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ABSTRACT

We describe a general binding score for predicting
the nucleic acid binding probability in proteins. The
score is directly derived from physicochemical and
evolutionary features and integrates a residue neigh-
boring network approach. Our process achieves sta-
ble and high accuracies on both DNA- and RNA-
binding proteins and illustrates how the main driving
forces for nucleic acid binding are common. Because
of the effective integration of the synergetic effects
of the network of neighboring residues and the fact
that the prediction yields a hierarchical scoring on
the protein surface, energy funnels for nucleic acid
binding appear on protein surfaces, pointing to the
dynamic process occurring in the binding of nucleic
acids to proteins.

INTRODUCTION

Protein–nucleic acid (NA) interactions play crucial roles
in a wide variety of functions ranging from transcrip-
tion, translation, post-transcriptional/-translational modi-
fication and post-transcriptional/-translational regulation.
An important step in understanding the recognition mech-
anism is to locate the functional residues on the RNA-
/DNA-binding proteins (RBP/DBP) in an unbiased and
systematic manner. This need is becoming even more criti-
cal with the massive outcome of biological sequence data (1)
and the growing numbers of non-canonical protein–RNA
interactions, such as chromatin regulatory factors that were
not initially thought to be DBP (2). Although computa-
tional prediction of functional residues is an established
field, the question is far from being settled. The difficulty
is compounded by the amazing diversity in protein recog-
nition folds as well as in RNA conformational states. Our
main and first aim here is to derive a binding score for the
probability of NA binding to a protein on the sole basis of
the physicochemical and evolutionary features that can be
directly derived from the protein structure. Afterward the

score is used in order to apply the score for the prediction
of NA-binding residues to proteins with unknown binding
properties and to cases where the protein structure is un-
known.

Previously, a significant number of prediction studies (3–
6) focusing on NA-binding residues have been carried out.
However, the relationship between binding sites and physic-
ochemical or evolutionary features has not been clarified.
On one hand, some previous approaches (5) have com-
bined physicochemical features and evolutionary features,
but used ‘black box’ approaches with loose and hidden
relationships between features. On the other hand, pro-
grams based on physicochemical (7,8) and evolutionary (9)
features are not competitive in terms of prediction accu-
racy (10). Furthermore, the approach of NA binding has
not been unified in prediction. RNA- and DNA-binding
residue predictions are always treated as different problems
or trained with different datasets within the same frame-
work (5,11,12). Finally, the current predictions formulate
the problem as a binary classification problem (binding or
not binding) that tends to overemphasize comparisons be-
tween residues in different proteins (Supplementary Note
1).

Here, on the basis of the coordinates of protein struc-
tures, we show that the protein electrostatics potential, ac-
cessible surface area (ASA) and sequence conservation en-
tropy (CE) can be used in predicting RNA-binding residues
achieving both high and stable accuracies on different
datasets. Because protein binding residues recognize syn-
ergistically NA residues through a network of interactions,
our approach combines linearly those central features us-
ing a neighboring network scoring. The network scoring
attempts to monitor the real neighboring network relation-
ships between residues and is continuous on the protein sur-
face. The binding sites happen therefore as contact patches.
The final prediction scores not only infer the likelihood
for RNA binding but also show the presence of energy
funnels on the protein surfaces pointing to the underlying
dynamic process during protein–NA binding complex for-
mation. Interestingly, this approach, named RBscore, also
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achieves high accuracies on DBP without further training,
which indicates that the common and basic driving forces
for RNA/DNA binding of proteins were adequately cap-
tured. A web server of RBscore (http://ahsoka.u-strasbg.fr/
rbscore/) based on the new prediction approach is available.
The web server allows a user to derive the RBscore for a
protein with a known structure or from a single sequence of
a protein.

MATERIALS AND METHODS

Datasets

RBP structures were obtained from NPIDB database (13)
(Jan 2014) with resolution better than 3.5 Å and R factor
<0.3 as criteria. PISCES (14) and TMalign (15) were used
to check sequence and structural similarity. Sequence iden-
tity <25% and TMscore <0.7 were used as thresholds to re-
move redundancy. In the results, 130 protein chains (named
as R130) were collected as a training set, while other 117
protein chains (R117) were taken as an independent test set.
The 130 proteins in the R130 training set are annotated by
protein names, and several typical RNA-binding domains
are found and annotated. RNA-binding domains have also
been checked for redundancy. Some previous works, es-
pecially sequence-based predictors that only consider se-
quence identity to remove redundancy of the datasets, can-
not guarantee the absence of homology between the train-
ing and test datasets. In such cases, the resulting datasets
would lead to a situation of training and test with similar
data included, and the models do not have predictive abil-
ity. Besides, a test set of 381 DBP (D381) was also prepared
in the same way but with sequence identity <25%, resolu-
tion better than 3.0 Å and R factor <0.3. Since D381 is only
used for test, structural similarity was not considered.

A further 14 RBP and 11 DBP datasets were collected
from previous programs to assess prediction accuracy,
including BindN R107 (107RBP) and BindN D62
(62DBP) from BindN+ (5), PPRInt R86 (86 RBP) from
PPRInt (16), RNABindR R144 (17), RNABindR R147
(18), RNABindR R44 and RNABindR R111(6) from
RNABindR/RNABindRPlus, meta2 R44 from (4),
aaRNA R67, aaRNA R141 and aaRNA R205 from
aaRNA (19), Sungwook R267 and Sungwook R727 from
(20), Shandar D140 from (21), Susan D56 from (22),
DBindR D374 from DBindR (23), DISPLAR D428
from DISPLAR (24), DNABINDPROT D54 from
DNABINDPROT (25), PreDNA D224 from PreDNA
(26), metaDBSite D232 and metaDBSite D316 from
metaDBSite (27), SDCPred D159 from SDCPred (28).

Some unreasonable cases were excluded from the assess-
ment datasets: (i) the presence of a DBP in an RBP set
(PDB ID 1a1v); (ii) superseded PDB structures; (iii) pep-
tides shorter than 20 residues; (iv) weak and uncertain NA
binding proteins including those with less than three bind-
ing residues; (cascade complex as an example in Supplemen-
tary Note 2) (v) PDB chains containing only C� atoms; (vi)
proteins constituted by two separate short peptides.

Binding residue definition

In previous studies (5,16–18,29,30), NA-binding residues
are always defined as residues that have at least one NA
atom in protein contact within a distance cutoff. The differ-
ent distance cutoffs that used to define NA binding sites in
previous programs led to ambiguity in assessment. Here, 3.5
Å was used as a distance cutoff to define binding sites in the
training set. In total, 3.5 to 6 Å with 0.5 Å as step were used
as hierarchical thresholds to define binding residue in test
sets (see Supplementary Note 2). Besides, an NA-binding
residue always requires ASA change (�ASA > 0 Å2) upon
complexation with NA. ASA is measured by NACCESS
(31) with default parameters.

Assessment of accuracy

All previous prediction methods treat the binding site pre-
diction as a classification problem. And all the residues in
all the proteins are compared together as binding or non-
binding. Receiver Operating Characteristic (ROC) curve to-
gether with Area Under Curve (AUC) is always used as
criterion for accuracy, since it is a classical assessment for
machine-learning classifier (32). Nevertheless, for the pre-
diction of NA-binding residues on a given protein, it is not
necessary to compare with all other residues on all other
proteins, since different proteins have different affinities for
NA. NA-binding residues only need to be more favorable to
NA than non-binding residues of the same protein. There-
fore, since the accuracy of prediction on a given protein
can be assessed by AUC, the accuracy of a set of proteins
should average accuracies of all proteins (see Supplemen-
tary Note 1). We suggest the weighted arithmetic mean of
AUC (wAUC) and mean of AUC (mAUC) as two criteria
of accuracy for a set of proteins:

wAUC =
∑

AUC(i ) × len(i )∑
len(i )

mAUC =
∑

AUC(i )
N

For a protein i, AUC(i) is its AUC value and len(i) is
length of the protein, while N is the number of proteins in
a dataset. We call the AUC that compare all the residues in
a dataset together as total AUC (tAUC) and still use it as a
reference for comparison. However, even a high tAUC does
not necessary imply a high accuracy on each of the proteins
when wAUC and mAUC are low, since tAUC overestimates
unnecessary comparisons between residues of different pro-
teins.

Representation of the physicochemical features and of the
overall score

Three features, solvation energy, electrostatics potential
(Q) and sequence CE, were measured to predict binding
residues. The program DMS (33) was used with default pa-
rameters to define surface grids on protein surface before
calculating the features. NACCESS (31) was applied with
default parameters to calculate absolute ASA, the solva-
tion energy is represented by a weighted ASA of the residue.

http://ahsoka.u-strasbg.fr/rbscore/
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The electrostatic potentials were measured by APBS (8) to-
gether with pdb2pqr (34,35), both with default parameters.
To better represent the distribution of electrostatics, elec-
trostatic potential of the surface grids was calculated and
counted into 10 bins from −20 to 20 (KbT/ec), resulting
in 10 counts. Electrostatics score is a linear combination of
these 10 counts. For sequence CE, HHblits (36) was used
(with –e 1e-10) to search and align homologous sequences,
while Weblogo (37) was used to calculate Shannon entropy
(38) and width of alignment. (For each position in a multi-
ple sequence alignment, number sequences that have a non-
gapped residue in an aligned position are divided by total se-
quence number of the multiple sequence alignment.) Thus,
in total, there are 13 (1+10+2) feature values per residue. A
feature score is assigned to a residue by a linear combination
of all features:

Efeat = waa × ASA+∑
10

wi × countELEC(i ) + wCE × CE + wwidth × width + Caa

ASA is the accessible surface area of the residue and waa
is a residue-type-dependent weighing factor (this is required
because ASA is strongly affected by the residue side chain
and is thus related to residue type). wi are the weighing
factors for the 10 counts of electrostatics distribution and
countELEC(i) is the count of charged grids in the ith bin.
Score for electrostatics is a linear combination of the 10 bins
weighted by wi. CE and width are CE and alignment width
values (a high CE implies that the residue is less likely to
change and a high alignment width implies that the residue
is less likely to be a gap). Both wCE and wwidth are positive
weighing factors. Caa is a residue-type-dependent constant
that reflects the binding tendency to RNA. In total, there
are 52 weighing factors for the feature score (provided in
Supplementary Table S1) and the feature score for a residue
requires 14 of them.

Neighboring network and scoring approach

Spatial neighborhood. NA-binding residues generally
happen as a patch on the protein surface (7,39). Therefore,
the score of an NA-binding residue should reflect the
proximity of other NA-binding residues. Surface grids are
defined by DMS (33). Two residues are defined as surface
neighbors when a grid pair of the two residues is within
1 Å. Two non-neighbor residues with a neighbor residue
in common are considered as indirect neighbors. Since
indirect neighbors that are too far away may have little
influence on the target residue, a limit of 18 Å C� distance
from the target residue is set for effective indirect neighbors.

Sequence neighborhood. Some residues are neighbors not
because protein folding brings them together to form the
binding interface but because they are linked by peptide
bonds or local hydrogen bonds in the folded protein struc-
ture. Spatial and sequence neighborhoods have very differ-
ent effects on the NA-binding feature of a given residue.
Therefore, neighbor residues (j) are classified into three
groups according to their sequence distance to the target

residue (i):

|i − j |

⎧⎪⎪⎨
⎪⎪⎩

1, linked by peptide bond

2 − 4, linked by local hydrogen bonds to form helix structure

> 4, residues gather up by other reason(forming interface)

Furthermore, neighbor residues with high scores are
more likely to influence the target residue when the target
residue also has a high score. Thus, the effects of high scored
neighbors should be accentuated while low scored neigh-
bors should be alleviated. Accordingly, neighbors can also
be classified as high score neighbors when they have fea-
ture scores higher than the target residue and vice versa for
low score neighbors. In this way, there are 6 (3×2) neighbor
types.

For the final score of prediction, we describe a neighbor-
ing network based scoring approach to linearly integrate
the features here. Because direct neighbor residues have a
stronger influence on the target residue than indirect neigh-
bors, direct neighbors are defined as the first layer of net-
work while indirect neighbors as the second layer (see Sup-
plementary Figure S1). The prediction score, Epred or more
simply the ‘RBscore’, is defined as a combination of feature
score of the target residue and the averaged neighboring fea-
ture scores of the two neighboring layers:

Epred = Efeat +
∑

direct neighbors uaa× fneighbors type×Efeat

Ndirect neighbors

+
∑

indirect neighbors vaa×gneighbors type×Efeat

Nindirect neighbors

uaa and vaa are residue-type-dependent weighing factors
that imply different residue neighbors may have different
effects on the target residue. N is the number of neigh-
bors used to average the effects of the environment. f and g
are weighing factors according to different neighbor types.
There are 52 (20 for waa and uaa each, 12 for neighbor types
f and g) weighing factors for neighboring network. Hence,
the final score includes 104 parameters (52 for feature score,
52 for neighboring network) in total and is a linear combi-
nation of all these features.

Training of the parameters

The parameters are trained on the R130 dataset with 5-
fold cross-validation and optimized with simulated anneal-
ing based Monte Carlo sampling to maximize the wAUC
value. The best model is taken as the prediction model.

Support vector machine based approach

As a reference, a support vector machine (SVM) based
approach similar to other machine-learning methods was
adopted (5,16,40). The position specific scoring matrix
(PSSM) is generated by PSI-BLAST (41) program against
Swiss-Prot (42) sequence database. An 11-mers (five sequen-
tial neighbors on each side of target residue) slide window is
used to represent local information of a residue. The input
information that is directly adopted from PSSM includes
220 (11×20) integer values. The SVMlight (43) was used
to construct SVM classifier. RNA binding sites are defined
as residue within 3.5 Å of any RNA atom. A 5-fold cross-
validation was used to train on the 130 RBP training set.
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Energy funnel measure

The X-axis in the energy funnel plot is the minimum dis-
tance from RNA/DNA to a protein residue. For each
residue, we measure the distance between all atoms and all
NA atoms, with the minimum of the distances considered
as the distance between the residue and the NA. Supple-
mentary Figure S2 shows a simple scheme of hierarchical
distances between RNA and residues in a protein.

Homology modeling test

Alignments used to build homologous models were gen-
erated by TMalign (15) between the bound and unbound
structures. Structure models used in prediction were built by
MODELLER (44) based on the unbound state structures
as templates and the alignments. Datasets for the homol-
ogy modeling test are adopted from (45), DR bind1 (46),
DRNA (47), OPRA (48), Protein–RNA docking bench-
mark 1.0 (49), Protein–RNA docking benchmark I (50) and
II (51), DBD-Hunter (52), Protein–DNA docking bench-
mark (53), DISPLAR (24) and DNABINDPROT (25).

RESULTS

Accuracy comparison with SVM

Current prediction methods for NA-binding residues nor-
mally compare all residues in all proteins together to mea-
sure the area under the ROC curve (AUC) for assessment.
However, the comparison between residues of different pro-
teins is not necessary. To avoid a biased assessment, we first
measure the AUC of each protein and assess the predic-
tion accuracy of a dataset with the weighted mean of AUC
(wAUC) or mean of AUC (mAUC) (see Supplementary
Note 1 and Materials and Methods for descriptions). An
SVM-based approach similar to previous studies (5,6,16)
was built alongside RBscore, as a reference, sharing the
same training (R130) and test (R117) datasets (see Materi-
als and Methods). A 5-fold cross-validation was carried out
on the training set and the best model was used for tests.
The results of the cross-validation can be found in Supple-
mentary Table S2. Both the approaches were tested on 14
RBP datasets and 11 DBP datasets.

As shown in Figure 1A and Supplementary Table S3, al-
though the SVM approach achieves a much higher accu-
racy, 0.947 wAUC, on the training set than RBscore, 0.886,
it drops significantly to 0.719 in contrast to the stable ac-
curacy of 0.867 for RBscore in test set. Consistently, tAUC
and mAUC also demonstrate a stable high accuracy for RB-
score on all other datasets no matter what distance cutoff
is used to define the NA binding sites. Besides, Figure 1B
also illustrates that RBscore is less likely to be subject to ac-
curacy fluctuation with distance cutoff compared with the
SVM approach. Its accuracy variation is less than that of
the SVM approach on the majority of the datasets. This
implies that RBscore is stable in its predictive capability re-
gardless of dataset and distance cutoff used in binding site
definition.

Furthermore, RBscore exhibits high prediction accura-
cies consistently on all 11 DBP test sets with ∼0.90 wAUC,
compared with <0.80 wAUC for the SVM approach (see

Table 1 and Figure 1). According to the results, the con-
clusion also holds true as the distance cutoff used to define
binding sites change or assessed with other accuracy crite-
ria. Unexpectedly, RBscore achieves even higher accuracy
on DBP than on RBP. This demonstrates that although RB-
score is trained with cross-validation on RBP, it can capture
the key features of all NA-binding residues including DBP.
Also, we have an indication that proteins bind to both DNA
and RNA following the same rules of recognition or employ
the same driving force, such as electrostatics potential and
residue accessibility.

Contributions of the three features and neighboring network

As the three features (Electrostatics, CE and Solvation en-
ergy, see Materials and Methods for detail) used in RBscore
stand for different aspects of NA-binding residues, Figure 2
and Supplementary Table S3 illustrate that there is no over-
lap amongst them and that each of these features improves
the prediction accuracy. RBscore is consistently better than
predictions with single feature alone. And such improve-
ments hold true when tested on every dataset.

The neighboring networks in RBscore include two parts:
(i) the spatial neighborhood (based on surface continuity,
as described in Materials and Methods) for residues form-
ing a binding interface as a continuous patch on the protein
surface, and (ii) the sequential neighborhood that reflects
the covalent and local non-bonded contacts. With these two
neighboring networks who linearly combine the features,
the prediction improves stably on every dataset (illustrated
in Supplementary Table S3 and Figure 2) with a wAUC in-
crease 0.02–0.03.

Comparison with other programs

For comparisons, nine currently available web servers
(BindN (12), BindN+ (5), PPRInt (16), KYG (54), RN-
ABindRPlus (6), DISPLAR (24), DBS-Pred (21)), DBS-
PSSM (55) and (19) for predicting RNA/DNA binding
were tested together with RBscore and the SVM approach
on 25 different datasets (see Supplementary Table S3 for
detailed results). The top three programs BindN+, RN-
ABindRPlus and aaRNA are compared in Figure 3.

A priori, it is not surprising that DBP and RBP may
adopt similar driving features in binding and the predic-
tion programs can achieve the two simultaneously. How-
ever, such a prediction achievement is not reached by most
predictors, except for RBscore and aaRNA (see Figure 3).
Machine-learning methods can demonstrate strong advan-
tages in interpolation but not in extrapolation, the predic-
tion power on DBP may be limited.

The results for BindN and KYG show stable but low pre-
diction accuracies, 0.68–0.72 and 0.73–0.77. BindN+ and
PPRInt present high accuracy in terms of total AUC, but
are very unstable in different datasets. wAUC ranges are
0.76–0.89 and 0.70–0.85, while mAUC also shows the same
trends. As BindN+ employ two SVM models to predict
RNA and DNA binding sites, each model performs bet-
ter on its respecting type of proteins. RNABindRPlus, that
integrates machine learning and homologous search strate-
gies in RNA binding site prediction, shows good accuracies
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Figure 1. Prediction accuracy comparison between RBscore and the SVM approach. (A) Accuracy (wAUC) comparison between RBscore and the SVM
approach on 14 RBP datasets and 11 DBP datasets, accuracies are shown as heat map with rainbow colors from blue to red as low to high. (B) Maximum
accuracy (wAUC) variation resulted from distance cutoff in binding site definition. RBscore (red) is more stable in accuracy than the SVM approach (blue).
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Figure 2. Feature and network integrations improve the prediction. Accuracy (wAUC) comparison between RBscore and single feature based predictions.
Qscore, CEscore and SOLscore are predictions based on electrostatics, sequence CE and solvation energy respectively. no network is prediction without
considering the residue neighboring network. RBscore shows systematic improvement over other predictions.
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Figure 3. Accuracy comparison among the best prediction programs. BindN+ RNA and BindN+ DNA show the two types of prediction models in
BindN+. Both RBscore and aaRNA show stable accuracy on all datasets, while RBscore is systematically better than aaRNA.
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Table 1. Accuracy tests on 25 datasets

RBscore SVM aaRNA RNABindRPlus BindN+ RNA BindN+ DNA

Cutoff = 3.5 Å wAUC mAUC tAUC wAUC mAUC tAUC wAUC mAUC tAUC wAUC mAUC tAUC wAUC mAUC tAUC wAUC mAUC tAUC

BindN R107 0.850 0.847 0.866 0.878 0.898 0.943 0.827 0.828 0.877 0.907 0.884 0.936 0.897 0.893 0.925 0.761 0.765 0.815
PPRInt R86 0.857 0.855 0.863 0.884 0.910 0.947 0.835 0.835 0.883 0.918 0.909 0.946 0.871 0.876 0.913 0.771 0.777 0.810
RNABindR R144 0.860 0.849 0.868 0.849 0.865 0.921 0.828 0.827 0.877 0.894 0.865 0.922 0.819 0.828 0.882 0.737 0.753 0.801
RNABindR R147 0.860 0.848 0.868 0.849 0.865 0.922 0.828 0.826 0.877 0.894 0.865 0.922 0.819 0.828 0.883 0.737 0.752 0.802
RNABindR R44 0.862 0.863 0.869 0.810 0.819 0.844 0.817 0.822 0.845 0.763 0.770 0.800 0.784 0.792 0.822 0.754 0.764 0.790
RNABindR R111 0.898 0.869 0.867 0.789 0.787 0.839 0.849 0.825 0.842 0.762 0.739 0.740 0.768 0.755 0.780 0.748 0.733 0.767
meta2 R44 0.862 0.863 0.869 0.810 0.819 0.844 0.817 0.822 0.845 0.763 0.770 0.800 0.784 0.792 0.822 0.754 0.764 0.790
aaRNA R67 0.857 0.857 0.874 0.753 0.777 0.815 0.814 0.812 0.846 0.757 0.755 0.776 0.764 0.777 0.810 0.738 0.744 0.783
aaRNA R141 0.875 0.858 0.836 0.814 0.811 0.848 0.834 0.820 0.835 0.846 0.836 0.854 0.780 0.781 0.792 0.736 0.739 0.731
aaRNA R205 0.877 0.864 0.867 0.836 0.854 0.911 0.841 0.837 0.878 0.847 0.834 0.881 0.795 0.808 0.853 0.748 0.759 0.792
RBscore R130 0.886 0.870 0.864 0.947 0.947 0.969 0.838 0.832 0.877 0.828 0.822 0.871 0.806 0.821 0.867 0.759 0.765 0.801
RBscore R117 0.867 0.855 0.843 0.719 0.723 0.774 0.829 0.820 0.852 0.798 0.789 0.826 0.743 0.747 0.783 0.723 0.728 0.754
Sungwook R267 0.865 0.848 0.837 0.874 0.865 0.886 0.830 0.811 0.824 0.808 0.796 0.808 0.797 0.783 0.815 0.744 0.741 0.742
Sungwook R727 0.867 0.857 0.881 0.893 0.894 0.935 0.839 0.833 0.879 0.827 0.820 0.869 0.821 0.822 0.874 0.768 0.773 0.824
BindN D62 0.909 0.897 0.864 0.776 0.787 0.787 0.881 0.875 0.862 0.787 0.788 0.786 0.822 0.826 0.838 0.944 0.938 0.944
Shandar D140 0.900 0.893 0.878 0.765 0.772 0.780 0.852 0.855 0.857 0.778 0.778 0.760 0.820 0.821 0.832 0.834 0.855 0.852
Susan D56 0.918 0.912 0.890 0.766 0.776 0.775 0.872 0.870 0.867 0.766 0.774 0.759 0.808 0.814 0.823 0.843 0.872 0.860
DBindR D374 0.895 0.887 0.874 0.748 0.757 0.780 0.856 0.856 0.862 0.772 0.777 0.768 0.795 0.807 0.823 0.813 0.840 0.843
DISPLAR D428 0.894 0.885 0.869 0.757 0.764 0.774 0.854 0.853 0.860 0.775 0.780 0.771 0.803 0.812 0.825 0.824 0.846 0.847
DNABINDPROT D54 0.920 0.903 0.867 0.723 0.736 0.756 0.864 0.851 0.853 0.754 0.745 0.700 0.786 0.790 0.793 0.807 0.827 0.818
PreDNA D224 0.896 0.889 0.873 0.748 0.747 0.759 0.857 0.857 0.859 0.764 0.768 0.758 0.794 0.800 0.812 0.802 0.819 0.823
RBscore D381 0.895 0.884 0.875 0.748 0.742 0.758 0.852 0.844 0.854 0.761 0.764 0.768 0.797 0.795 0.806 0.796 0.805 0.810
metaDBSite D232 0.898 0.889 0.872 0.753 0.744 0.761 0.858 0.856 0.858 0.769 0.769 0.763 0.798 0.799 0.812 0.804 0.818 0.821
metaDBSite D316 0.898 0.885 0.878 0.755 0.756 0.772 0.853 0.851 0.859 0.770 0.770 0.769 0.799 0.802 0.818 0.809 0.829 0.834
SDCPred D159 0.902 0.896 0.880 0.760 0.769 0.773 0.854 0.857 0.856 0.772 0.772 0.753 0.812 0.814 0.823 0.827 0.848 0.843

Datasets after BindN D62 are DBP datasets. RBscore R130 is the training set of RBscore and the SVM approach. See Materials and Methods for descriptions of the dataset.

of tAUC on some of the RBP datasets, but is less accurate
in terms of wAUC and in DBP datasets. In brief, relative to
all these comparisons, RBscore achieves wAUC >0.85 (3.5
Å distance cutoff) on all types of datasets with stable accu-
racies.

As different programs may use different distance cutoffs
to define RNA binding sites, assessments with different cut-
offs from 3.5 Å to 6 Å were also carried out and similar
conclusions could be drawn. We found that the programs
normally favor the implemented distance cutoffs, but the ac-
curacy variations are less than the differences between dif-
ferent datasets. Generally, wAUC accuracies for RBscore
are still in the range >0.83. The machine-learning-based
methods (5,16) have similar philosophy and accuracy dis-
tribution as our SVM approach. This may result from (i)
the bias introduced by cross-validation in pattern recog-
nition (56) (see Supplementary Note 3 for discussion); (ii)
some sequence-based predictors include datasets without
removing structural homology, leading to the overestima-
tion in accuracy (see Supplementary Note 4 for discus-
sion). Collectively, these results demonstrate that RBscore
achieves both accuracy and stability in accuracy that can-
not be achieved by other currently available programs. Full
comparison could be found in Supplementary Figure S3.

Energy funnel

As a result of the neighboring network based scoring that
can capture the neighboring environment of a residue in a
network approach, RBscore is normally continuous on the
protein surface and varies with the minimum distance from
the protein residue to NA. Compared with SVM scores
mapped on the protein surface (Figure 4A and C), RB-
score shows a hierarchical scoring on the protein surface.
The approximate continuity of RBscore on the protein sur-
face results from two points: (i) the neighboring network ap-
proach implemented in RBscore considers not only the fea-

Figure 4. Energy funnel comparison on protein surface. (A) RBscore
mapped on DNA-directed RNA polymerase II (DDRP2) subunit RPB2,
PDB id 3S14 chain B (not in the training set) with rainbow color. (B) SVM
score mapped on DDRP2 protein in the same way. (C) RBscore mapped
on DBP recA, PDB id 3cmw chain A (not in the training set) with rainbow
color. (D) SVM score mapped on recA protein in the same way. (E) The
relation between distance to RNA and RBscore clearly shows an energy
funnel-like pattern of DDRP2 protein. (F) A distribution between distance
to RNA and RBscore on 44 RBP.
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tures of the residue but also the neighboring environment;
and (ii) unlike the machine-learning classifiers that try to
cluster positive and negative samples around two fixed val-
ues (for example −1 and 1), RBscore does not set a limit
in scoring but attempts to represent the NA binding prob-
abilities. Thus, RBscore represents adequately the binding
probability of NA and the energy funnel on protein sur-
face. When we compare RBscore with the minimum dis-
tance from a residue to NA (Figure 4E), we find that the
residues closer to NA normally have better RBscore and the
distribution is similar to an energy funnel that has been de-
scribed in molecular docking. Although mixing all the pro-
teins together for comparison is unreasonable, Figure 4F
still shows the trends of an energy funnel when 44 RBPs
were mixed together. Additionally, we measured the corre-
lation coefficient between RBscore and the minimum dis-
tance from a residue to RNA/DNA for residues around the
binding region. The average values of these correlation coef-
ficients of all the test sets are listed in Supplementary Table
S4. As all the average correlation coefficients of the datasets
are around 0.5, we conclude that RBscore is positively re-
lated to the distance from a residue to RNA/DNA. If RB-
score is related to the binding energy funnel on the protein
surface, it can be correlated with the distance from a residue
to the core of the binding region of the interface. The core of
binding region is hard to define, but the minimum distance
from a residue to RNA/DNA can monitor (at least partly)
the residue affinity to RNA/DNA. The positive correlation
coefficients around 0.5 support that RBscore is related to
the binding energy funnel on protein surface. According to
the energy funnel colored by RBscore on protein surface,
we guess that the protein–NA binding process could follow
dynamic process: NA may first bind to sub-optimal loca-
tions and slide alongside down the energy funnel. Simulta-
neously, we hope RBscore could help NA–protein docking
by avoiding the search of all degrees of freedom.

Estimate the RNA binding site number from sequence

Unlike a binary prediction (binding or non-binding), RB-
score displays the probability of NA binding and illustrates
how far away a residue is from the NA binding region. It
can therefore be valuable for estimating the number of NA-
binding residues in a protein. We found that the number of
NA-binding residues of a protein is highly correlated to the
proportion of six types of residues in the protein sequence
(see Supplementary Note 5 and Supplementary Figure S4).
Some other residue types are also related to RNA/DNA
binding, but their proportions do not have positive corre-
lation with the number of binding sites. These six residue
types are Arg, Asp, Gly, His, Lys and Thr. They are similar
to the important interface residues for RNA binding found
in previous analysis (57). Interestingly, three of them (R, G,
K) belong to the disorder-promoting amino acid types and
the three other belong to the ambivalent class (H, T, D) (58).
Even if RNA-binding residues are defined by different dis-
tance cutoffs or tested in different datasets, the Pearson cor-
relation efficiency between the ratios of the six residues and
ratios of RNA-binding residues is always around 0.8. Thus,
the number of NA binding sites can be roughly estimated

according to the proportion of these six residue types, a de-
tailed example can be found in Supplementary Figure S4.

Prediction based on homologous structures

In a real-world case, since the starting structure influences
the prediction accuracy, prediction should be based on the
unbound state structure rather than on the bound state.
Therefore, we tested RBscore together with other programs
on 11 unbound protein datasets, including seven RBP
datasets and four DBP datasets. Each protein in the datasets
had a corresponding bound state structure. Structures used
in prediction were modeled by homology modeling accord-
ing to the unbound state structure as the template and pre-
dicted binding sites are compared with the observed bind-
ing sites in the bound state. The results are plotted in Fig-
ure 5, while the relationships between the predicted struc-
ture model quality and binding site prediction accuracy are
plotted in Supplementary Figure S5. Similarly to the test
shown in Figure 3, RBscore and aaRNA demonstrate sta-
ble high accuracy on all the datasets, while RNABindR-
Plus exert highest accuracy in all RBP datasets but accu-
racy drops on three DBP datasets. Such high accuracy on
RBP datasets may be attributed to the homologous search
approach (HomPRIP) integrated in RNABindRPlus. Al-
though tested with limited number of proteins in unbound
test, RBscore still achieves one of the best predictions. And
this shows that RBscore predictions are tolerant to struc-
tural variation or noise.

Web server description

The prediction method is available as a web server at http:
//ahsoka.u-strasbg.fr/rbscore/. Both RBscore and SVM ap-
proaches are carried out when a protein structure is avail-
able as input in the PDB format. Scores predicted by RB-
score with different features are plotted on the protein struc-
ture and illustrated with JSmol (59). Besides, the electro-
statics potential is also mapped onto the protein surface as
well as the Shannon CE, similarly to PatchFinderPlus (7,39)
and Consurf (9,60). If only the protein sequence is available,
the prediction is based only on the SVM approach and only
the prediction score and binary prediction of RNA binding
sites are given as results. The results of the prediction are re-
turned by email and by web page updates. All the datasets
used in this work are also available on the website.

DISCUSSION

RBscore is first built on three main physicochemical and
evolutionary features that are subsequently integrated into
a neighboring network as a linear combination. The score,
thus, directly transforms the key features by weighing fac-
tors into NA binding probability without the complicated
process of machine learning or database search. As NA-
binding residues on a protein normally occur as patches, the
neighboring network that considers both structural and se-
quential neighborhoods not only helps to describe the rela-
tions between residue neighbors of NA binding patches but
also makes RBscore continuous on the protein surface. As a
probability score, RBscore avoids unnecessary comparisons

http://ahsoka.u-strasbg.fr/rbscore/
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Figure 5. Prediction accuracy assessment based on non-native structures. RBscore, aaRNA, KYG, DISPLAR and DNABINDPROT are structure-based
predictors, and other predictions are based on sequence. Accuracies of the programs on different datasets (seven RBP datasets and four DBP datasets)
determined by binding sites defined by different distance cutoffs (from 3.5 to 6.0 Å) are plotted as heat maps.

between residues of different proteins and uses wAUC and
mAUC as criteria to achieve a better accuracy for each pre-
dicted protein. Furthermore, this work revealed a strong lin-
ear correlation between sequence composition (R, G, K, H,
T, D) and number of binding sites. This correlation can be
used to estimate roughly the size of the NA binding region
given the sequence.

Surprisingly, RBscore achieves high accuracies on DBP
although it was first developed for RBP, which underscores
that DBP and RBP incorporate the same general rules re-
sponsible for binding NA. Interestingly, when RBscore is
mapped onto protein structures, we found that it displays
energy funnel patterns. Further, the 2D distribution pat-
terns of the scores are similar to the energy funnel plots
between ligand RMSD in protein–protein docking and en-
ergy in protein folding. When the energy funnels of protein–
protein docking, protein folding and RBscore are compared
together in Supplementary Figure S6, similar patterns are
displayed illustrating the energy funnel like patterns fol-
lowed by RBscore. Therefore, one can imagine the NA–
protein binding process as following dynamic process with
NA first binding to sub-optimal locations and then sliding
alongside down the energy funnel. This dynamic process,
constrained by each residue environment, can be partly de-
scribed by the proposed residue neighboring network incor-
porated in RBscore.

Compared to numerous programs on various datasets
with different criteria, we found that RBscore has consis-
tently wAUC >0.83 on all datasets regardless of the protein
types (DBP/RBP) or distance cutoff used to define bind-
ing sites, a result that cannot be achieved by other currently
available programs. Still, one can find certain machine-
learning methods performing better on some datasets.

The general features used in RBscore cannot capture all
the detailed binding properties of all proteins unless over-
trained. Compared to many machine-learning approaches
that employ the PSSM facility, the number of parameters
in RBscore is not large. Indeed, the number of parame-
ters in the machine-learning prediction models would al-
ways be larger than the number of input vector, which may
include n×20, where n is the window length (61). For in-
stance, the reference SVM approach of 11-mer window
length has a 220-column input vector. Normally, parame-
ters in machine-learning models are much larger than this:
aaRNA has >668 parameters and DISPLAR includes 195
840 parameters. Compared with these numbers of param-
eters, RBscore of 104 weighing factors is relatively small.
And the stable accuracy on all types of datasets regardless
of distance cutoff difference implies that it is less likely to be
overtrained than others.

RBscore is a general score to predict NA binding that
presents both advantages and limitations. First, it is not
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able to assess or predict the type of the input protein and
distinguish whether it is a DBP or an RBP, simultaneously
with the prediction of binding sites. Indeed, by construc-
tion, it is not meant to distinguish between the binding re-
gions specific for different types of ligands (RNA, DNA,
small molecules or ions). For example, the ANP binding
region and the RNA binding region on the DDX protein
(Supplementary Note 6 and Supplementary Figure S7) are
both scored high and the two different binding types can-
not be reflected in the score. Second, RBscore only de-
tects the general interface for NA binding or ligand bind-
ing and does not carry along either the NA sequence speci-
ficity of the binding site or the states of NA (single-strand
or double-stranded). These apparent drawbacks have pos-
itive sides too. It is now clear that many proteins do not
contain canonical RNA binding motifs (like RRM, KH or
Znf domains (62)). Furthermore, some proteins may dis-
play non-specific (or promiscuous) interactions with RNA
(as in Polycomb complex (63)) or ‘cryptic’ affinities for
RNAs (moonlighting proteins as the enzyme aconitase or
other metabolic enzymes (64,65)). RBscore does not need
a knowledge of canonical or non-canonical binding motifs
since it attempts to find the residues that have favorable fea-
tures for RNA/DNA binding and combine these residues
in a network, independent of the presence of canonical or
non-canonical RNA binding motifs. For RBscore, the driv-
ing force is the main determinant for protein–RNA bind-
ing sites rather than the specificity and, thus, a promiscuous
or cryptic binding site can still be detected. Finally, despite
the observation that the higher scored residues in the center
of a binding region are normally more specific than other
residues, the validation of the specificity prediction is still to
be clarified. Generally speaking, this problem is not solved
and is also germane for other programs.

In summary, RBscore relates through structural net-
works the physicochemical and evolutionary features to NA
binding, shows the presence of an energy funnel for protein–
NA binding and achieves high and stable prediction accu-
racies.

AVAILABILITY

RBscore is available as web server to non-commercial users
on http://ahsoka.u-strasbg.fr/rbscore/.
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Supplementary Data are available at NAR Online.
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