomes identical to the neural activity pattern
after convergence to target j in the output layer. Dmin(Jn) is defined as
Dmin(Jn)~v min0ƒtƒ? jX (t){Jnj2=2Nw, where v � � �w is the aver-
age over the initial conditions. The average v � � �w is obtained over
1000 initial conditions for the neural activities fxig. The red and blue
lines represent Dmin(Jn) about all targets (n~1,2, . . . ,9) after learning
one and nine (I/O) mappings, respectively. Only the minimum distance
between the neural activity and the learned target decreases.
doi:10.1371/journal.pone.0017432.g011
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attractor in the absence of inputs is a limit cycle, it collapses as a

result of non-local bifurcation, and is replaced by the fixed-point

attractor corresponding to each target pattern, with an increase in

g. An example of a bifurcation diagram from the limit cycle to the

fixed point for the target output pattern is shown in Fig. 12, where

the activity of the target neuron at the attractor is plotted as a

function of g. As shown, the changes in the attractor involve

several bifurcations, and the whole bifurcation sequence becomes

complicated with an increase in g. Nevertheless, there are two

common characteristics: collapse of the limit cycle for the

spontaneous activity, as a result of non-local bifurcation and

appearance of the target fixed point by saddle-node bifurcation.

The former is caused by the contact formed between the limit-

cycle attractor and the basin of another fixed-point attractor upon

an increase in g, while the limit-cycle and the fixed-point attractors

coexist over a certain range of input values, implying hysteresis.

The fixed-point attractor generated by this collapse is generally not

a fixed point that gives rise to the target output. With a further

increase in the input parameters, saddle-node bifurcation leads to

the attractor corresponding to the target.

It is also interesting to study the neural dynamics when two

learned inputs are injected simultaneously. By changing the

strength of each input, bifurcation against two parameters is

studied (Fig. 13). We find some characteristic neural dynamics

with different input strength. If the strength of input A gA is much

larger than that of input B gB, the fixed-point attractor giving rise

to the target A (phase FA in Fig. 13) is generated, and vice versa.

When gA is smaller, but much larger than gB, the limit-cycle

attractor in which the neural dynamics approaches the target A

(phase LA in Fig. 13) is generated, and vice versa. Furthermore,

when both gA and gB are much large and of the same order, there

appears a new phase in which the two fixed-point attractors

matching target A and target B coexist. In this case, depending on

the initial state, either of targets A or B is retrieved as an output.

On the other hand, when both gA and gB are smaller, novel limit-

cycle attractors in which the neural dynamics approaches neither

target A nor target B are generated. Since the bifurcations by

applied two inputs are complicated, it is not so easy to draw the

whole bifurcation diagram; Figure 13 is a rough sketch of the

diagram. Detailed study on the bifurcations will be left for future.

Possible Extension to Learn Complex Mappings
In the present study, we have focused on the learning of one-to-

one mapping between inputs and outputs. The strength of synaptic

connections turns to be either very strong or very weak after

learning, and therefore, only simple one-to-one mapping is

possible. However, our model can be extended to allow for

complex mapping. By adding more neurons in the hidden and

output layers and also by introducing the upper thresholds for

synaptic strength, complex tasks in which there is as certain degree

of overlap of neurons between different input patterns can be

learned and memorized. For example, we have confirmed that our

algorithm can learn the following task, when the abovementioned

modification is made to the model. The learning task involved

mapping on the basis of input patterns (1, 0), (0, 1), and (1, 1) in the

input layer, while the corresponding target patterns are set as (1, 0,

0), (0, 1, 0), and (0, 0, 1) respectively. Even though tuning the

upper boundary of the synaptic connections is required, we have

confirmed numerically that memorizing these I/O relationships

with the overlapped inputs is indeed possible. Learning more

complex tasks can be made possible by appropriate adjustment of

the synaptic strength. We expect that our viewpoint -learning and

memorizing of I/O patterns by shaping the neural activity

dynamics so that they undergo the appropriate bifurcations- can

Figure 12. Bifurcation diagram through the input strength. The
bifurcation diagram from the spontaneous limit cycle to the fixed point
matching the target pattern is shown. The x-axis and the y-axis
represent the strength of input, here, input 1 in Fig. 8, and the product
between the neural activity in the output layer and the corresponding
target. At each strength, we compute the neural activity evolving from
an initial point chosen randomly and measure the product between the
neural activity and the corresponding target for some constant time
after transient time. Points representing values of this product are
super-positioned at each strength. In the strength at more than 0.23
(see the arrow), the target is stable fixed-point attractor. In this area,
both target fixed point and other attractors are stable, and at larger
strength, only the former is stable, means this target is memorized in
this network.
doi:10.1371/journal.pone.0017432.g012

Figure 13. Phase diagram of the neural dynamics under the
application of two inputs. After the model neural network learned
several input-output relations, we applied the two learned inputs A and
B with the strength gA and gB. By varying these two input strengths, we
checked what type of attractors the neural dynamics are attracted to.
Depending on the type of attractor, rough phase diagram is depicted.
Each of the phases in the figure represents the following behavior; FA
and FB: Only the fixed-point attractor with the output matching with
the target A or B (FA) and target B (FB), respectively. FA+FB: Coexistence
of the two fixed point attractors for the target A and B, reached
depending on the initial condition. LA and LB: Limit-cycle attractor in
which the neural dynamics approach the target A or target B,
respectively. LN: novel limit cycle attractor in which the neural dynamics
approach neither the target A nor target B. Shown here is a rough
diagram, and actual bifurcations are more complicated, and also
depend on each learning process.
doi:10.1371/journal.pone.0017432.g013
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be applied to more complex cases by appropriate extension of the

present model.

Discussion

In the present paper, we have proposed a novel image of

memory by using a dynamical system model for I/O mapping.

Memory recall is achieved as a result of the bifurcation of the

neural dynamics attractor from a spontaneous activity attractor to

one that matches the target pattern induced by the input. The

learning process shapes the ‘‘appropriate’’ flow structure of

spontaneous neural dynamics. Indeed, this bifurcation viewpoint

is consistent with the change in neural activity observed in a

olfactory system in the recent experiment [6], which has been

discussed in the Introduction.

To demonstrate the learning process on the basis of the

aforementioned idea, we present a model in which the learning

process shapes the flow structure of the neural dynamics, through

successive presentations of inputs and the corresponding outputs.

We use a three-layered network with forward synapses from an

input layer to a hidden layer and from the hidden layer to the

output layer, as well as backward synapses from the output layer to

a hidden layer; the use of such a network allows for autonomous

neural dynamics even in the absence of inputs. Such an

architecture with backward connections has been adopted for

SRNs [10] [11], echo state networks [13], and liquid-state

machines [14]. The neurons in the hidden layer in these models

are activated not only by the input neurons but also by the

neighboring neurons in the layer; consequently, the dynamics of

these neuron activities are not determined solely by the inputs but

can autonomously change even in the absence of inputs, as in the

case of our model. Studies on these models, however, have focused

mainly on responses against input streams, with the aim of

analyzing temporal information processing on the basis of the

input history. In contrast, our study focuses on the change

(bifurcation) from spontaneous activity dynamics to evoked

dynamics in the presence of inputs and on the shaping of

spontaneous dynamics through the learning process.

For analyzing the changes in the flow structure during the

learning process, the following points are discussed. First, to

achieve the maximum number of memorized patterns, the

appropriate relationship has to be satisfied among the time scales

of the changes in the neural activity as well as among those of the

changes in the plasticity of the FSs and BSs. Second, the flow

structure of the spontaneous dynamics is changed during the

learning process, and then, the neural dynamics in this flow

structure are itinerant over the learned output patterns. In other

words, spontaneous dynamics ‘‘prepare’’ for the stabilization of the

corresponding outputs once the inputs are provided. Now, we

discuss these two points in possible relationship with the results of

recent experimental studies.

Synaptic Plasticity
We adopt two architectures for synaptic plasticity: (i) multiple

timescales and (ii) the ARP algorithm. Here, we discuss how these

architectures can be implemented in our brain.

(i) Multiple time scales. The time scale of synaptic

dynamics represents the magnitude of the synaptic plasticity,

such as long-term potentiation and long-term depression, and

these plasticities depend on the number and/or type of receptors

of neural transmitters in our brain. Hence, the time scales for

synaptic plasticity are related to the number and/or type of these

receptors. When two areas (say between the hippocampus and the

prefrontal cortex) are mutually connected, the synaptic

connections for forward and backward connections may have

different characteristics, and hence, the plasticities may differ

between the two.

Recall that in our model, a proper relationship has to be

satisfied among the time scales of the changes in the FSs and BSs

and in the neural activity, to achieve the maximum number of

memorized patterns. On the basis of the above argument, it is

suggested that such a difference in the plasticities may be

implemented by the possible difference between the number

distribution and/or types of receptors in the neurons for the

forward and backward connections between the given areas.

(ii) Adaptive reward-penalty. In our model, the synaptic

plasticity is switched between Hebbian and anti-Hebbian rules by

the ARP algorithm, depending on the magnitude of the error

signal. In our brain, neural modulators such as dopamine,

serotonin, norepinephrine, and acetylcholine may give rise to

this error signal. In particular, dopamine modulates the synaptic

plasticity at the hetero-synaptic connection [15] and is projected

onto the cerebral cortex broadly. Furthermore, the activity of

dopamine neurons is related to the extent to which the response

matches the request [16]. Hence, dopamine can act as a global

error signal carrier. Then, it is suggested that the switching

between positive and negative plasticity, corresponding to that

between the Hebbian and anti-Hebbian rules in our model, is

regulated by the concentration of dopamine.

In the present study, we show that the maximum capacity can

be realized by establishing an appropriate relationship between the

time scales of FS and BS plasticity, and the results suggest that

such multiple timescales would be important for memorizing.

Recently, Fusi et al. [17] proposed a meta-plasticity-based model,

which may involve multiple timescales similar to in our model, In

their model, while the synaptic plasticity changes with external

stimuli, the change is only stochastic, and neither neural activity

dynamics nor synaptic plasticity is considered. In contrast, in our

model, the interaction between neural dynamics and synaptic

plasticity plays a key role in the memory process.

Spontaneous Activity
Next, we discuss the spontaneous activity in our model and

experimental studies. Recent experimental studies have revealed

the existence of spontaneous neural activity, which is not simply

noise but a result of the inherent dynamics in the brain [5] [9] [18]

[19]. Furthermore, such activity is shown to be related to the task-

evoked or stimulus-evoked activity [9] [18] [19]. In particular, it

has been stated that the spontaneous activity in the visual system of

a cat successively changes from one pattern to another [9].

Remarkably, these patterns are found to correspond to those

evoked by a directional input signal. These evoked patterns are

formed depending on the environment after birth, i.e., these

patterns are formed by learning. Thus, the spontaneous dynamics

itinerating over the learned patterns are shaped in the manner

shown in our model, in which the target pattern is considered to be

identical to the pattern evoked by visual stimuli.

Theoretical discussions on such itinerant dynamics of neural

activities have been carried out, with attractor ruin networks [20]

[21] and heteroclinic cycles [22] [23]; experimental evidence for

these dynamics has also been provided [24]. In these studies, it has

been show that the neural activity itinerates over the memorized

patterns one by one, similar to the spontaneous activities in our

model. However, the manner in which learning gives rise to these

itinerant dynamics has not been clarified. In our study, we show

the generation of spontaneous activities by the successive learning

of I/O mappings through Hebbian and anti-Hebbian rules.
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We put forward the idea ‘‘memory as organization of flow

structure’’ or ‘‘memory as flow,’’ which is in sharp contrast to the

idea of ‘‘memories as attractors.’’ According to proposed idea, the

neural dynamics in the presence and absence of different inputs

are distinct and separated because of the change in the flow of

neural activities. The distinct change in the flow is formulated as

bifurcation, which stabilizes distinct memorized patterns (in this

sense, our viewpoint can also be termed ‘‘memories as bifurca-

tions’’). This bifurcation against the input strength will be

experimentally confirmed by measuring the neural activity for

different external stimuli.

Supporting Information

Figure S1 Change in the minimum distance between the
activity and the target. Change in the minimum distance

between the output activity and the target during the learning

process are plotted. The minimum distance Dmin at tBS = 1 and

tBS = 128 is plotted in Figs. A and B, respectively. Here, Dmin is

defined in the same manner as in Figure 9. Red and blue lines

represent Dmin after one and ten learning steps, respectively. The

distance to one (or a few) target(s) is small, while in Figure 9, the

distance to almost all the targets is small for tBS = 8.

(PDF)

Acknowledgments

The authors would like to thank I. Tsuda, Y. Takahashi, and S. Ishihara

for their invaluable comments.

Author Contributions

Conceived and designed the experiments: TK. Performed the experiments:

TK. Analyzed the data: TK KK. Contributed reagents/materials/analysis

tools: TK. Wrote the paper: TK KK.

References

1. Willshaw DJ, von der Malsburg C (1976) How patterned neural connections can

be set up by Self-Organization. Royal Society of London Proceedings Series B

194: 431–445.

2. Hopfield JJ (1984) Neurons with graded response have collective computational

properties like those of two-state neurons. Proceedings of the National Academy

of Sciences of the United States of America 81: 3088–3092.

3. Kohonen T (1982) Self-organized formation of topologically correct feature

maps. Biological Cybernetics 43: 59–69.

4. Rumelhart DE, Mcclelland JL (1986) Parallel distributed processing: explora-

tions in the microstructure of cognition. Volume 1. Foundations. MIT Press,

Cambridge, MA; None. pp 318–362.

5. Luczak A, Barth P, Marguet SL, Buzski G, Harris KD (2007) Sequential

structure of neocortical spontaneous activity in vivo. Proceedings of the National

Academy of Sciences 104: 347–352.

6. Mazor O, Laurent G (2005) Transient dynamics versus fixed points in odor

representations by locust antennal lobe projection neurons. Neuron 48:

661–673.

7. Barto AG, Sutton RS, Brouwer PS (1981) Associative search network: A

reinforcement learning associative memory. Biological Cybernetics 40: 201–211.

8. Xie X, Seung HS (2004) Learning in neural networks by reinforcement of

irregular spiking. Physical Review E 69: 041909.

9. Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A (2003) Spontaneously

emerging cortical representations of visual attributes. Nature 425: 954–956.

10. Elman JL (1990) Finding structure in time. Cognitive Science 14: 179–211.

11. Jordan MI (1990) Attractor dynamics and parallelism in a connectionist

sequential machine. In: Artificial neural networks: concept learning, IEEE Press.

pp 112–127.

12. Kurikawa T, Kaneko K (2010) Learning shapes bifurcations of neural dynamics

upon external stimuli. Neural Information Processing Theory and Algorithms

17th International Conference, ICONIP 2010, Sydney, Australia, November
22-25, 2010, Proceedings, Part I. pp 155–162.

13. Jaeger H, Haas H (2004) Harnessing nonlinearity: Predicting chaotic systems

and saving energy in wireless communication. Science 304: 78–80.
14. Maass W, Natschlger T, Markram H (2002) Real-Time computing without

stable states: A new framework for neural computation based on perturbations.
Neural Computation 14: 2531–2560.

15. Jay TM (2003) Dopamine: a potential substrate for synaptic plasticity and

memory mechanisms. Progress in Neurobiology 69: 375–390.
16. Reynolds JNJ, Hyland BI, Wickens JR (2001) A cellular mechanism of reward-

related learning. Nature 413: 67–70.
17. Fusi S, Drew PJ, Abbott L (2005) Cascade models of synaptically stored

memories. Neuron 45: 599–611.
18. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Essen DCV, et al. (2005) The

human brain is intrinsically organized into dynamic, anticorrelated functional

networks. Proceedings of the National Academy of Sciences of the United States
of America 102: 9673–9678.

19. Luczak A, Barth P, Harris KD (2009) Spontaneous events outline the realm of
possible sensory responses in neocortical populations. Neuron 62: 413–425.

20. Tsuda I (2001) Toward an interpretation of dynamic neural activity in terms of

chaotic dynamical systems. Behavioral and Brain Sciences 24: 793–810.
21. Gros C (2009) Cognitive computation with autonomously active neural

networks: An emerging field. Cognitive Computation 1: 77–90.
22. Rabinovich M, Huerta R, Laurent G (2008) NEUROSCIENCE: transient

dynamics for neural processing. Science 321: 48–50.
23. RabinovichMI, Huerta R, Varona P, Afraimovich VS (2008) Transient

cognitive dynamics, metastability, and decision making. PLoS Comput Biol 4:

e1000072.
24. Sasaki T, Matsuki N, Ikegaya Y (2007) Metastability of active CA3 networks.

J Neurosci 27: 517–528.

Spontaneous Dynamics Shaped by Learning

PLoS ONE | www.plosone.org 11 March 2011 | Volume 6 | Issue 3 | e17432


