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Integrative residue-intuitive machine
learning and MD Approach to Unveil
Allosteric Site and Mechanism for β2AR

Xin Chen 1,5, Kexin Wang 2,5, Jianfang Chen 1,5, Chao Wu 2, Jun Mao1,
Yuanpeng Song 1, Yijing Liu 3, Zhenhua Shao 2,4 & Xuemei Pu 1

Allosteric drugs offer a new avenue for modern drug design. However, the
identification of cryptic allosteric sites presents a formidable challenge. Fol-
lowing the allostery nature of residue-driven conformation transition, we
propose a state-of-the-art computational pipeline by developing a residue-
intuitive hybrid machine learning (RHML) model coupled with molecular
dynamics (MD) simulation, through which we can efficiently identify the
allosteric site and allosteric modulator as well as reveal their regulation
mechanism. For the clinical target β2-adrenoceptor (β2AR), we discover an
additional allosteric site located around residues D792.50, F2826.44, N3187.45 and
S3197.46 and one putative allosteric modulator ZINC5042. Using Molecular
Mechanics/Generalized Born Surface Area (MM/GBSA) and protein structure
network (PSN), the allosteric potency and regulationmechanismare probed to
further improve identification accuracy. Benefiting from sufficient computa-
tional evidence, the experimental assays then validate our predicted allosteric
site, negative allosteric potency and regulation pathway, showcasing the
effectiveness of the identification pipeline in practice. We expect that it will be
applicable to other target proteins.

Allostery represents a critical biological mechanism wherein distant
sites within a biomolecule undergo fine-tuned structural and dynamic
alterations in response to specific perturbations. Allosteric regulation
plays a vital role in diverse biological processes1. Allosteric drugs can
modulate the protein activity by means of non-competitive binding in
the allosteric site2, thus yielding higher selectivity, specificity, and
lower off-target toxicity. Allosteric drugs have been approved for the
treatment of various diseases, including cancers, neuropsychiatric
disorders, and immune diseases, which offer a new paradigm for
modern drug development3,4. Despite the fascinating advantages of
allosteric drugs, their development remains a great challenge, in par-
ticular allosteric site identification.

Allostery is an intrinsic property of the protein conformational
landscape while the allosteric sites are often cryptic, generally only
opening in specific conformational ensembles that may not have an
associated resolved 3D structure5. Complicated conformational chan-
ges often lead to difficulties in discovering the allosteric site
experimentally6. MD simulation can provide target conformational
changes over time with high resolution in full atom detail, thus being
considered one of the best approaches to identify and characterize
cryptic binding sites6. There has been some exploration in using the
MD technique to successfully identify the allosteric site7–9. A crucial
step for the success of MD-based methods is to mine specific con-
formational states with an open allosteric pocket from themassiveMD
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conformational space, as it is a prerequisite for subsequent detection
of the allosteric site.

The opening of the allosteric site generally occurs on a long time
scale. With advancements in computing power and enhanced sam-
pling techniques, MD simulation can more sufficiently sample con-
formational changes involving the open cryptic pocket, yet it
simultaneously leads to data explosion. In this case, manual analysis is
verydifficult in a complex environmentwith a riskof overlooking some
subtle but important conformational changes, which is also generally
restricted by conscious human bias. Thus, we face another difficult
challenge: how to efficiently capture the conformational state invol-
ving the allosteric site? In existing MD works, the free energy analysis
serves to identify low-energy states along with coordinates pre-
defined. In addition, the Markov state model (MSM) is used to find
important intermediates in certain processes of interest like activation,
ligand binding, or disassociation. These low-energy states and inter-
mediate states are taken as target conformations to identify the
allosteric sites. Despite some successes achieved, the opening of the
allosteric site does not necessarily correspond to the low-energy states
or theMSMmacro-states in termsof the allostery nature. Furthermore,
the predefined coordinates inferred from domain knowledge would
confine the discovery of allosteric sites due to the highly intricate
mechanism of the allostery, which has not been fully elucidated. Thus,
there remains an unmet need to develop unbiased and general
methods to efficiently identify the conformational stateswith the open
allosteric site from the vast conformational space.

Given that the nature of allostery is a residue-driven conforma-
tional transition5,10, it is reasonable to hypothesize that the residues,
which play a key role in conformational changes and coincide with or
couple to structural elements in the functional site, are likely to form
viable cryptic sites. Theoretically, if we can develop a computational
method that can identify important residues determining the sig-
nature fluctuations and detect whether they can communicate with
functional domains of the protein, the identification efficacy should be
substantially improved. Inspired by this, we aim to couple machine
learning (ML) into MD to develop an effective identification frame-
work, as ML possesses a powerful capacity in mining causality under-
lyingmassive and complex data11,12. AlthoughMLhas been successfully
applied inMDfields13,14 to generate force fields, reduce dimensionality,
and estimate free energy surfaces, its application in conformational
analysis is very limited. Several works attempted to use traditional ML
models with relatively simple model architecture and complicated
feature engineering to distinguish the conformations between the
ligand-bound state and the apo one for the MD trajectory15,16, yet the
category labels need to be known as an essential prerequisite. In
addition, these ML models lack interpretability, thus residue infor-
mation involving the allostery cannot be obtained. Consequently, it is
inaccessible to use the existingML classificationmodels to identify the
conformation state with the opening of a cryptic allosteric site.

GPCRs are the largest and the most successful drug targets, with
approximately 35% of FDA-approved drugs targeting them. However,
the highly conserved orthosteric site of GPCRs poses challenges in
developing subtype-selective orthosteric ligands, while the allosteric
modulators with higher selectivity and specificity offer an attractive
avenue for GPCR drug development17. β2AR plays a vital role in car-
diovascular and respiratory physiology and thus is a clinically crucial
target for widely prescribed drugs like beta-blockers and beta-
agonists. Drugs targeting the β2AR orthosteric site often cause
cross-reactivity and lead to various therapeutic side effects, which
have garnered increasing attention in clinical arenas18,19. Thus, devel-
oping new drugs targeting the β2AR allosteric site holds great sig-
nificance. Positive allosteric modulators (PAM) of β2AR have
therapeutic value for diseases like asthma and chronic obstructive
pulmonary disease8, while negative allosteric modulators (NAM) have
the potential to treat hypertension, arrhythmia, and heart failure20.

Unfortunately, only six β2AR allosteric sites have been reported so
far8,20–24, and no allosteric drugs for β2AR have been approved.
Therefore, the identification of additional β2AR allosteric sites and
allosteric ligands is highly desired.

In this work, to circumvent the technical obstacles above, we
explore a residue-intuitive hybrid machine learning (named RHML)
frameworkby combining unsupervised clustering and an interpretable
deep learning multi-classification model. With the framework, we can
address the absence of category labels and achieve accurate classifi-
cation with residue-level interpretability, thus identifying important
residues involving the allosteric site. After we identify the putative
allosteric site and screen-related modulators, we further probe their
communication with functional domains like the orthosteric site and
the active region. Our objective is to further pre-evaluate the potential
as the allosteric site/modulator and to reveal their regulation
mechanism, which is key for ensuring the prediction success rate and
rationally engineering allostery in protein, yet often being overlooked
in previous methods of allosteric drug design. In order to validate the
efficiency of the identification strategy, we select the β2 adrenergic
receptor (β2AR) of the G protein-coupled receptor (GPCR) family as a
case study. We discovered an allosteric site and a negative allosteric
modulator (ZINC5042) for β2AR, which we validate by cell-based
function experiments.

Results
The proposed identification pipeline is illustrated by Fig. 1. Here,
extensive gaussian accelerated molecular dynamics (GaMD) simula-
tions are first performed to enhance sampling in order to construct a
sufficient conformation space (Fig. 1a).With the conformation space, a
residue-intuitive hybrid machine learning (RHML) framework is con-
structed, which is composed of an unsupervised clustering and an
interpretable convolutional neural network (CNN) based multi-
classifier (Fig. 1b). By using RHML, we can determine the optimal
number of clusters (labels) and the conformation state with the
opening of the allosteric site (Fig. 1c). Then, the allosteric site is iden-
tified by FTMap coupled with the LIME interpreter of RHML (Fig. 1c).
The potential allosteric modulators are screened from two compound
datasets, based on the identified allosteric site (vide Fig. 1d). As illu-
strated by Fig. 1e, the regulation effect of the allosteric site/drug and its
regulation pathway are further probed by conventional MD (cMD),
binding energy analysis, structural analysis, and regulation pathway
analysis. Finally, experimental validation is performed by cAMP accu-
mulation assays, β-arrestin recruitment assay and site-directed muta-
genesis experiments (vide Fig. 1f). In total, this work involves six
systems, 15-μs GaMD simulations and 22.5-μs cMD simulations. Sup-
plementary Table 1 lists detailed MD information for each system.

Construction of the residue-intuitive hybrid machine
learning (RHML)
In order to capture the conformation state with a cryptic allosteric site
from the vast unknown conformation space, we need to perform two
tasks. One is to first classify the conformations according to structure
differences between conformational classes. The other is to determine
the important residue fluctuations of which class is associatedwith the
function region, as the allostery is a functional mechanism driven by
the residue conformation transition. To this end, an unsupervised
classification task was first utilized to label the conformation cate-
gories in theunknown trajectory space generatedbyGaMD.Herein, we
selected unsupervised clustering, which has been widely served as an
auto-labeling strategy25,26. With the labels obtained, we further trained
a supervised classification model to identify the conformation state
with the opening of the allosteric site. In the two tasks, we need to
address two main technical challenges. One is how to determine the
optimal number of clusters in the unsupervised clustering, and the
other is how to obtain the residue-level interpretability in the
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supervised classification model. Thus, a residue-intuitive hybrid
machine learning framework (RHML in Fig. 1b) was constructed by
combining an unsupervised clustering and a supervised classification
model. Herein, the k-means algorithm was adopted, as it has been
considered as a popular and effective method for MD trajectory
clustering27. For the supervised model, an interpretable CNN-based
multi-classification model was exploited to achieve accurate classifi-
cation with the capacity to identify important residues deciding
the classification result (vide Fig. 2). In the deep learning model,
the pixel map representation was proposed to avoid hand-feature
engineering with the risk of information loss in conformation
representation. Accordingly, the convolution neural network with
powerful learning capacity on the image was utilized to realize
accurate classification in terms of the category labels inferred
from the unsupervised clustering (Fig. 2a). More importantly, we
explored an interpreter based on the locally linear approximation
paradigm (named as LIME interpreter) to address the black-box
limitation of deep learning in interpretability. Based on the
interpreter, we could further identify key residues deciding the
classification result, through which the conformation state with
the putative allosteric site can be captured (Fig. 2b). Technical
details regarding the interpretable CNN-based multi-classification
model are described in Methods.

To ensure a reliable classification result and a rational inter-
pretation, a high prediction accuracy is required for the supervised
classifier. Thus, the accuracy of the classification model can serve as a
feedback metric to determine the optimal number of categories for
the unsupervised clustering (Fig. 1b). The optimal number will act as
the final labels of the classification model to identify the key residues
with the aid of the LIME interpreter.

A conformation ensemble with putative allosteric site is identi-
fied by RHML for β2AR
To cover the opening of cryptic pockets, five independent 3-μs GaMD
simulations were carried out for the inactive β2AR bound by the ago-
nist norepinephrine (NE) to generate an extensive ensemble of
receptor conformations, through which 150,000 conformations from
the five trajectories were extracted to construct data sets for machine
learning (see “Methods” for more details). The conformations of every
trajectorywerefirst clusteredbasedon the rootmeansquaredeviation
(RMSD) of the receptor backbone atoms excluding the highly flexible
ICL3 region (residue numbers: 231–262). In the text, we only present
the result from one trajectory (labeled as traj1) with a putative allos-
teric site. The other four trajectory results and related discussion are
placed in Supplementary Figs. 1, 2 which do not involve new allosteric
sites. To determine the optimal number of clusters k, which is also an
open and challenging problem for unsupervised clustering, we con-
sidered three clustering evaluation indices (SSR/SST, pSF, DBI) to
initially estimate k values from 2 to 7 (Fig. 3a). SSR/SST represents the
explained variance, and the value closer to 1 indicates better clustering.
As reflected by the green line in Fig. 3a, SSR/SST increases gradually
with increasing k, but the risebecomesweakafter a critical value. Using
the elbowmethod28 to identify the point of maximum curvature in the
curve, the optimal number of clusters can be determined to be k = 3.
pSF, a metric measuring separation between all the clusters, suggests
that larger values correspond to better clustering. The red line in
Fig. 3a shows the rise of pSF with increasing k values, favoring k = 7 or
higher as the best choice. DBI measures similarity within and between
clusters. Smaller DBI values imply better clustering. It turns out that
k = 2 has the smallest DBI (DBI = 0.522), while k = 3 (DBI = 0.526) is very
close to k = 2. In other words, both k = 2 and k = 3 can be taken as
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reasonable choices (yellow line in Fig. 3a). The inconsistency of the
optimal cluster number between different clustering metrics is a
common phenomenon, as there may not be a definite optimal k value
for complex data. Thus, the choice of the k value depends onbalancing
different validity indices and considering specific research purpose29.
Herein, we referenced the classification accuracy of the CNN-based
model. Figure 3b shows the CNN-based classification accuracy for
different numbers of clusters. We first excluded k = 6 and k = 7 due to
low classification accuracy (<0.8), which would drop the reliability of
our LIME interpreter. Similarly, k = 5was not considereddue to its poor
performance in the DBI index. Compared with k = 2 and k = 4, both
SSR/SST and DBI indices favor k = 3. Furthermore, our DL-based clas-
sification model also achieves a prediction accuracy of 0.903 ±0.004
at k = 3. Taken together, we used the labels of the three categories to
train the interpretable CNN-based classifier, in which the LIME inter-
preter identified important residues deciding the classification result,
as shown in Fig. 3c–h.

It can be seen from Fig. 3f, h that the important residues deciding
the cluster0 and cluster2 mainly distribute at the extracellular end of
TM6and TM7 aswell as the extracellular loops (ECL2 and ECL3). These
regions were already revealed to involve an allosteric site of β2AR
reported23, demonstrating the effectiveness of our RHML for identi-
fying the allosteric site. Since our objective is to discover additional
allosteric sites, the reported site was not considered for further
investigation. Interestingly, for cluster1, important residues identified
distributed in the middle and near the intracellular end of TM6 and
TM7, including key residues such as F2826.44, N3187.45, N3227.49, and
P3237.50, which were revealed to be molecular switches in the receptor

activation (vide Fig. 3d, g). The observation suggests that the cluster1
undergoes specific conformational changes in these important regions
associated with the activity of β2AR, implying its functional potential.
Given that allostery is a functional mechanism involving the GPCR
activity, we selected representative conformations from cluster1 to
further identify allosteric sites by using FTMap.

One additional allosteric site identified by FTMap coupled with
the RHML interpreter
FTMap is an energy-based method for identifying binding sites, which
has been accepted as an effective tool to predict potential allosteric
sites within the helical regions of GPCRs30. We selected two repre-
sentative conformations (labeled as Conf1 and Conf2) from cluster1,
which can account for 70% of conformations, to perform the site
mapping by means of FTMap. In the two conformations, FTMap
detects more than ten consensus sites (CSs), as shown in Supple-
mentary Fig. 3. In fact, how to effectively identify the sites with
potential allosteric function has been a difficult task for various pocket
identification tools. Since the cryptic allosteric sites are exposed to
conformational changes, it is reasonable to assume that the pockets
near the important residues, which decide the conformational states
and associate with function regions, will have a high possibility of
acting as the allosteric site. Thus, the result from the LIME interpreter
of our RHML framework was utilized to facilitate the allosteric site
identification. Itwas found that one allosteric site inConf1 identified by
FTMap is comprised of CS0, CS1, CS2, and CS6, while the identified site
in Conf2 consists of CS0, CS3, and CS4. These probe clusters are in
proximity to some important residues revealed by our LIME
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interpreter (vide Supplementary Fig.3). Table 1 lists the allosteric site
residues identified forConf1 and Conf2. It can be seen that themajority
of residues are the same for the two conformations and only several
residues are different due to the flexibility of the site. Thus, they
represent the same binding site despite some differences in shape and
size, as reflected in Fig. 4a, b. The binding site is located in the middle
of the protein helical bundle and near to the sodium binding site (see
Supplementary Fig. 4 for details). In addition, the pocket includes

I1213.40, F2826.44, and S3197.46, which play important roles in regulating
the activity of β2AR23. Taken together, it can be expected that drugs
targeting the binding site most probably modulate the β2AR signaling
and function, implying high potential as an allosteric site. It is noted
that the allosteric site does not open in active and inactive crystal
structures of β2AR, as evidenced by Supplementary Fig. 5. More
interestingly, the cryptic allosteric site has not been reported for other
GPCRs31–35.

Table 1 | The allosteric site residues predicted the two representative conformations (Conf1 andConf2) of the cluster1 category

Conformation Location Allosteric Site Residues*

Conf1 TM2\TM3\TM5
\TM6\TM7

L752.46, A762.47, A782.49, D792.50, M822.53, D1133.32, C1163.35, V1173.36, S1203.39, I1213.40, L1243.43, F2085.47, F2826.44, W2866.48, L3117.38, N3127.39,
I3147.41, G3157.42, Y3167.43, N3187.45, S3197.46, N3227.49, Y3267.53

Conf2 TM2\TM3\TM5
\TM6\TM7

L752.46, A782.49, D792.50, M822.53, C1163.35, V1173.36, S1203.39, I1213.40, L1243.43, F2085.47, F2826.44, W2866.48, G3157.42, Y3167.43, N3187.45,
S3197.46, N3227.49

*The allosteric site residues unique inConf1with respect toConf2areunderlined. The allosteric site residues,which are simultaneously identifiedas key residuesby theLIME interpreter, aredisplayed
in bold.
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Fig. 4 | Allosteric site and drug screening strategy. a, b Allosteric site identified
by a combination of FTMap and the LIME interpreter of RHML for two repre-
sentative conformations (Conf1 (a) and Conf2 (b)). The predicted allosteric sites are
shown as surface and important residues identified by the LIME interpreter are
highlighted in blue. c Virtual screening workflow employed in the work and
structures of four hit compounds screened. The binding energies between the

receptor and the four ligands screenedare highlighted in red, which is derived from
the MM/GBSA calculations based on the last 10-ns trajectories of 120-ns short cMD
simulations. d Binding modes of the four hit compounds with β2AR. Ligands are
represented by stick (ZINC5042, salmon; ZINC252008995, cyan; ZINC4213962,
wheat; ZINC11681534, skyblue). The receptor is represented as cartoon (yellow for
Conf1 and green for Conf2). The polar interactions are shown as black dashed lines.
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Screening potential allosteric modulator by virtual screening
and MM/GBSA
Virtual screening has been successfully employed to identify allosteric
modulators, including those targeting GPCRs36,37. As accepted, protein
flexibility is crucial for structure-based drug design, and it was repor-
ted that multi-conformational virtual screening with two or three
conformations of the target could improve the final enrichment and
chemical diversity of the hit compounds38. As outlined above, the
putative allosteric sites identified exhibit some differences in shape
and size between Conf1 and Conf2 due to pocket flexibility. Therefore,
we conducted themulti-conformational virtual screening based on the
two conformations, as depicted in Fig. 4c. The ligand set is composed
of two datasets (Diverse-lib and Drugs-lib) obtained from

MTiOpenScreen39. Diverse-lib consists of 99,288 chemically diverse
molecules suitable for screening novel drug scaffolds. Drugs-lib con-
tains 4574 purchasable approved drug molecules, which facilitates
drug repurposing with the advantages of reduced time and costs in
drug development. In total, the ligand set contains 103,862 ligand
molecules after a series of operations, for example, removing redun-
dancy, evaluating drug-likeness, filtering toxic groups, and analyzing
chemical diversity. Then, a preliminary screeningwasperformed using
the MTiOpenScreen platform. The top 3000 molecules from each
conformation underwent further docking evaluations using Autodock
4.2. The docking score (AD4.2 energy) was used for ranking, alongwith
visual inspection (see Supplementary Information for details) to
exclude potential high-ranked false positives. Finally, four hit com-
pounds (Fig. 4c) were selected from the top 20 compounds. Figure 4d
shows predicted binding modes for the four ligands with β2AR.
Interestingly, the compound ZINC5042 from Drugs-lib exhibits good
scores both in the two conformations, as evidenced by Supplementary
Table 2. As the MD simulation combined with the MM/GBSA calcula-
tion can improve the binding affinity prediction of poses obtained
from docking protocols40, we selected the conformation with the best
docking score for each of the four ligands to perform a short 120-ns
cMD simulation and used the last 10 ns of each MD trajectory to con-
duct MM/GBSA binding free energy calculation. As shown in Fig. 4c,
the MM/GBSA binding energies indicate that the four hit compounds
all can stably bind to β2AR. Practically, ZINC11681534, with theweakest
binding energy (− 33.35 kcal/mol), was already reported to be a β2AR
antagonist23, implying that the other three compounds with better
binding affinity may have potential efficacies. Herein, we selected
ZINC5042with the highest affinity as a representation of the promising
compounds to verify our design strategy.

Interaction mode between the allosteric ligand ZINC5042 and
the receptor
To more reliably estimate the interaction of ZINC5042 with the recep-
tor, we extended the simulation time of the β2AR-ZINC5042 complex to
three independent 1.5-μs cMDsimulations (see Supplementary Fig. 6 for
RMSD). Based on the last 100-ns equilibrium trajectory, we calculated
their binding free energies by using MM/GBSA and decomposed the
energy into the corresponding residues. As reflected by Fig. 5a, the
hotspot residues to the ZINC5042 binding distribute in TM2, TM3, TM6,
and TM7 of β2AR. Figure 5b illustrates detailed interactions between
ZINC5042 and the hotspot residues. It can be seen that ZINC5042 is
bound deep within the transmembrane helix bundle mainly through
polar and van der Waals interactions. Notably, the residue D792.50 con-
tributes significantly to the ligand binding by forming an essential salt
bridge with the polar head of ZINC5042. Another hotspot residue,
S3197.46, forms hydrogen bonding with the alcohol hydroxyl group of
the ligand’s polar head, further stabilizing the ligand-receptor complex.
The chrysene moiety of ZINC5042 occupies a hydrophobic pocket
composed of several hydrophobic hotspot residues (L752.46, L1243.43,
I2786.40, F2826.44, N3227.49, and P3237.50), forming extensive van der Waals
interactions, in turn contributing to the overall stability of the complex.
It is noted that some functional residues of the allosteric pocket
revealed above, such as D792.50, S3197.46, F2826.44, N3227.49, and P3237.50,
devote important contribution to binding ZINC5042, implying a func-
tional potential of ZINC5042.

The allosteric modulator weakens the binding of orthosteric
agonist
In order to estimate the allosteric potency of ZINC5042, we first
examined its impact on the orthosteric ligand and the receptor. To this
aim, twoendogenous agonists ofβ2ARwith to someextent differences
in signaling, i.e., NE and L-epinephrine (ALE)41, were considered in the
work in order to provide more sufficient evidence. Three independent
1.5-μs cMD simulations (See Supplementary methods for simulation
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details) were carried out for each of the five complex systems,
including β2AR-ZINC5042, β2AR-NE, β2AR-ALE, β2AR-NE-ZINC5042,
and β2AR-ALE-ZINC5042. RMSD values show that the five systems
reach equilibrium, as reflectedby Supplementary Fig. 6.MM/GBSAwas
used to calculate their ligand-receptor binding free energies based on
the last 100 ns trajectory. As shown in Fig. 5c, without binding the
allosteric modulator ZINC5042, the binding free energies between the
orthosteric ligands and the receptor are − 21.34 ± 2.19 kcal/mol for NE
and − 31.73 ± 2.77 kcal/mol for ALE. The agonist ALE exhibits a higher
affinity than NE, consistent with the experimental results of the inhi-
bitory constant (Ki)41. However, after the allosteric modulator
ZINC5042 is bound, the binding energies between the two agonists
and the receptor are weakened to − 14.58± 3.65 kcal/mol for NE and
− 13.07 ±0.85 kcal/mol for ALE. These results clearly indicate that the
allosteric modulator ZINC5042 significantly reduces the affinity of the
orthosteric agonists to the receptor. Besides, it is found that the two
agonists also weaken the binding of ZINC5042 to the receptor, as
evidenced by a comparison between β2AR-ZINC5042
(− 56.46 ± 1.68 kcal/mol), β2AR-NE-ZINC5042 (− 48.17 ± 4.02 kcal/mol)
and β2AR-ALE-ZINC5042 (− 50.18 ± 3.06 kcal/mol) in Fig. 5c. The
observation clearly reveals negative cooperativity of the binding

energy between the orthosteric agonist and the allosteric modulator,
implying a negative allosteric potency of ZINC5042.

The allosteric modulator drives the receptor to the inactive
conformation
To further estimate the effect of ZINC5042 on the activity of
β2AR, we compared the structural differences upon binding
ZINC5042 by superposing β2AR-ALE-ZINC5042 and β2AR-NE-
ZINC5042 with the inactive and active crystal structures of
β2AR. Since the structures are similar between the two systems
(β2AR-ALE-ZINC5042 and β2AR-NE-ZINC5042), we only presented
the superposition result of β2AR-ALE-ZINC5042 with the two
crystal structures in the text, while the structural superposition of
β2AR-NE-ZINC5042 was provided in Supplementary Fig. 7. As
reflected by Fig. 6a, most regions of the receptor in the β2AR-ALE-
ZINC5042 complex system resemble those of the inactive recep-
tor, in particular for the activation region at the intracellular side.
In the active state of β2AR, the intracellular ends of TM5 and TM6
typically exhibit outward movement, creating an open intracel-
lular cavity for downstream protein binding. However, in the
β2AR-ALE-ZINC5042 complex, the intracellular ends of TM5 and
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TM6 remain closed, exhibiting an inactive-like conformation that
occludes downstream protein coupling (Supplementary Fig. 8).

As accepted, GPCR activation is an allosteric process initiated by
perturbations in the extracellular binding pocket, and transmitted to
the intracellular region for the downstream protein binding through
activating molecular switches. These molecular switches include resi-
dues of the PIF motif (P2115.50-I1213.40-F2826.44) and three residues
(D792.50-S1203.39-S3197.46) of the sodium ion binding site42, which are
located in the middle of the transmembrane helix bundle and close to
the allosteric pocket. As shown in Fig. 6b, the PIF motif in the active
crystal structureundergoes rearrangementwith respect to the inactive
crystal structure. The rearrangement facilitates the outward move-
ment of the cytoplasmic end of TM6, which has been considered to be
necessary for the GPCR activation43. In addition, D792.50, S1203.39and
S3197.46 in the active crystal structure move closer to each other than
the inactive crystal structure, leading to the disruption of the sodium
ion pocket. Consequently, the inwardmovement of TM7 is promoted,
which is another characteristic of the GPCR activation43.

In contrast to the activation features above, the β2AR-ALE-
ZINC5042 structure exhibits outward movement of the PIF motif
residues (P2115.50, I1213.40, F2826.44) and two sodium ion binding pocket
residues (S1203.39, S3197.46), as evidenced by Fig. 6b. The outward
movement mainly results from the steric hindrance between
ZINC5042 and the four residues of the allosteric site (D792.50, S1203.39,
F2826.44 and S3197.46), as reflected by Fig. 6c. To further observe con-
formational change in the sodium ion binding pocket induced by the
ZINC5042 binding, we compared the distance between S1203.39 and
S3197.46 (labeled as d1) of the sodium ion binding pocket with those of
the active and inactive crystal structures, as shown in Fig. 6d. It can be
seen that the collapse of the sodium ion pocket upon activation causes
d1 to decrease from 6.3Å in the inactive state to 4.5 Å in the active

state. In the β2AR-ALE-ZINC5042 system, d1 is always greater than
4.5 Å, indicating that the ZINC5042 binding inhibits the collapse of the
sodium ion pocket. Similarly, the distance between P2115.50 and F2826.44

(labeled as d2) of the PIF motif is used to characterize the conforma-
tion of the PIF motif (Fig. 6e). Upon activation, the inward movement
of P2115.50 causes d2 to decrease from 11.1 Å in the inactive crystal
structure to 9.8Å in the active crystal. In the β2AR-ALE-ZINC5042
system, d2 is always greater than 9.8 Å, indicating that ZINC5042
binding inhibits the conformational rearrangement of the PIF motif
induced by the agonist, thereby limiting the outwardmovement of the
TM6 intracellular segment. Collectively, the binding of ZINC5042 to
the receptor inhibits the transition of the receptor’s conformation to
the active state, further suggesting the potential of ZINC5042 as a
negative allosteric modulator (NAM).

Allosteric regulation mechanism revealed by protein structure
network (PSN)
To gain insights into how the allosteric modulator regulates the
orthosteric agonists, we employed PSN to calculate the shortest
pathwaywith the highest frequency between the allosteric site and the
orthosteric site for the β2AR-NE-ZINC5042 and β2AR-ALE-ZINC5042
systems. The shortest pathway is usually considered to be the most
likely or biologically relevant pathway44. The residues of the allosteric
site and the orthosteric site are shown in Supplementary Table 3. As
reflected by Fig. 7a, the shortest pathways are F2826.44-W2866.48-
F2906.52 for β2AR-NE-ZINC5042 and F2826.44-L2125.51-W2866.48-F2906.52

for β2AR-ALE-ZINC5042, suggesting the importance of these residues
in the allosteric regulation. Both the two pathways include W2866.48

andF2826.44, whichbelong to theCWxPandPIFmotif, respectively. The
two regions are conserved motifs of the class A GPCRs45, which have
been reported to play important roles in the GPCR activation. Their
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attendance in the shortest pathway implies that the allosteric regula-
tion should influence the receptor activation.

To further understand how the allosteric modulator influences
the receptor activation induced by the orthosteric agonists, we ana-
lyzed the shortest pathways between the orthosteric site and the
intracellular activation region for the four systems, β2AR-NE, β2AR-
ALE, β2AR-NE-ZINC5042 and β2AR-ALE-ZINC5042 (Fig. 7b), in which
we selected residues of the orthosteric site and intracellular activation
region as starting and ending nodes (see Supplementary Table 3 for
details), respectively. Without binding the allosteric modulator, the
shortest pathways are D1133.32-V862.57-M822.53-S3197.46-D792.50-N3227.49-
Y3267.53 for β2AR-NE and F2906.52-W2866.48-F2826.44-I1213.40-M2155.54-
M2796.41-Y2195.58 for β2AR-ALE. The two pathways include residues of
the sodium ion binding site (S3197.46, D792.50) and the PIF motif
(F2826.44, I1213.40), respectively, throughwhich the agonist regulates the
receptor activation.

However, after binding ZINC5042, the two ternary complex
(β2AR-NE-ZINC5042 and β2AR-ALE-ZINC5042) systems exhibit the
same shortest pathway (F2906.52-W2866.48-F2826.44-M2796.41-Y2195.58),
significantly different from the systems without binding ZINC5042. As
reflected by the residues in the shortest pathway, the regulation from
the orthosteric site to the activation region in the two ternary complex
systems mainly rely on intra-helical structural communication of TM6
and only contain one inter-helical structural communication (M2796.41-
Y2195.58) at the end of the pathway. In contrast, for the system only
binding the orthosteric agonists, the shortest pathways exhibit
extensive inter-helical structure communication between TM2, TM3
and TM7 in β2AR-NE and between TM3, TM5 and TM6 in β2AR-ALE, as
evidenced by Fig. 7b. Inter-helical communication beneficial to the
conformational changes are considered crucial for the receptor
activation46, while the intra-helical interactions often stabilize the
existing conformations42.

Taken together, it can be assumed that the allosteric ligand
binding would decrease the inter-helical structure communication,
thus disfavoring the activation signaling stimulated by the agonist.
Moreover, it is noted that the important residue F2826 .44 of the allos-
teric pocket participates in both the regulation pathway from the
allosteric site to the orthosteric site and that from the extracellular
orthosteric site to the intracellular activation region, highlighting the
importance of F2826.44 for the allosteric signaling of ZINC5042.

Experimental validation on the pharmacological property of
ZINC5042 and the allosteric site
To confirm the pharmacological property of ZINC5042, we first mea-
sured the efficacy of ZINC5042 alone for β2AR activation by using a
cell-based function assay. Our result indicates that ZINC5042 fails to
activate β2AR (Fig. 8a). Next, we investigated the allosteric effect of
ZINC5042 on the two orthosteric agonists induced G-protein signaling
for β2AR by the Glosensor-based cAMP assay. It is observed that
ZINC5042 antagonizes both agonists NE and ALE-induced cAMP
accumulation, as evidenced by a gradual decrease of the orthosteric
agonists NE and ALE-induced receptor activation with increasing
ZINC5042 concentration in a dose-dependent manner (Fig. 8b, c).
These observations clearly confirm that ZINC5042 displays negative
cooperativity with NE (log αβ = −0.82; αβ =0.15) as well as ALE (log
αβ = −1.15; αβ =0.07) in a cell-based assay, strongly supporting our
computational results. β2AR was reported to be engaged in the Gs
signaling pathway and recruitment of β-arrestin. Given that biased
allosteric modulators that exert pathway-specific effects have given
rise to new frontiers in GPCR drug discovery47, we further conducted
the NanoBiT β-arrestin recruitment assay to test whether ZINC5042
would influence the β-arrestin recruitment. Firstly, our results show
that ZINC5042 cannot activate β2AR mediated the recruitment ability
of β-arrestin alone, compared with NE (Fig. 8d). Interestingly,
ZINC5042 exhibits the ability inhibiting NE-induced β-arrestin2

recruitment via dose-dependently manner (Fig. 8e), behaving as a
negative allosteric modulator (NAM) of β2AR on β-arrestin signaling.
To evaluate the biased character of ZINC5042 on the β2AR signaling,
we further explored the favorable signaling of ZINC5042 by NanoBiT
β-arrestin recruitment and Glosensor cAMP accumulation assays.
Comparedwith NE alone, the β-arrestin2 recruitment ability of β2AR is
reduced to approximately 54% by additional 80μMZINC5042 (Fig. 8f).
In contrast, G protein activation is reduced to approximately 10%
(Fig. 8f). These findings suggest that the efficacy of Gs activation is
more significantly attenuated than the β-arrestin recruitment in the
presence of NE and ZINC5042, indicating that ZINC5042 acts as a G
protein-biased NAM of β2AR. Similar to other β2AR negative allosteric
modulators reported20,48,49, ZINC5042 also presents allosteric activity
at micromolar concentrations. However, the target selectivity indi-
cates (see Supplementary Fig. 9 for details) that ZINC5042 is highly
selective for β2AR in its pharmacological function. In addition, we also
tested the cell-based functional assays for the other three hit com-
pounds (ZINC11681543, ZINC4213962, and ZINC252008995) screened.
As evidenced by Supplementary Fig. 10, the three hit compounds all
exhibit negative allosteric modulator (NAM) effects, also supporting
the potential of our screening strategy in practical application.

To validate the allosteric site of ZINC5042 in β2AR predicted by
our computational framework, we performed site-directed mutagen-
esis studies and cell-based function assays in the presence of the
orthosteric agonist NE, with and without ZINC5042. The result indi-
cates that most of the mutations on the residues of the predicted
allosteric binding site reduce the role of ZINC5042 in inhibiting NE-
induced responses. Specifically, the Glosensor-based cAMP assay
results show that D792.50A, F2826.44A, N3187.45A, and S3197.46A sig-
nificantly reduce the antagonistic effect of ZINC5042 (Fig. 8g) while
these residues are almost identified as the key residues for binding
ZINC5042 by the binding energy analysis above. For example, D792.50 is
revealed to contribute significantly to the ZINC5042 binding by an
essential salt bridge (Fig. 8h). S3197.46, as a hotspot residue, forms
hydrogen bonding with the alcohol hydroxyl group of the ZINC5042’s
polar head. It can be seen from Supplementary Fig. 11 that S3197.46

forms hydrogen bondingwith ZINC5042more frequently thanN3187.45

in the three independent simulations, which rationalizes the observa-
tion that S3197.46 is identified as the hotspot residue for ZINC5042
binding in the MM/GBSA analysis above, rather than N3187.45. It should
be due to the rotation of the hydroxyl group of ZINC5042, leading to
the situation that ZINC5042 alternately forms hydrogen bonding with
S3197.46 or the adjacent N3187.45 (Fig. 8h), indicating that N3187.45 also
plays a role in stabilizing ZINC5042 despite of a shorter duration of
hydrogen bonding than S3197.46. The computational result rationalizes
the experimental observation that the mutations on S3197.46 and
N3187.45 all give rise to the drop in the antagonistic effect of ZINC5042,
with a greater decrease by the S3197.46A mutation than the
N3187.45A (Fig. 8g).

For F2826.44, the binding mode analysis above already reveals that
it interacts with chrysene moiety via π–π stacking interactions (also
vide Fig. 8h). Moreover, F2826.44 is revealed above to serve as a reg-
ulatory residue in the two allosteric pathways (i.e., one from the
allosteric site to the orthosteric site and one from the orthosteric site
to the intracellular activation domain). Thus, the mutation F2826.44A
exerts the most pronounced antagonistic effect on the downstream
signaling, which also supports the allosteric regulation mechanism
revealed above. Collectively, the pharmacological and site-directed
mutagenesis experiments are completely in line with our computa-
tions, strongly validating the reliability of our computational frame-
work for the allosteric site, allosteric effect, and allosteric mechanism.

Discussion
In the work, following the allostery nature of the residue-driven con-
formational transition, we developed a general and state-of-the-art
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computational framework by coupling the residue-intuitive hybrid
machine learning (RHML) model into the MD simulations, in order to
efficiently identify the allosteric site and discovering potential allos-
teric drugs. The RHML model was developed by combining an unsu-
pervised clustering and an interpretable CNN-based multi-
classification model, which addressed the limitation of existing ML
models in the MD conformational analysis, including the optimal
number of categories, the information loss in conformation

representation and the residue-based interpretation of prediction
result. Consequently, RHML enables accurate conformation classifi-
cation and identification of important residue deciding different con-
formational classes for any MD trajectory. Benefiting from the
technical advantages, RHMLunveils a previously unreported allosteric
site in β2AR and other GPCRs.

The additional allosteric site is located around the residue D792.50,
F2826.44, N3187.45, and S3197.46, through which we utilized virtual
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Fig. 8 | Experimental validation for the ZINC5042’s potency and the
allosteric site. a Representative curve for concentration-dependent activation of
β2AR in response to NE or ZINC5042 stimulation examined by Glosensor-based
cAMP assay. ZINC5042 fails to activate β2AR. Data are presented as the mean ±
standard error of the mean (SEM) of three independent experiments performed in
triplicate. Error bars represent SEM. b, c Negative allosteric effect of ZINC5042 on
NE-induced cAMP accumulation (b) and on ALE-induced cAMP accumulation
mediated by β2AR (c). Data are presented as mean ± SEM from three independent
experiments (n = 3) performed in triplicates. d, e Dose-response curves of β2AR in
response to stimulation with different ligands by β-arrestin2 recruitment assay.
Values are mean ± SEM from three independent experiments (n = 3) performed in
triplicates. f The activation efficacy of β2AR in response to NE in the presence of
80μM ZINC5042. Data are presented as mean ± SEM from three independent
experiments (n = 3) performed in triplicates. p-values were obtained by Dunnett’s
multiple comparison test. Gs protein: Norepinephrine vs. Gs protein: Nor-
epinephrine+80μM ZINC5042, ***p <0.001; β-arr2: Norepinephrine vs. β-arr2:

Norepinephrine + 80μM ZINC5042, ***p <0.001; Gs protein: Norepinephrine
+80μM ZINC5042 vs. β-arr2: Norepinephrine + 80μM ZINC5042, ###p <0.001.
g The allosteric effect of ZINC5042 on β2AR WT and mutations. Bars represent
differences in each mutation relative to WT for β2AR after calculating the ratio of
the maximum effect efficacy (Emax) of NE in the presence and absence of 80μM
ZINC5042. Data are presented asmean± SEM from three independent experiments
(n = 3) performed in triplicates. All data were obtained by one-way analysis of var-
iance with Dunnett’s multiple comparison test to determine significance (com-
pared with WT, from left to right, ***p <0.001, < 0.001, <0.001 <0.001).
h Schematic diagram illustrating the interactions between key allosteric residues
(blue sticks) and ZINC5042 (green sticks) derived from the computational analysis
of bindingmode. ZINC5042 forms a salt bridgewithD792.50, hydrogenbondingwith
the N3187.45 and S3197.46 side chains, and the π–π stacking interactions with F2826.44.
Polar interactions are highlighted as black dotted lines, and π-π stacking is repre-
sented by magenta dotted lines.
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screening to discover a putative allosteric modulator ZINC5042.
Assistedbyextensive cMDsimulations,MM/GBSA, and PSN,we further
probed the communication of the allosteric site/modulator with the
orthosteric site/agonist, which is very important in further estimating
the allosteric potential so as to improve the success rate of the allos-
teric site/drug identification.MM/GBSA shows that ZINC5042weakens
the binding of the orthosteric agonists to β2AR in a negative coop-
erativity manner. The structural analysis indicates that ZINC5042 hin-
ders the collapse of the sodium ion binding pocket and the
conformational transition of the PIF motif to the active state, thus
driving the receptor conformation to the inactive state. PSN indicates
that the allosteric modulator ZINC5042 binding would decrease the
inter-helical structure communication, thus disfavoring the activation
signaling stimulated by the agonist. In addition, some important
allosteric regulation residues are identified. Based on the sufficient
computational evidence, the Glosensor-based cAMP assay and site-
directed mutagenesis experiments strongly validate the computa-
tionalpredictionon the allosteric site and thenegative allosteric effect,
clearly confirming that the key residues D792.50, F2826.44, N3187.45 and
S3197.46 identified indeed play important roles in binding the allosteric
modulator and inhibiting the activation signaling induced by the
orthosteric agonists, in particular for F2826.44.

It is noted that six allosteric sites of β2AR were reported8,20–24.
However, three20,21,24 of these sites belong to protein-protein interac-
tion (PPI) binding sites. The other three reported sites8,22,23 and our
identified site present preformed cavities, which facilitate drug bind-
ing with respect to the PPI binding sites50. Similar to the exosite
reported23, the allosteric site identified by us implies extra potential as
a target for novel bitopic ligands compared to the other two sites8,22,
since it is located closer to the sodiumbindingpocket. Collectively, the
allosteric site identified by us offers another avenue to develop allos-
teric modulators for β2AR. Also, the important residues identified
above are beneficial to rationally engineering allostery in β2AR.

As a major component of the interface between the sympathetic
nervous system and the cardiovascular system, the β-adrenergic
receptor signaling pathway plays a key role in the progression of heart
failure. β-adrenergic receptor antagonists (β-blockers or βAR antago-
nists) arewidely used in the treatmentof congestive heart failure (CHF)
due to their antagonistic effect on β-adrenergic receptors. It has been
suggested that β-arrestin-biased agonists that selectively target β2AR
may be more beneficial to the treatment of CHF51. ZINC5042, as a G
protein-biased allosteric modulator of β2AR, retains some β-arrestin
activity while significantly reducing endogenous ligand-activated G
protein activity. Compared to other reportedNAMsofβ2ARs20,48,49, the
negative allosteric modulator ZINC5042 exhibits comparable effects
and unique pathway specificity with the G protein bias. To the best of
our knowledge, it is the first reported G-protein biased NAM for β2AR,
promising anewgeneration ofβ-blockers and a novel pharmacological
tool compound. Furthermore, ZINC5042 is anexperimental anticancer
agent investigated in Phase I clinical trials52. Its previously acquired
data on the drug’s safety and toxicity could be instrumental in its
future development, thus offering an advantage in accelerating the
progress toward practical applications by drug repurposing. Besides,
ZINC5042 also provides a blueprint for lead optimization to develop
more potent NAMs.

Overall, the identification pipeline offers a promising strategy to
discover allosteric sites/ drugs and reveal their regulationmechanisms
for other target proteins. Thus, weuploaded auser-friendly codeof the
residue-intuitive hybrid machine learning framework available at
https://github.com/chyannn06/RHML. The code offers customizable
input options, automatically generating readable output files that
include cluster categories and important residues deciding the classi-
fication. We expect that it will serve as a valuable tool in the MD field
for aiding allosteric site identification and other MD tasks associated
with conformational analyses.

Methods
System setup for MD simulations
The crystal structures of the inactive (PDB ID: 2RH1)53 and active state
(PDB ID: 4LDO)54 of β2AR were obtained from the Protein Data Bank.
Other components, except the protein, were removed from the crystal
structure, and the missing intracellular loop 3 (ICL3) region (residue
numbers: 231–262) was reconstructed using MODELER V9.255. The 3D
structure of ALE was obtained from the co-crystalized structure (PDB
ID: 4LDO). The 3D structure of NEwas downloaded from the PubChem
database56 and optimized at the DFT/B3LYP/6-31 G** level using the
Gaussian 09 program57 before docking. All Ligand dockings were
performedwith AutoDock4.258, and the rational docking posewith the
top score was selected for subsequent MD simulations.

To prepare the system for MD simulation, hydrogen atoms were
added under pH = 7 conditions by H+ + 59. The receptor structure was
aligned using the Orientation of Protein in Membrane (OPM) database
and inserted into a lipidbilayer comprised of 80%phosphatidylcholine
(POPC) and 20% cholesterol. The system was solvated and neutralized
with 0.15mol/LNaCl in the aqueous phase. TheCHARMM36 force field
was used for the receptor, lipids, and salt ions, while the CHARMM
TIP3P model was chosen for water60. Ligand parameters were gener-
ated using the CHARMM General Force Field (CGenFF)61. These set-
tings were successfully used in MD simulations of GPCRs62,63. All these
steps were carried out using the CHARMM-GUI server64. After that, the
systems were minimized and equilibrated (see Supplementary Meth-
ods for more details).

GaMD Molecular dynamics simulations
To sufficiently sample conformational changes associated with the
opening of the allosteric site, we utilized GaMD65 to enhance sampling
(see Supplementary Methods for details). Before performing GaMD
simulations, 210-ns cMD production was performed, through which
acceleration parameters were calculated. The final structure of the
210 ns cMD simulation was selected as the starting structure for sub-
sequent GaMD simulations with random initial velocities. For the
inactive β2AR bound by NE, we carried out five independent 3-μs
GaMD simulations to ensure sufficient sampling, labeled as traj1, traj2,
traj3, traj4, and traj5. All the simulations have reached convergence
(Supplementary Fig.12). MD simulations were performed using
Amber16 software66. Details parameters for simulations are described
in Supplementary Methods.

Construction of the interpretable CNN-based multi-
classification model
The foundational paradigm of the deep learning-based classification
model mainly followed our previous binary classification method67.
However, different from the previous work, labels of conformational
categories in the work are not pre-known, and the conformations
encompass multiple categories, rather than simple binary classes67.
Consequently, our previous classification strategy needs to be mod-
ified to address the differences so as to handle more extensive and
complex MD conformational analysis. Thus, we introduced the
k-means algorithm to obtain the initial category labels. With the cate-
gory labels, the interpretable CNN-based multi-classification model
was constructed and trained. Specifically, the XYZ coordinate of each
conformation was transferred to the RGB coordinate CRGB by using a
matrix transformation (vide Eq. (1)).

CXYZ =M � CRGB ð1Þ

Consequently, each conformation was represented by a pixel
map, where each pixel corresponds to an atom. These pixel maps and
their category labels inferred from the clustering analysis were utilized
to train theCNN-based classificationmodel (Fig. 2a). TheCNNmodel is
composed of four convolutional layers, two max-pooling layers, and
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two fully connected layers. Rectified linear units (ReLU) were used as
the activation function to increase the model’s nonlinearity. The fully
connected layers of the model include two dense layers, with the first
dense layer containing 512 neurons. The number of neurons in the final
dense layer is dependent on the number of classes inferred from the
clustering result. Softmax activation was used for the multi-
classification. To prevent overfitting, dropout techniques were
employed after the first and second max-pooling layers, as well as the
first dense layer, with dropout rates of 0.25, 0.25, and 0.5, respectively.
Model training utilized the Adam optimizer and categorical cross-
entropy loss function, with prediction accuracy as the performance
metric.

To address the black-box problem, we further established an
interpreter for the CNN-based classification result based on the Local
Interpretable Model-Agnostic Explanation (LIME) paradigm68. LIME
utilizes linear models to approximate the local decision boundary,
which can provide an approximate explanation for the classification
result of the CNN-based model. To identify important residues
deciding each category, the LIME interpreter generated distinct sets of
LIME matrices for each class. Figure 2b illustrates how the LIME
interpreter works for the multi-classifier. To obtain predictions for the
model being explained f, we generated a perturbed dataset A with
small perturbations based on instance a being explained (vide red star
in Fig. 2b) andweighted thembyπx að Þ that characterizes the proximity
measure between the instances x and a. πx að Þ was determined by an
exponential kernel defined on a distance function D (Euclidean dis-
tance used in the work) with width σ, and expressed as Eq. (2).

πx að Þ= e
�Dðx,aÞ2

σ2 ð2Þ

Next, we trained a local linear model l (vide gray dotted line in
Fig. 2b) on the perturbed dataset to interpret the black-box model
locally. To assess the fidelity of the linearmodel l in approximating the
original model f for explanation, we calculated the error using Eq. (3):

L f, l,πx

� �
=

X
a,a02A

πx að Þ f að Þ � l a0ð Þð Þ2 ð3Þ

where f að Þ and lða0Þ are the probability belonging to a certain class and
a0 is the interpretable version of a. The explanation produced by LIME
is the optimal result thatminimizes the loss function L f ,l,πx

� �
and the

complexity measure ΩðlÞ , which was calculated by Eq. (4)

explanationðxÞ= argmin
l

L f, l,πx

� �
+ΩðlÞ ð4Þ

The complexity measures ΩðlÞ penalize the model that has too
many features or coefficients to ensure its interpretability.

For each conformation, a LIME matrix was generated to evaluate
the importance of each pixel in the classification of the specific class,
where the values can be either 0 (insignificant) or 1 (significant). The
LIME matrices from all conformational states were summed and
averaged to calculate a score ranging from0 to 1, which can reflect the
importance of the atom in distinguishing the class from the others.
Then, the average importance scores for all atoms within a residue
were calculated to present the importance of the residue. The higher
score represents the greater importance of distinguishing different
conformational states.

In order to train RHML, five independent 3-μs GaMD trajectories
(traj1 to traj5) were used to construct the conformation dataset, in
which 30,000 conformations of each trajectory were divided into ten
groups based on the time order. Each group was randomly split into
training and validation sets (8:2 ratio) to conduct five-fold cross-vali-
dation training. The results from the five trajectories were analyzed.

Mapping algorithm
We employed the FTMap site mapping online server (http://ftmap.bu.
edu) to identify binding sites on the important conformations identi-
fied by the RHML model above. FTMap utilizes 16 small molecule
probes with diverse properties to search for hot spots on the con-
formation. The optimal binding positions of the probes are calculated
and then clustered based on free energy to yield consensus clusters.
The regions that bind different probe clusters are called consensus
sites (CS). CSs are ranked by the number of bound probes, starting
with consensus site 0 (CS0) with the largest number of probe clusters.
If the distances between the bound probe clusters of any consensus
sites are within 4 Å, they are considered to form a single binding site.
The residues of the binding site were identified within 4 Å of these
bound probe clusters in the work. The mapping results were visually
inspected using Pymol (https://pymol.org), and the most promising
allosteric sites were determined by combining the results of the LIME
interpreter.

Virtual screening
Structure-based drug design (SBDD) generally includes structural-
based virtual screening (VS) and structural-based de novo drug
design (DNDD). VS docks molecules of the virtual library into the
receptor structure and predicts their binding scores, while
DNDD creates novel chemical entities based on the receptor
structures69,70. Compared to DNDD, VS possesses the advantage
of mitigating the problem of drug synthesis, as it uses
large libraries of pre-synthesized compounds. Thus, it has
become mainstream at the early hit identification stage37.

In the work, VS was conducted using a ligand set comprising a
total of 103,862molecules, obtained from the diverse-lib and drugs-lib
databases provided by MtiOpenScreen on 6th August 202239. In total,
6000 molecules (including stereoisomers) were obtained through
preliminary screening with MTiOpenScreen, which were docked by
using Autodock 4.258. All docking input files were prepared using
AutoDockTools 1.5.6 package, and the active site lattice files were
generated using AutoGrid 4.2. Gasteiger charges were added to atoms.
The docking box was positioned to cover the predicted allosteric site
from FTMap, with a spacing of 0.375 Å. Semi-flexible docking was
performed with the flexible ligand and the rigid receptor. To ensure
accuracy, each ligand underwent 100 separate docking calculations.
Each docking calculation included a total of 1,750,000 energy eva-
luations using the Lamarck genetic algorithm. The docking pose with
the lowest binding energy was selected as the optimal binding mode
for subsequent analysis.

Binding free energy analysis
Molecular Mechanics/Generalized Born Surface Area (MM/GBSA)
method has been considered as a reliable tool to estimate the binding
free energy for protein-ligand interactions, which can be calculated in
terms of Eq. (5),

ΔGbinding =Gcomplex � ðGreceptor +GligandÞ ð5Þ

where Gcomplex , Greceptor and Gligand represent the free energy of the
receptor-ligand complex, receptor and ligand, respectively. The free
energy terms in the Eqs. (6)–(8) were estimated by the following
equations.

G= Egas +Gsol � TS ð6Þ

Egas = E int + Evdw + Eele ð7Þ

Gsol =Gpsolv +Gnpsolv ð8Þ
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The gasphase energy (Egas) is the sumof the internal energy (E int),
vanderWaals energy (Evdw), and electrostatic interaction energy (Eele).
The solvation energy (Gsol) comprises contributions from polar sol-
vation (Gpsolv) and non-polar solvation (Gnpsolv) energies. T represents
temperature and S denotes the total conformational entropy. Follow-
ing some high-quality computational works71,72, the entropy contribu-
tion was not considered in this study due to the high computational
cost and the potential errors from the entropy calculations73. All
binding free energy calculations were performed using the SANDER
program in AMBER16.

Protein structure network (PSN)
Herein, the PSN method was employed to investigate allosteric com-
munication in the receptor, which has exhibited successes in compu-
tational studies74. In PSN, residues are represented as nodes, and
interactions between twonodes are represented as edges in a network.
An edge is formed between two nodes only if the non-covalent inter-
action strength between the two nodes equals or overcomes a given
cutoff, as defined by Eq. (9):

Iij =
nijffiffiffiffiffiffiffiffiffiffi
NiNj

q × 100 ð9Þ

where Iij represents the percentage interaction between nodes i and j.
The term nij denotes the number of heavy atom-tompairs between the
side chains of residues i and jwithin a distance cutoff (4.5 Å). Ni andNj

arenormalized factors for residues i and j. After PSN is constructed, the
shortest pathways between pairs of nodes can be searched using
Dijkstra’s algorithm. Then, the correlation matrix is utilized to filter
these shortest pathways. Herein, the dynamic cross-correlation (DCC)
algorithm was used to estimate the motion correlation between
residues by Eq. (10):

Cij =
ðriðtÞ � riÞðrjðtÞ � rjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðriðtÞ2 � ri2ÞðrjðtÞ2 � rj2Þ

q × 100 ð10Þ

where i and jdenotes residues, and ri tð Þ and rj tð Þ are the corresponding
position vectors at time t. �r means the ensemble average over a period
of time. DCC could characterize the extent of residue-residue move-
ment correlations within a range from 1.0 to − 1.0, where 1.0 indicates
completely correlated motion and − 1.0 denotes completely anti-
correlatedmotion. Cross-correlation analysis and PSNwere performed
using Wordom software75.

cAMP Accumulation assay
To examine the intracellular cAMP levels of HEK293 cells over-
expressing β2AR in response to the two agonists (NE (TargetMol,
T7044), ALE (MedChemExpress (MCE), HY-B0447B)) under study and
allosteric ligand screened (ZINC5042(MCE, HY-108999A),
ZINC252008995(MCE, HY-15337), ZINC4213962(MCE, HY-100572),
ZINC11681534 (MCE, HY-B0203A)). The GloSensor-based cAMP accu-
mulation assay was performed as described previously76,77. Briefly,
HEK293 cells were transfected with β2AR plasmids and GloSensor
plasmids in 6-well plates using Polyethylenimine Linear (PEI)
MW40000 (Yeasen, Cat# 40816ES02. After 24 h incubation, cells were
seeded into 96-well plates and incubated for another 24 h at 37 °C. The
next day, the culture media was discarded, washed twice with PBS
buffer, and replaced with 90μL assay buffer (Hank’s Balanced Salt
Solution buffer containing 10mM HEPES, pH 7.4) containing 3% v/v
dilution of the D-luciferin-potassium salt (Yeasen, Cat# 40902ES03),
and incubated for 1 h at room temperature. After that, ligands diluted
by the same buffer as above were added to cells. After 30min of sti-
mulation at room temperature, luminescence was measured by a

Synergy H1 microplate reader (BioTek). Data were processed by the
nonlinear regression (curve fit) dose-response function in GraphPad
Prism 8. All data are the mean ± SEM from three independent experi-
ments performed. Operational models used here to help us under-
stand the interaction between ZINC5042 and orthosteric ligand NE or
ALE in a Glosensor-based cAMP assay. Operational models are shown
below78.

Effect=
EmaxðτA A½ � KB +αβ B½ �� �

+ τB½B�KAÞn

ð A½ �KB +KAKB +KA B½ �+α½A�½B�Þn + ðτA A½ �ðKB +αβ B½ �Þ+ τB B½ �KAÞn
ð11Þ

Emax is the maximal response of the system; A½ � and ½B� are the
concentrations of orthosteric ligand NE (or ALE) and allosteric mod-
ulator ZINC5042, respectively; KA and KB denote the equilibrium dis-
sociation constants of an orthosteric ligand (A) and an allosteric
modulator (B), respectively; α is the binding cooperativity para-
meter between the NE (or ALE) and ZINC5042; β denotes the
allosteric effect of the ZINC5042 on NE (or ALE) efficacy; τA and τB
denote the capacity of NE (or ALE) and ZINC5042, respectively. n
is the slope of the transducer function that links receptor occu-
pancy to the response.

Site-directed mutagenesis
The cDNA of human β2AR isoform1 (NM_000024.6) was obtained
fromChangsha Youze Biotechnology Co., Ltd and subcloned into the
pcDNA3.1 vector, tagged with a hemagglutinin (HA) signal sequence
at theN terminus followed by a Flag tag. Forward and reverse primers
for each mutation (D792.50A, F2826.44A, N3187.45A, S3197.46A) were
synthesized by Tsingke Biotechnology Co., Ltd (Beijing, China).
Mutations-specific primers and high-fidelity PrimeSTAR Max DNA
Polymerase (Takara, Cat# R045A) were used to amplify the coding
region with mutations from the pcDNA3.1-HA-Flag-β2AR vector. The
PCR linearized products were ligated through homologous recom-
bination using NovoRec plus One-step PCR Cloning Kit (Novoprotein
Scientific Inc, China, Cat# NR005). All recombinant plasmids were
extracted using the TIANprep Rapid Mini Plasmid Kit (TianGen, Cat#
DP103) following the manufacturer’s instructions and verified by
DNA sequencing.

NanoBiT β-arrestin recruitment assay
β2AR-mediated β-arrestin recruitment was measured by the NanoBiT
β-arrestin recruitment assay as described previously79. NanoLuc was
split to create a large fragment (LgBiT) and a small fragment (SmBiT).
LgBiT was fused with a flexible linker at the C-terminal of β2AR, and
SmBiT was fused at the N-terminal of β-arrestin. HEK293 cells were
transfected with β2AR-LgBiT and SmBiT-β-arrestin fusion vectors at a
1:1 ratio using PEI. After transfection, cells were washed with PBS,
seeded into 96-well plates, and incubated for 12 h. Subsequently,
media was removed and replaced with 5 µM coelenterazine h diluted
by HBSS containing 20mM HEPES. After 30min incubation at room
temperature, the ligand was added, and luminescence was measured
by the Synergy H1 microplate reader (BioTek). Data analysis was con-
ducted using GraphPad Prism 8.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The MD trajectories generated in this study and the source data
underlying Figs. 3a, b, c–e, 5a, c, 6d, e, 8a–g and Supplementary Figs. 1,
2, 6, 7d, e, 9–12 have been deposited in figshare [https://doi.org/10.
6084/m9.figshare.26129632]80. Source data is provided in this paper as
source data. Source data are provided in this paper.
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Code availability
The RHML tool developed by this study is open source and publicly
available from Zenodo [https://zenodo.org/doi/10.5281/zenodo.
13325067]81.
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