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Bicyclo[1.1.1]pentylamines (BPCAs), emerging as sp3-rich surrogates for aniline

and its derivatives, demonstrate unique structural features and physicochemical

profiles in medicinal and synthetic chemistry. In recent years, compared with

conventional synthetic approaches, the rapid development of radical chemistry

enables the assembly of valuable bicyclo[1.1.1]pentylamines scaffold directly

through the amination transformation of highly strained [1.1.1]propellane. In this

review, we concisely summarize the emerging role of radical chemistry in the

construction of BCPAs motif, highlighting two different and powerful radical-

involved strategies including C-centered and N-centered radical pathways

under appropriate conditions. The future direction concerning BCPAs is also

discussed at the end of this review, which aims to provide some inspiration for

the research of this promising project.
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Introduction

As one of the primary and versatile materials, aniline moved to the center of the stage

in the history of the chemical industry in 1856 due to the synthesis of the first artificial dye

called mauveine by British chemist William Henry Perkin (Scheme 1A, left) (Perkin,

1896). Despite the significance of aniline utilized as an essential chemical in the dye

industry and industrial production of rubber chemicals and 4,4′-diphenylmethane

diisocyanate (MDI) (North, 2005), the remarkable progress has also been witnessed in

the discovery of novel medicine and powerful pesticide. As a valuable and common

structural element, aniline and its derivatives widely exist in various bioactive natural

products, pharmaceuticals, clinical drugs, and pesticides (Scheme 1A, right) (Lacroix
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et al., 1999; Gan et al., 2013; Greig and Garnock-Jones, 2016;

Desideri et al., 2019). According to the statistics supported by the

University of Arizona, approximately 54% and 65% of top

200 small molecule pharmaceuticals by retail sales in

2020 and 2021, respectively, contain at least an aniline unit

(McGrath et al., 2010).

With the rise of green chemistry and precision therapy, the

pursuit of targeted drugs featuring excellent tissue and cell

selectivity (Wang et al., 2020; Chu et al., 2021; Sun et al.,

2021), high efficiency, and the environment-friendly synthetic

procedure (Peng et al., 2019; Zuo et al., 2021) has increasingly

become a research trend in medicinal (Friedman et al., 2015; Soto

Scheme 1
Advancements of BCPAs in the medicinal and synthetic chemistry.
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et al., 2020; Manzari et al., 2021; Mitchell et al., 2021) and

synthetic chemistry (Dunn, 2012; Simon and Li, 2012;

Galuszka et al., 2013; Newman and Jensen, 2013; Jahangirian

et al., 2017; Rogers and Jensen, 2019). These concepts put higher

requirements on the metabolic tolerance (Arnott and Planey,

2012; Wishart, 2016; Quinn et al., 2017; Yang et al., 2019; Bi et al.,

2020), pharmacokinetic properties (Ferreira and Andricopulo,

2019; Yang et al., 2019; Jia et al., 2020), and synthetic process of

new drugs (Nadin et al., 2012; Gerry and Schreiber, 2018;

Campos et al., 2019; Lenci and Trabocchi, 2020; Han et al.,

2021). Although aniline and its derivatives have become a

prevalent substructure in discovering new drugs, their

propensity for reactive metabolite (RM) formation triggered

by cytochrome P450 (CYP450)-mediated oxidation may cause

drug−drug interactions or adverse drug interactions (Scheme 1B,

left) (Stepan et al., 2011; Orr et al., 2012; Kalgutkar, 2015). As a

result, in some cases, aniline unit(s) incorporated into the

structure of drug candidates cannot fulfill the high standard

mentioned above. One of the most typical cases is the structural

optimization of the Hsp 90 inhibitor due to the resistance

towards metabolic clearance caused by benzamide moiety

(Scheme 1B, right) (Zehnder et al., 2008; Zehnder et al.,

2011). Hence, developing a strategic replacement of the

aniline unit(s) to address these challenges is highly demanded.

In modern drug discovery, installing a three-dimensional

small-ring framework into the structure of drug candidates

provides unique opportunities to expand potential drug-like

chemical space and alert the physicochemical profiles while

maintaining comparable levels of bioactivity (Carreira and

Fessard, 2014; Auberson et al., 2017; Measom et al., 2017).

The bicyclo[1.1.1]pentanes (BCPs) have recently received

considerable attention from the pharmaceutical, agrochemical,

and materials industries. It has have become established as useful

sp3-rich surrogates for arenes (Stepan et al., 2012; Mykhailiuk,

2019), tert-butyl groups (Westphal et al., 2015), and alkynes

functional groups (Makarov et al., 2017). As the potential

nontoxic bioisosteres for aniline and N-tert-butyl moieties,

bicyclo[1.1.1]pentylamines (BCPAs) offer straightforward

Scheme 2
Approaches of C-centered radicals to valuable BCPAs.
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access to improve medicinal properties in drug candidates

(Lovering et al., 2009). In particularly, the BCPAs motif

demonstrates significant interest in circumventing the

deleterious metabolic processes of an aniline moiety because

of its higher Fsp3 and three-dimensionality, and its spatial

approximation to aniline in physical parameters (Scheme 1B)

(Walsh and Miwa, 2011; Kalgutkar, 2015; Sodano et al., 2020).

Indeed, this strategic replacement has been successfully applied

to optimize the metabolic level of the Hsp 90 inhibitor developed

by Pfizer Company (Scheme 1B, right) (Zehnder et al., 2008;

Zehnder et al., 2011). Recognizing the critical value of BCPAs

scaffold, tremendous efforts from the scientific community have

been increasingly devoted to efficiently constructing BCPAs

scaffold over the past decades (Sodano et al., 2020).

From the retrosynthesis point of view, BCPAs can be

smoothly and (in)directly produced by amination

functionalization of the highly strained [1.1.1]propellane at

the bridgehead position (Wiberg and Waddell, 1990; Milligan

and Wipf, 2016; Sterling et al., 2020), where the internal central

C-C bond can be readily cleaved under a strain-release approach

(Gianatassio et al., 2016; Lopchuk et al., 2017). And the [1.1.1]

propellane can be easily obtained by intramolecular reductive

coupling reaction of 1,3-dibromobicyclo[1.1.1]pentane firstly

reported by Wiberg and Walker in 1982, and later by using

1,1-dibromo-2,2-bis(chloromethyl)cyclopropane as starting

material developed by Szeimies and co-workers (Scheme 1C,

left) (Wiberg and Walker, 1982; Semmler et al., 1985). Early

approaches to BCPAs involved multistep routes utilizing

preformed BCP building blocks derived from a strained

[1.1.1]propellane, such as acyl nitrene rearrangements or

reduction of BCP azides or hydrazines (Scheme 1C, I–III)

(Wiberg and Waddell, 1990; Bunker et al., 2011; Goh et al.,

Scheme 3
Approaches of N-centered radicals to construct valuable BCPAs.
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2014). In 2006, the breakthrough was made by Baran et al., who

developed the strain-release amination of [1.1.1]propellane

leading to access to monosubstituted BCPAs (Scheme 1C, IV)

(Gianatassio et al., 2016; Lopchuk et al., 2017). Then, the Gleason

group extended this approach to synthesizing 1,3-disubstituted

BCPAs (Scheme 1C, IV) (Hughes et al., 2019). However, these

processes require elevated temperatures, restricting functional

group tolerance.

In recent years, fast and impressive achievements have been

witnessed in radical chemistry, and several approaches for

constructing BCPAs have been continuously established (Chen

et al., 2016; Oberg, 2016; Studer and Curran, 2016; Yu et al., 2020;

Parsaee et al., 2021; Sumida and Ohmiya, 2021; Chan et al., 2022;

Holmberg-Douglas and Nicewicz, 2022). On the one hand,

adding C-centered radicals [generated under Fe(II) or

metalaphotoredox catalysis] to [1.1.1]propellane offers

alternative solutions for synthesizing BCPAs in a rapid and

reaction manner (Scheme 1C, V–VI) (Kanazawa et al., 2017;

Zhang et al., 2020). On the other hand, in contrast to the

amination of BCPAs formed by the addition of C-centered

radicals, reactions with the direct addition of N-centered

radicals to [1.1.1]propellane seem like a concise and

promising approach to BCPAs frameworks. However, this

strategy lay dormant for more than 30 years after the seminal

work of Wiberg on the reaction of BCP with nitric oxide (Wiberg

and Waddell, 1990). At present, the addition of N-centered

radicals (promoted by boron catalysis, metalaphotoredox

catalysis, or electron donor-acceptor (EDA) complex) to

[1.1.1]propellane for the build-up of BCPAs has been

established by limited individual groups (Scheme 1C, VII–IX)

(Kim et al., 2020; Pickford et al., 2021; Shin et al., 2021).

Nonetheless, the challenge of narrow substrate scopes and

limited N-centered radical species remains unsolved.

Considering the great potential of this valuable motif in

Scheme 4
Approach of N-centered radical to construct valuable BCPAs.
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synthetic and medicinal chemistry, sufficient attention from the

scientific community should be paid to this promising motif.

Although several essential reviews focusing on constructing

BCP derivatives have recently been published (He et al., 2020;

Anderson et al., 2021), the advancement of radical chemistry in

synthesizing BCPAs still lacks a concise review in this fast-

growing and exciting field (Yu and Shi, 2022). In this review,

we concisely summarize the fast-growing development of radical

chemistry in the assembly of BCPAs motif, highlighting two

different and powerful radical-involved strategies triggering the

cleavage of the central bond of [1.1.1]propellane. The future

direction concerning BCPAs is also discussed at the end of this

review, which aims to provide some inspiration for the research

of this promising project.

Amination strategies to bicyclo[1.1.1]
pentylamines

Amination triggered by C-centered
radicals

In 2019, Uchiyama’s group developed the first radical

multicomponent carboamination of [1.1.1]propellane to

synthesize multi-functionalized BCPA derivatives (Scheme 2,

left) (Kanazawa et al., 2017). With the aid of density

functional theory (DFT) calculations, it was found that di-

tert-butyl azodicarboxylate 2, as the free radical receptor of 3-

substituted BCP-radical (INT 1), can produce more stable free

radical intermediates (INT 2). This chemical property of the

substrate can avoid the self-polymerization of 1 over the reaction

process and make the effective free radical chain reaction

possible. After optimizing the conditions of free radical

multicomponent reaction, the optimal conditions were

determined with iron(II) phthalocyanine [Fe(Pc)] as a catalyst,

tert-butyl hydroperoxide (TBHP) as oxidant, and Cs2CO3 as

additive. Finally, under the condition of a tin-free/

photoirradiation-free system, a series of novel multi-

functionalized bicyclo[1.1.1]pentane derivatives were

synthesized in one-pot operation with a yield of 38%–72%.

Although the above scheme proves the feasibility of the

single-step carboamination multicomponent reaction via

radical addition, the applicability of the reaction is still limited

because only hydrazine is used as the free radical precursor. In

2019, McMillan and his research team made a breakthrough in

this field (Scheme 2, right) (Zhang et al., 2020). Using various free

radical precursors 5 and heteroatom nucleophiles 6, they

prepared a series of different functionalized dicyclopentanes

with good yields through metal photo-oxidation-reduction

catalytic reactions. Based on the importance of copper catalyst

to the reaction system, the author first investigated copper salts

and ligands and found that diketonate ligands such as

acetylacetonate (acac) can effectively form the required three-

component products, thus effectively avoiding the occurrence of

free radical side reactions. Mechanistic investigation showed that

the alkyl radical intermediates were generated under the catalytic

cycle of the photocatalyst Ir(ppy)3. Subsequently, the

nucleophile-ligated copper complex captured the BCP radical

generated by radical addition. Eventually, the target product was

obtained by reductive elimination.

Amination triggered by N-centered
radicals

Compared to C-centered radicals, the direct use of

N-centered radicals to construct disubstituted BCPAs would

be a more challenging path due to the susceptibility of

nitrogen radicals to background reactions such as hydrogen

extraction (Suarez et al., 2013; Xiong and Zhang, 2016; Kwon

et al., 2022). In 2020, Leonori’s team reported the divergent

strain-release amino-functionalization of [1.1.1]propellane with

electrophilic nitrogen radicals for the first time (Scheme 3, left)

(Kim et al., 2020). Based on the team’s previous research work,

they hypothesized that under visible light excitation, the

photocatalyst would be able to oxidize the carboxylic acid

functional group of the free radical precursor 8, triggering the

extrusion of carbon dioxide and acetone and form the amide

radical INT 4. Then, by using the electrophilic property of the

species, the electron-rich 1 was successfully intercepted, the free

radical strain release amination was realized, and the BCPA

radical INT5. Finally, the species provides a variety of target

components 10 through atom/group transfer reactions (SH2)

with a series of SOMOphiles (X-Y) 9. In terms of substrate

adaptability, to meet the kinetic priority of the final atom/group

transfer step over BCP radical oligomerization, they combined

with density functional calculation to avoid side reactions. They

found that six different pro-SOMOs were compatible, which

supported the construction of various target products. This

method dramatically expands the range of substituted BCPA

obtained by free radical addition and may be further extended to

other electrophilic free radicals.

Recently, the strategy of electron donor-acceptor (EDA)

complexes has been widely explored to drive a new visible-

light-induced conversion mode without an external

photocatalyst (Rosokha and Kochi, 2008; Crisenza et al.,

2020). In 2021, Hong’s team successfully provided BCPA

through N-center free radicals based on this strategy (Scheme

3, right) (Shin et al., 2021). This strategy involves the photoactive

formation of EDA complexes between N-aminopyridine salts 11

and acetate anions, thereby generating electrophilic amino

radicals INT6. This radical cleaves the centrals bond and

provides BCP radical intermediate INT7. After that, BCP

radical INT7 is ready to be added to the C4 position of

another N-aminopyridine salt. Next, the resulting cationic

radical species INT8 undergoes deprotonation and cleavages
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N-N bond to get the final product 12 and amidyl radical INT6.

This method directly introduces amide and pyridyl functions on

the BCP core. In addition, it can also be extended to P and CF3
radicals, which have a good range of substrates.

In the same year, Anderson’s research group reported a

twofold radical functionalization strategy, which provides a

general and convenient new way to prepare 1,3-disubstituted

iodo-BCPs (Scheme 4) (Pickford et al., 2021). In this method,

N-centered radicals were obtained by fragmentation of α-
iodoaziridines, which reacted with free radical receptor 1 to

form a BCP radical, and then an iodine atom was extracted

from the starting material of iodoazacyclopropane. These

products can be further obtained by photoredox catalyzed

Giese type reaction to obtain C-substituted BCPA.

Interestingly, Anderson and his team succeeded in carrying

out the ATRA/Giese process in a single reaction, and the

overall yield of the transformation was consistent with the

isolated steps.

Conclusion

Due to its unique structural features and physicochemical

profiles in medicinal and synthetic chemistry for introducing a

three-dimensional cyclic moiety into small molecules or drug

candidates, BCPAs scaffold, emerging as sp3-rich surrogates for

aniline and its derivatives, have recently received increasing

attention from the scientific community and industries.

Overall, two different approaches for synthesizing BCPAs

have been developed, mainly including adding C-centered or

N-centered radicals to [1.1.1]propellane, respectively. Although

fast-growing achievements in this field have been witnessed over

the past years, compared with remarkable advancements in the

construction of BCP frameworks, sufficient attention has not

been paid to the construction of these valuable BCPAs

frameworks, which is anticipated to be further explored soon.

For instance, the current synthesis of BCPAs depends on limited

radical species of C-centered or N-centered radicals; enriching

the chemical tools of radical chemistry, such as flow chemistry or

electrochemistry, could provide concise access to multifunctional

BCPAs (Wegner et al., 2012; Elliott et al., 2014; Porta et al., 2016;

Zhao and Xia, 2018; Donnelly and Baumann, 2021). Besides,

discovering new reactivity with [1.1.1]propellane at the

bridgehead position under a strain-release approach could

offer an alternative solution for the amination

functionalization of BCP molecules. Moreover, the asymmetric

catalytic synthesis of optically pure BCPA derivatives has not

been achieved; novel strategies and power catalysts are highly

demanded to broaden the application range and explore the

potential reactivity of [1.1.1]propellane (Meggers, 2015; Dilmac

et al., 2017; Wong et al., 2019). Notably, the bio-evaluation of

desirable BCPAs for new drug discovery and research goes far

behind its synthetic chemistry (Bauer et al., 2021). Further

medicinal research on those valuable compounds should soon

be devoted to this field. We believe that further development of

radical chemistry methods will significantly accelerate advances

in synthesizing BCPAs and their application in drug discovery.
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