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ABSTRACT

Single-cell RNA-seq (scRNA-seq) has emerged as a
powerful technique to quantify gene expression in
individual cells and to elucidate the molecular and
cellular building blocks of complex tissues. We de-
veloped a novel Bayesian hierarchical model called
Cellular Latent Dirichlet Allocation (Celda) to perform
co-clustering of genes into transcriptional modules
and cells into subpopulations. Celda can quantify the
probabilistic contribution of each gene to each mod-
ule, each module to each cell population and each
cell population to each sample. In a peripheral blood
mononuclear cell dataset, Celda identified a subpop-
ulation of proliferating T cells and a plasma cell which
were missed by two other common single-cell work-
flows. Celda also identified transcriptional modules
that could be used to characterize unique and shared
biological programs across cell types. Finally, Celda
outperformed other approaches for clustering genes
into modules on simulated data. Celda presents a
novel method for characterizing transcriptional pro-
grams and cellular heterogeneity in scRNA-seq data.

INTRODUCTION

Complex biological systems can be conceptually defined
into hierarchies where each level of the hierarchy is com-
posed of different subunits which cooperate to perform dis-
tinct biological functions (1). For example, organisms can
be subdivided into a collection of complex tissues: each
complex tissue is composed of different cell types; each cell
population is denoted by a unique combination of tran-
scriptionally activated pathways (i.e. transcriptional mod-
ules); and each transcriptional module is composed of genes

that are coordinately expressed to perform specific molecu-
lar functions. By identifying the ‘building blocks’ and their
composition within each level of the hierarchy, we can more
readily identify the patterns that define the behavior of these
elements.

Single-cell RNA-seq (scRNA-seq) is a molecular assay
that can quantify gene expression patterns in individual
cells. In contrast to profiling of ‘bulk’ RNA from a sam-
ple, where only an average transcriptional signature across
all the composite cells can be derived, scRNA-seq exper-
iments can profile thousands of single-cell transcriptomes
per sample and can thus offer an excellent opportunity to
identify novel subpopulations of cells and to characterize
transcriptional programs that define each subpopulation by
examining co-varying patterns of gene expression across
cells (2). However, analysis of scRNA-seq data presents sev-
eral challenges. For example, the data tend to be sparse
due to the difficulty in amplifying low amounts of RNA
in individual cells. To combat noise from the amplification
process, unique molecular identifiers (UMIs) are often in-
corporated to eliminate duplicate reads derived from the
same mRNA molecule (3). The use of these UMIs enables
the measurement of discrete counts of mRNA transcripts
within each cell, making models constructed using discrete
distributions a suitable approach for analyzing this type of
data.

Discrete Bayesian hierarchical models have proven to be
powerful tools for unsupervised modeling of discrete data
types. In the text mining field, a plethora of models have
been developed that can identify hidden topics across doc-
uments and/or cluster documents into distinct groups (4–
8). These models generally treat each document as a ‘bag-
of-words’ where each document is represented by a vector
of counts or frequencies for each word in the vocabulary.
Each document cluster (hidden topic) is represented by a
Dirichlet distribution where words with higher probability
are observed more frequently for the document cluster (5).
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Given the success of topic models with sparse text data, and
the discrete, sparse nature of transcriptional data generated
by many scRNA-seq protocols, the application of such dis-
crete Bayesian hierarchical models represents a promising
approach to characterize structures in scRNA-seq data.

Various scRNA-seq tools have been developed to group
cells into clusters, including ascend (9), BAMM-SC (10),
CIDR (11), DESC (12), DIMM-SC (13), pcaReduce (14),
SAFE-clustering (15), SAME-clustering (16), SC3 (17),
scran (18), Seurat (19), SIMLR (20), TSCAN (21) and
VPAC (22). Additionally, previous approaches for cluster-
ing genes have been developed for bulk RNA-seq and mi-
croarray data such as weighted gene co-expression network
analysis (WGCNA) (23). However, methods that can cluster
genes into modules based on co-expression patterns across
cells using scRNA-seq data have not been reported. Other
co-clustering methods such as QUBIC2 can identify blocks
of co-expressed genes in a subset of samples (24). However,
these methods are non-exhaustive and not strictly exclu-
sive, meaning that not every gene or cell will get assigned
into a block and individual genes or cells may be assigned
into multiple blocks. When analyzing single-cell data, clus-
tering of all genes into distinct, non-overlapping modules
can be useful for characterizing the combinations of tran-
scriptional programs that define unique, non-overlapping
cell clusters.

Towards this end, we developed a model (Celda CG)
that performs exclusive and exhaustive co-clustering of cells
into subpopulations and genes into transcriptional mod-
ules. In addition to clustering of genes and cells, Celda CG
also has the ability to describe the relationship between
different layers of a biological hierarchy via probabilistic
distributions. These distributions constitute dimensionally
reduced representations of the data that can be used for
downstream exploratory analysis. We demonstrate the util-
ity of this approach by applying the Celda CG model to a
publicly available scRNA-seq dataset of peripheral blood
mononuclear cells (PBMCs). Celda CG identifies novel cell
subpopulations missed by other approaches while charac-
terizing transcriptional programs that are active to various
degrees within and across major cell types.

MATERIALS AND METHODS

Celda CG statistical model

The Celda CG model uses sets of Dirichlet-multinomial
distributions to model the hierarchies in the scRNA-seq
data. The generative process for Celda CG is outlined in
Figure 1 and below, while the complete specification for the
model can be found in the supplementary text. The genera-
tive process for Celda CG is as follows :

1. Draw η ∼ DirL(γ )
2. For each gene g ∈ {1, 2, . . . , G}, draw yg ∼ Mult(η)
3. For each transcriptional module distribution

l ∈ {1, 2, . . . , L}
a. Define Yl = [yg = l]G

g=1
b. Draw ψl ∼ Dir(δYl )

4. For each sample i ∈ {1, 2, . . . , S}, draw θi ∼ DirK (α)
5. For each cell population k ∈ {1, 2, . . . , K}, draw ϕk ∼

DirL(β)

6. For each cell j ∈ {1, 2, . . . , Mi } in sample i
a. Draw zi, j ∼ Mult(θi )
b. For the t-th transcript in cell j in sample i , t ∈

{1, 2, . . . , Ni, j }
i. Draw wi, j,t ∼ Mult(ϕzi, j )

ii. Draw xi, j,t ∼ Mult(ψwi, j,t )

η is from a Dirichlet distribution with symmetric concen-
tration parameter γ with length equal to the total number of
transcriptional modules specified by L. G is the number of
genes. yg is the hidden transcriptional module label drawn
from η for gene g and will return a value between 1 and L.
L is the number of transcriptional modules. ‘[]’ refers to a
Boolean operator and returns 1 when the expression within
the bracket is true and 0 otherwise. We use this operator in
step 3a to denote that the element corresponding to gene g
in Yi will be set to 1 if yg = 1 and 0 otherwise. Yi will then be
used as an indicator variable in step 3b to control the genes
turned on in transcriptional module l. ψ i is from a Dirichlet
distribution parameterized by δYi where each element rep-
resents the probability of a gene in the module. If an element
in Yi is zero, the parameter δYi for the Dirichlet distribu-
tion will be zero along with the corresponding probability
ψ i for that gene, thus turning off the expression of that gene
in that module. The combination of these variables results
in the ‘hard-clustering’ behavior by controlling the assign-
ment of each gene to a single transcriptional module. S is
the number of samples. θi is from a Dirichlet distribution
parameterized by the symmetric concentration parameter α
that defines the probability of each cell population in each
sample i . K is the number of cellular subpopulations. Each
cell population k follows a Dirichlet distribution ϕk param-
eterized by the symmetric concentration parameter β where
each element in ϕk represents the probability of a transcrip-
tional module in population k. Mi is the number of cells
in sample i . zi, j is the hidden cell population label for cell
j in sample i . Ni, j is the number of transcripts for cell j
in sample i . wi, j,t is the hidden transcriptional module label
for transcript xi, j,t, and xi, j,t is the t-th transcript for cell j
in sample i . zi, j is drawn from θi and represents the hidden
label denoting the population assignment for each cell. wi, j,t
is the hidden label for transcript t in cell j drawn from ϕzi, j

and represents the module assignment for that transcript.
xi, j,t is the observed transcript which is drawn from ψwi, j,t .
Note that only the genes ‘turned on’ according to the indica-
tors Yl will have a non-zero probability and will be selected
from this draw.

The complete likelihood function of the Celda CG model
is then given as:

P (η,ψ, θ, ϕ, Y, Z, W, X|α, β, γ, δ) = P (η|γ )
G∏

g = 1

P
(
yg|η

)
L∏

l = 1

P (ψl |δ, Y)
S∏

i = 1

P (θi |α)
K∏

k = 1

P (ϕk|β)
Mi∏

j = 1

P
(
zi, j |θi

)
Ni, j∏

t = 1

P
(
wi, j,t|ϕzi, j

)
P

(
xi, j,t|ψwi, j,t

)
,
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Figure 1. Celda identifies cell heterogeneity by clustering genes into modules and cells into subpopulations. (A) Example of a biological hierarchy. One
way in which we try to understand complex biological systems is by organizing them into hierarchies. Individual organisms are composed of complex
tissues. Each complex tissue is composed of different cellular populations with distinct functions; each cellular subpopulation contains a unique mixture of
molecular pathways (i.e. modules); and each module is composed of groups of genes that are co-expressed across cells. (B) Plate diagram of the Celda CG
model. We developed a novel discrete Bayesian hierarchical model called Celda CG to characterize the molecular and cellular hierarchies in biological
systems. Celda CG performs ‘co-clustering’ by assigning each gene to a module and each cell to a subpopulation. (C) In addition to clustering, Celda CG
also inherently performs a form of ‘matrix factorization’ by deriving three distinct probability matrices: (i) a cell population × sample matrix representing
the probability that each population is present in each sample; (ii) a transcriptional module × cell population matrix representing the contribution of
each transcriptional state to each cellular subpopulation; and (iii) a gene × module matrix representing the contribution of each gene to its module. (D)
Generative process for the Celda CG model.

where α, β, γ,δ are the symmetric prior parameters in their
corresponding Dirichlet distributions, and Y, Z, W, X are
the collections of yg, zi, j , wi, j,t and xi, j,t, respectively.

Estimation of model parameters

We use a heuristic hard Expectation Maximization (EM)
procedure to estimate the cell population label zi, j for cell
j in sample i and a collapsed Gibbs sampling procedure
to estimate the hidden transcriptional module label yg for
gene g (Supplementary text). To estimate the hidden tran-
scriptional module label for each gene, we integrate out ψ ,
ϕ and W, and drop components related to θ that are invari-
ant with respect to Y. The final formula after simplification
is as follows:

P
(

yg = l|Y−(g), Z, X, α, β, δ, γ
)

s ∝
∏L

l = 1 
 (|Vl | + γ )



(∑L

l = 1 (|Vl | + γ )
) ×

K∏
k = 1

⎡
⎢⎢⎣ 


(
n(·),(k),(Vl ) + β

)



(
n

(·),(k),
(

V−(g)
l

) + β

)
⎤
⎥⎥⎦ ×

[
L∏

l = 1


 (|Vl | δ)


(δ)|Vl |

]
×

⎡
⎢⎢⎣




(∑
v∈V−(g)

l

(
n(·),(·),v + δ

))



(∑

v∈Vl

(
n(·),(·),v + δ

))
⎤
⎥⎥⎦ ,

where L is the total number of modules, K is the total num-
ber of cell populations, |Vl | is the total number of genes in
module l, V−(g)

l is the total number of genes in module l leav-
ing out the current gene g, n(·),(k),(V−(g)

l ) is the total number
of transcripts from genes in module l across all the cells in

cluster k leaving out those from gene g, n(·),(·),v is the total
number of transcripts for gene g across all cells and sam-
ples, n(·),(k),(Vl ) is the number of transcripts from all genes in
module l in population k, and 
 is the gamma function. For
estimating the hidden population label for each cell zi, j , we
relied on a heuristic ‘hard’ EM procedure to increase speed
on large datasets with many cells. The collapsed Gibbs sam-
pling equations for zi, j can also be found in the Supplemen-
tary text. First, we drop components related to ψ that are
invariant with respect to Z. The ‘hard’ EM obtains a point
estimate of zi, j by maximizing the posterior with respect to
point estimates of θ and ϕ given the current configurations
of Z and Y:

ẑi, j = argmaxk
{
P

(
zi, j = k|Xi, j , θ̂ , ϕ̂

)}
= argmaxk

{
θ̂i,k

L∏
l = 1

ϕ̂
ni, j,(Vl )
k,l

}
,

where Xi, j is the collection of transcripts xi, j,t within cell j
in sample i , ni, j,(Vl ) is the number of transcripts from all the
genes that belong to module l of cell j in sample i . θ̂i,k is
the point estimate of θi,k which is the probability of a cell
belonging to cell population k in sample i and can be calcu-
lated as:

θ̂i,k = mi,k + α

Mi + Kα
,

where mi,k is the total number of cells assigned to cluster k
in sample i and Mi is the total number of cells in sample i .
ϕ̂k,l is the point estimate of ϕk,l which is the probability of
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module l in cell population k and can be calculated as:

ϕ̂k,l = n(·),(k),(Vl ) + β

n(·),(k),(·) + Lβ
.

Within each iteration of the optimization procedure, we
apply the ‘hard’ EM procedure to estimate the cell popu-
lation labels (Z) given a fixed set of transcriptional mod-
ule labels (Y) and then apply the collapsed Gibbs sam-
pling procedure to estimate the transcriptional module la-
bels (Y) given a fixed set of cell population labels (Z). We
generally run the model for a maximum number of itera-
tions (200 by default) or until there has been no improve-
ment in the log-likelihood for a pre-defined number of iter-
ations (10 by default). The configurations of Z and Y that
produced the highest likelihood are returned as the final
solution.

In order to avoid a local optimum, we apply a heuristic
cluster/module splitting procedure every 10 iterations. To
apply the cell splitting procedure at a given iteration, we
try to find a better configuration for Z with a higher log-
likelihood by splitting one population into two new clus-
ters and removing another unsplit population. Let K∗ be
the set of cell population clusters that have >3 cells and
|K∗| be the cardinality of set K∗. For one cell population
k∗ ∈ K∗, the cluster is split into two new clusters using
the Celda C model setting Kc = 2. Then parallelly for all
other cell clusters {k’ : k’ ∈ {1, 2, . . . , K}� k’ �= k∗}, we re-
distribute all the cells in cluster k’ to their second most likely
cluster according to EM probabilities of current Z configu-
ration. The log-likelihood is re-calculated for each of these
K − 1 configurations. After repeating this procedure for all
the {k∗ : k∗ ∈ K∗}, a total number of |K∗| × (K − 1) new
possible configurations for Z are obtained. The configura-
tion that produced the highest likelihood will be set at the
current solution. If none of the new configurations had a
higher likelihood than the original configurations, then no
splitting will be performed and the original configuration
of Z will be maintained. The module splitting procedure is
similarly applied to the transcriptional modules to find a
Y that has a higher log-likelihood. One module l∗ is split
using Celda G with LG = 2 and new likelihoods are calcu-
lated by redistributing the genes in each of the other mod-
ules. One potential limitation is that running Celda G on all
cells to split each module would result in a dramatic reduc-
tion in speed for large datasets. We therefore take each cell
population cluster and split it up into 10 new clusters us-
ing Celda C with K = 10 to produce a temporary config-
uration denoted Z∗. These temporary populations are used
to potentially find a better configuration of module labels.
Splitting each cell population into 10 temporary cell popu-
lations ensures that better splits of the modules can be ob-
tained even if the current cluster labels Z are suboptimal.
Even though the modules are split with Z∗, the overall like-
lihood for all new splits of Y is still calculated with the cur-
rent configuration of Z containing the K subpopulations.
As in the cell splitting approach, the module split with the
best log-likelihood is chosen if it is higher than that from
the current Y configuration.

Determining the number of cell populations and transcrip-
tional modules

Perplexity has been commonly used in the topic models to
measure how well a probabilistic model predicts observed
samples (5). Here, we use perplexity to calculate the prob-
ability of observing expression counts given an estimated
Celda CG model. Rather than performing cross-validation
which is computationally expensive, a series of test sets are
created by sampling the counts from each cell according to
a multinomial distribution defined by dividing the counts
for each gene in the cell by the total number of counts for
that cell. Perplexity is then calculated on each test set, with
a lower perplexity indicating a better model fit (5). For a test
set x, the perplexity of Celda CG is given as

Perplexity = exp

{
− log (P (x))∑S

i = 1

∑Mi
j = 1 Ni, j

}
,

where log(P(x)) is defined as:

log (P(x)) =
S∑

i=1

Mi∑
j=1

log

⎡
⎣ K∑

k=1

θi,k

G∏
g=1

(
L∑

l=1

φk,lψl,g)

ni, j,g
⎤
⎦ .

We compare perplexity values among different model set-
tings and use rate of perplexity change (RPC) (25) to deter-
mine an appropriate number of cell populations and tran-
scriptional modules. In particular, setting a fixed number of
transcriptional modules, a series of Celda CG models with
a sequence of equally spaced Ks arranged in ascending or-
der are fitted. We then calculate the RPC along the course
of increase of cell populations, and choose the smallest K as
the appropriate number of cell populations where the RPC
is zero at a given precision. Similarly, setting a fixed num-
ber of cell populations, an appropriate number of transcrip-
tional modules can be selected by calculating the RPC along
a sequence of equally spaced Ls.

Data collection and pre-processing

PBMC 4k, 33k and 68k datasets were downloaded using
R/Bioconductor package TENxPBMCData v1.8.0. They
contain 4340 cells and 33 694 genes, 33 148 cells and 32 738
genes, and 68 597 cells and 32 738 genes, respectively. We ap-
plied DecontX (26) to remove inadvertent contamination
using default settings. For the PBMC 4k dataset, 17 039
genes detected in fewer than three cells were excluded. We
applied NormalizeData and FindVariableFeatures func-
tions from Seurat v3.2.2 (19) using default settings and iden-
tified a set of the 2000 most variable genes for clustering
by variance-stabilizing transformation (VST) (19). Princi-
pal component analysis (PCA) was performed on scaled
normalized gene expression using the RunPCA function
from Seurat v3.2.2 in default settings. For coloring of uni-
form manifold approximation and projections (UMAPs)
and module heatmaps, the decontaminated counts were
normalized by library size, square root-transformed, cen-
tered and scaled to unit variance. Values greater than 2 or
less than –2 were trimmed.
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Selecting the number of transcriptional modules (L) and cell
clusters (K)

We applied two stepwise splitting procedures as imple-
mented in the recursiveSplitModule and recursiveSplitCell
functions in Celda to determine the optimal L and K . recur-
siveSplitModule uses the Celda G model to cluster genes
into modules for a range of possible L values between 10
and 200. The module labels of the previous model with
L − 1 modules are used as the initial values in the current
model with L modules. The best split of an existing mod-
ule, evaluated by best overall likelihood, is found to create
the Lth module. The RPC was calculated for each succes-
sive model generation. For the PBMC 4k dataset, we found
that the model with 80 transcriptional modules had low
RPC and included both known and novel gene programs.
recursiveSplitCell uses the Celda CG model to cluster cells
into cell clusters for a range of possible K values between
3 and 30. The module labels of genes from model L = 80
was used to initialize the modules in recursiveSplitCell. We
found that the model with 20 cell clusters had low RPC
and included both known and novel cell populations (Sup-
plementary Figure S1). The final Celda CG model used in
this analysis of the PBMC 4k dataset was extracted from
the stepwise splitting results using the subsetCeldaList func-
tion.

UMAP of PBMC cells based on Celda transcriptional mod-
ules

Dimensionality reduction for visualization by UMAP (27)
is performed using the square root-transformed module
probability (MP) matrix which contains the probability of
each transcriptional module in each cell. Specifically, the
MP matrix is defined as

MPi, j,l = ni, j,(Vl )

Ni, j
,

where ni, j,(Vl ) denotes the sum of all counts belonging to
genes in transcriptional module l, and Ni, j is the total
sum of counts for a cell. The square root transformation
is applied as it can be applied to zero counts without the
need to add a pseudocount as is required with log trans-
formation. The umap function from the uwot R package
was applied to the MP matrix using Euclidean distance
to obtain two-dimensional coordinates for each cell with
n neighbors = 10, min dist = 0.5 and default settings.

Testing for differential expression

A hurdle model from MAST (28) was used for significance
testing of differential expression between cell clusters. Ben-
jamini and Hochberg false discovery rate (29) (FDR) ad-
justed P-values were used to reject the null hypotheses.

Cell clustering and UMAP using Seurat

The same set of 2000 most variable genes in the decon-
taminated PBMC dataset were used for clustering by Seu-
rat. PCA was performed on scaled normalized gene ex-
pressions using the RunPCA function from Seurat (19)
v3.2.2 in default settings. The Shared Nearest Neighbor

(SNN) graph was constructed using the FindNeighbors
function with the top 22 principal components (PCs). Clus-
ters were identified by modularity optimization using Find-
Clusters with default settings. UMAP was generated us-
ing the RunUMAP function and the top 22 PCs with
n.neighbors = 10, min.dist = 0.5 and default settings.

Cell clustering and UMAP using scran

The same set of 2000 most variable genes in the decontami-
nated PBMC dataset were used for clustering by scran. PCA
was performed on normalized gene expressions using the
runPCA function from scater (30) v1.18.3 using 2000 genes
and default settings. The SNN graph was constructed using
the buildSNNGraph function from scran (18) v1.18.3 with
the top 28 PCs. Clusters were identified by random walks
using the cluster walktrap function from igraph (31) pack-
age v1.2.6 with default settings. UMAP was generated using
the runUMAP function with n neighbors = 5 and default
settings.

Biclustering of PBMCs using QUBIC2

The same set of 2000 most variable genes in the decon-
taminated PBMC dataset were used for biclustering by
QUBIC2. The left-truncated mixture of Gaussian distribu-
tion option for data discretization was performed on counts
per million (CPM) values with -F and -R flags. The 1.0 ob-
jective function and dual expansion biclustering option was
performed on the discretized result with -d, -C, -N flags, and
the number of biclusters set as 80 (-o 80).

Clustering of mouse lung cells with Celda

The ExperimentHub package was used to download mouse
single-cell data from The Tabula Muris Consortium (32)
(ExperimentHub ID: EH1617). Cells were filtered to retain
those from lung tissue that did not belong to a subtissue
(n = 2150). Features with at least three counts in three cells
were included in the Celda CG analysis. The recursive split-
ting procedure was used to identify 125 modules (L) and 35
cell populations (K). Cells were displayed on a UMAP, and
broad cell types were identified using marker genes.

Pathway enrichment analysis of gene modules using Enrichr

The enrichment of pathways from the
‘GO Biological Process 2021’ database was determined for
each of the 80 gene modules identified by Celda CG from
the PBMC 4k dataset using the enrichR (33) R package
(v3.0). The Gene Ontology (GO) pathways with FDR
<0.05 were considered significantly enriched. To assess the
significance of the number of pathways enriched in Celda
modules, a null distribution was created by performing
100 random permutations of module cluster labels and
testing for pathway enrichment of the permuted labels with
enrichR.

Evaluation of module clustering accuracy with simulated data

Data were simulated based on the generative model of
Celda CG (see the Materials and Methods, and Supple-
mentary text) using the simulateCells function in Celda.
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Specifically, we set the model to ‘celda CG’, S to 1, CRange
between 4000 and 6000, NRange between 1000 and 10 000,
G to 33 000, and K to 20. scRNA-seq count data were simu-
lated using six combinations of concentration parameters β
and δ ranging from 1 to 40 representing six levels of cluster-
ing difficulties. For each combination of β and δ, a range of
the number of transcriptional modules (L) from 10 to 200
was simulated with 10 replicates per L. After simulated data
were generated, the 2000 most variable genes determined by
VST were selected. Celda CG clustering, k-means and PCA
were applied to group the 2000 most variable genes to tran-
scriptional modules whose numbers equal the true remain-
ing number of modules for the 2000 genes. Adjusted Rand
indices (ARIs) were calculated between the gene clustering
results of Celda CG, k-means or PCA and the true module
labels of genes using the adjustedRandIndex function from
mclust package v5.4.6. k-means was performed using the
stats package v4.0.5 and default settings.

A heuristic approach was used to cluster genes based on
the loadings from the PCA. After performing PCA to re-
duce the data to PCs whose number equals the number of
true modules for the 2000 most variable genes, we first or-
der the genes by the loadings in increasing order for each
PC. For each PC, if the sum of the absolute values of the
top 50 negative loadings is greater than the sum of the ab-
solute values of the bottom 50 positive loadings, we rank the
genes by loadings in this PC in increasing order. Otherwise,
we rank the genes by loadings in this PC in decreasing order.
This is to account for the bidirectionality of PCA loadings
so that when genes are assigned to a PC, they are always in
the same direction with respect to the orientation of the PC.
After ranking the genes by loadings for each PC, we assign
each gene to its highest ranking PC accordingly. If a gene
has the same highest ranks in two or more PCs, this gene is
not used for the calculation of ARI.

UMAPs of genes were generated to visualize the vari-
ability of genes and the clustering difficulties for the sim-
ulated data. For each combination of β and δ, UMAP was
generated based on one of the 10 simulations at L = 100.
Gene counts for each cell were collapsed to cell clusters be-
fore applying UMAP. Specifically, for each gene, the counts
for each of the 20 true cell clusters were added and divided
by total counts for this gene, so the number of features
for UMAP were reduced from the total number of cells to
20. These cell cluster probabilities were then square root-
transformed before applying UMAP. UMAP dimension re-
duction coordinates for cells were generated using the umap
function from the uwot R package with n neighbors = 10,
min dist = 0.5 and default settings.

RESULTS

We developed a novel discrete Bayesian hierarchical model,
called Cellular Latent Dirichlet Allocation (Celda), to per-
form exclusive and exhaustive co-clustering of genes into
modules and cells into subpopulations (Figure 1; Supple-
mentary text). Each level in the biological hierarchy is mod-
elled as a mixture of components using Dirichlet distribu-
tions: sample i is a mixture of cellular subpopulations (θ i),
each cell subpopulation k is a mixture (ϕk) of transcrip-
tional modules, and each module l is a mixture (ψ l) of fea-

tures such as genes. θ i,k is the probability of cell population k
in sample i, ϕk,l is the probability of module l in population
k and ψ l,g is the probability of gene g in module l (Figure
1A, B). Each cell j in sample i has a hidden cluster label,
zi,j, denoting the population to which it belongs. Each tran-
script xi,j,t has a hidden label wi,j,t denoting the transcrip-
tional module to which it belongs. A similarly structured
topic model has previously been proposed called ‘Latent
Dirichlet Co-Clustering’ (8). However, we add a unique and
novel component to our model specifically geared towards
gene expression analysis.

The goal of many gene expression clustering algorithms
is to group genes into distinct, non-overlapping sets of genes
(23,34–36) (i.e. hard-clustering of genes). The rationale for
this type of clustering is that genes that co-vary across cells
and samples are likely to be involved in the same biologi-
cal processes and should be considered a single biological
program (37). In order to enforce ‘hard-clustering’ of genes
into modules, we modified an approach from Wang and Blei
(6) regarding the sparse Topic Model (sparseTM) that has
the capability to turn words ‘on’ or ‘off’ in different top-
ics, by assigning a non-zero or zero probability to that word
in each topic. In Celda CG, we leverage this technique to
turn off genes in all modules except one to enable the hard-
clustering behavior.

While Celda can perform clustering, it also offers proba-
bilistic distributions which describe the contribution of each
‘building block’ to each layer of the biological hierarchy
(Figure 1C). These distributions can also be viewed as re-
duced dimensional representations of the data that can be
used for downstream exploratory analyses. For example, the
ϕ matrix contains the probability of each module in each cell
population and thus provides a high-level view of the struc-
ture of the dataset. The generative process for Celda CG is
shown in Figure 1D.

Identification of cell populations in PBMCs

To assess Celda CG’s ability to identify biologically mean-
ingful cell subpopulations in real-world scRNA-seq data,
we applied it to a publicly available dataset provided by 10X
Genomics. The dataset (PBMC 4k) contains 4340 PBMCs
collected from a healthy donor. To determine the optimal
number of transcriptional modules (L) and cell populations
(K), we employed a step-wise splitting procedure first for the
number of modules using a temporary cell-clustering solu-
tion and then for the number of cell populations using a
fixed number of modules (see the Materials and methods
and Supplementary Figure S1). The RPC (25) was mea-
sured at each split. An RPC closer to zero indicates that
the addition of new modules or cell clusters is not substan-
tially decreasing the perplexity. By observing the ‘elbows’
on these curves as a reference point in combination with
manual review of module heatmaps and cell clusters, a so-
lution of L = 80 transcriptional modules and K = 20 cell
populations was chosen for further characterization.

A UMAP (27) dimension reduction representation was
generated based on the estimated module probabilities
for each cell, and the major subtypes of immune cells
were identified by examining expression of known marker
genes (Figure 2; Supplementary Table S1). Among the
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A B

Figure 2. Celda identifies immune cell subpopulations from PBMC scRNA-seq data. To demonstrate the utility of the Celda clustering model, we applied
it to an scRNA-seq dataset of 4340 PBMCs generated using 10X Chromium platform and identified 80 transcriptional modules and 20 cell populations.
(A) UMAP dimension reduction representation of 4340 PBMCs based on the transcriptional module probabilities. (B) Scaled normalized expression of
representative gene markers shows clustering of cell subpopulations including T cells (CD3D), B cells (CD19), NKs (KLRD1), FCGR3A+ monocytes
(FCGR3A), CD14+ monocytes (CD14), DCs (FCER1A), pDCs (CLEC4C), megakaryocytes (ITGA2B) and CD34+ progenitor cells (CD34). Cell pop-
ulations 1 (plasma cell) and 15 (proliferating T cells) are novel cell clusters identified by Celda, demonstrating Celda’s ability to characterize additional
cellular heterogeneity.

20 identified cell clusters in the PBMC sample, we iden-
tified major immune cell populations including CD19+ B
cells, FCER1A+ dendritic cells (DCs), CLEC4C+ plas-
macytoid dendritic cells (pDCs), CD34+ progenitor cells,
KLRD1+ natural killer cells (NKs), ITGA2B+ megakary-
ocytes, CD14+ monocytes, FCGR3A+ monocytes, CCR7+

memory T cells, CD8A+CD8B+ cytotoxic T cells and CD4+

T helper cells. Cell subpopulations 15–20 show a consis-
tently higher expression (FDRs <0.01) of the T-cell marker
genes CD3D, CD3E and CD3G relative to all other clus-
ters. Among these T-cell subpopulations, clusters 17, 18
and 19 show consistently higher expression (FDRs <0.01)
of CD8A and CD8B (Supplementary Figure S2). Within
these CD8A+CD8B+ T cells, cluster 17 has high expres-
sion (FDR <0.01) of naive T-cell marker CCR7, whereas
cluster 18 has consistent high expression (FDRs <0.01) of
NK markers GNLY, KLRG1 and granzyme genes GZMA
and GZMH, so we classified them as naive CD8+ T cells
and NKT cells, respectively (38). Cell subpopulation 15 ex-
pressed T-cell markers as well as uniquely high levels of
module 61, which contained genes associated with prolif-
eration including MKI67, IL2RA, CENPM and CENPF
(Supplementary Figure S2) commonly found in activated
proliferating T cells (39,40).

Cell subpopulation 1 contained a single cell which had
the highest number of UMIs across the dataset (n = 48
443). This cell expressed several B-lineage markers such as
CD79A, CD79B and CD19 but also contained a relatively
high fraction (27%) of UMIs for immunoglobulin heavy
chain and light chain genes IGHG1, IGHG3, IGLC2 and
IGLC3. These genes were not observed in other cells and

suggest a plasma cell lineage (41) (Supplementary Figure
S3). We also observed similar plasma cell subpopulations
in PBMC 33k and 68k datasets (Supplementary Figures S4
and S5). The proportions of plasma cells were 0.02, 0.28
and 0.18% for PBMC 4k, 33k and 68k datasets respectively.
Cell populations 1 and 15 were not identified by the analy-
sis workflows and graph-based clustering methods used in
Seurat (19) and scran (18) packages (Supplementary Fig-
ure S6), demonstrating Celda’s ability to characterize ad-
ditional cellular heterogeneity compared with other popu-
lar single-cell analysis workflows. We also applied QUBIC2
(42) to identify cell subpopulations through non-exclusive
and non-exhaustive biclustering. All of the cells in each of
the 80 biclusters identified by QUBIC2 were from the den-
dritic and/or monocyte subpopulations, and no biclusters
contained B cells, T cells or NKs, pDCs or the novel sub-
populations of proliferating T cells (Supplementary Figure
S7).

Finally, we applied Celda to a dataset of mouse lung cells
from The Tabula Muris Consortium (32) to demonstrate
that it can find biologically relevant cell clusters and gene
modules in another tissue type (Supplementary Figure S8).

Identification of transcriptional modules with unique patterns
of expression across cell populations

Beyond assessment of individual marker genes, Celda has
the ability to identify modules of co-expressed genes which
can be further examined to characterize transcriptional pro-
grams active in one or more cell populations (Figure 3).
An overview of the relationships between modules and
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Figure 3. Celda produces a high-level overview of the relationships between transcriptional modules and cell populations. (A) The ϕ matrix shows the
probability of each of the 80 transcriptional modules (rows) in each of the 20 cellular subpopulations (column) and can be used to explore the relationship
between modules within a cell population. (B) The row-scaled ϕ matrix can be used to explore the relative probability of each module across cell popula-
tions. (C–F) Module heatmaps and UMAPs showing the gene expression profiles for cell type-specific transcriptional modules 10, 21, 43 and 74. The top
annotation row indicates a total of 100 cells with the highest and lowest probabilities in the module and are colored by their cell cluster labels. Selected
marker genes for B cells (CD79A, CD79B, MS4A1 and CD19), pDCs (ITM2C, IRF7, LILRA4 and CLEC4C), CD14+ monocytes (S100A9, S100A8,
S100A12, VCAN and CD14) and T cells (TRAC, CD3D, TRBC1 and CD3G) are highlighted on the right.

cell subpopulations can be explored with the ϕ probabil-
ity matrix which contains the probability of each module
within each cell subpopulation (Figure 3A). This matrix
gives insights into the absolute abundance of each module
within the same cell subpopulation. For example, module
62 contains actin-related housekeeping genes such as ACTB
and ARPC1B, and has higher expression than most other
modules within each cell population. A relative probabil-
ity heatmap can also be produced by taking the z-score of
the module probabilities across cell subpopulations (Fig-
ure 3B). Examining the relative abundance of a transcrip-
tional module among different cell populations can be use-
ful for finding modules that exhibit specific patterns across
cell populations even if they have an overall lower absolute
probability compared with other modules. For example,
module 65 contains CD8A and CD8B, and has an overall

lower abundance compared with other housekeeping mod-
ules such as module 62 within each cell population (as can
be observed in Figure 3A). However, module 65 has higher
relative expression in the T-cell populations 17, 18 and 19,
and can be used to classify CD8+ subpopulations (as can be
observed in Figure 3B).

Traditional single-cell workflows such as those utilized
in Seurat (19) and Scanpy (43) seek to identify genes that
are specific to cell populations using differential expression
between that population and all other cells. In Celda, sev-
eral modules are specific to individual cell populations or
cell types. For example, module 10 is expressed in clusters
2, 3 and 4 and contains the B-lymphocyte antigen recep-
tor genes CD79A and CD79B, as well as the B-lymphocyte
cell surface antigens MS4A1 and CD19 (Figure 3C). Mod-
ule 21 contains pDC marker genes ITM2C, IRF7, LILRA4
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and CLEC4C, and has high probability in cell population
7 (Figure 3D). Module 43 contains monocyte cell mark-
ers S100A9, S100A8, S100A12, VCAN and CD14, and has
high probabilities in cell populations 11, 12 and 13 (Fig-
ure 3E). Module 74 contains T-cell receptor genes TRAC,
CD3D, TRBC1 and CD3G, and has high probabilities in
cell populations 15–20 (Figure 3F). UMAPs colored by
module probabilities can illustrate the patterns of transcrip-
tional modules across cell populations.

In addition to the identification of co-expressed genes
specific to a single cell type, Celda gene modules can also
be used to identify transcriptional programs that are jointly
expressed across multiple cell populations. For example,
transcriptional modules 12, 44, 40 and 65 have high prob-
ability in at least two unique cell subpopulations (Figure
4A). Module 12 contains genes BANK1 and BLNK associ-
ated with B-cell activation, and genes FCGR2B and HLA-
DOB associated with antigen processing and presentation,
and have high probability in both B cells and pDCs (44–
46). Module 44 contains genes including LYZ and SIRPA
that are associated with both DCs and CD14+ monocytes
(47,48). Module 40 is present across NKs, cytotoxic T
cells and NKT cells, and contains granzyme genes such as
GZMA and GZMH important for cytolytic activity (49).
Module 65 is expressed in both naive and cytotoxic T cells
and contains genes for the CD8 receptor, CD8A and CD8B
(50). Transcriptional modules 15, 45, 47 and 75 are present
in at least three unique cell subpopulations (Figure 4B).
Module 15 contains myeloid lineage genes CD33, CSF2RA
and IL1R2 (51,52). Module 45 contains Toll-like receptor
genes TLR2, TLR4 and TLR8. Module 47 contains C-type
lectin domain family genes CLEC4A, CLEC7A, CLEC12A
and CLEC4G, and leukocyte immunoglobulin-like recep-
tor genes LILRA2 and LILRB3. These three modules all
have high probabilities to varying degrees in DCs, pDCs and
monocytes. Module 75 contains lymphoid lineage marker
CD69 and has high expression in B, T and NK cells (53).
Modules 7, 14, 6 and 33 span four unique cell subpopu-
lations (Figure 4C). Modules 7, 14 and 6 have high prob-
ability in B cells, DCs, pDCs and monocytes. Modules 7
and 14 are predominated by major histocompatibilty com-
plex (MHC) class II genes which are key determinants
of antigen-presenting cells (54) (APCs). Module 6 con-
tains CD74 which is an important chaperone that regulates
antigen presentation (55). Module 33 contains genes such
as transmembrane immune signaling adaptor TYROBP,
IgE receptor gene FCER1G and macrophage inflamma-
tory gene CCL3, and is expressed in DCs, pDCs, mono-
cytes and NK cells (56). Modules 24, 28, 62 and 80 have
high probability in almost all cell populations and contain
many known housekeeping and essential genes (Figure 4D).
Module 28 contains several common housekeeping genes
such as GAPDH, HMGB2, HMGB3 and TUBA1C (57).
Module 80 contains mitochondrial genes MT-CO1, MT-
CO2 and MT-CO3. Although expressed to varying degrees
in all cells, an extremely high proportion of these genes can
indicate severe stress or poor quality within a cell (58,59).
To assess the biological significance of the gene modules,
we utilized Enrichr to identify the number of pathways en-
riched in each module (33). Using the GO Biological Pro-
cess database, 62 of the 80 modules were enriched for at least

one term (FDR <0.05) and each module had 37 enriched
terms on average. These numbers were higher than what
was observed for 100 random permutations of the module
cluster labels (P < 0.01; Supplementary Figure S9). Overall,
these results suggest that Celda is able to cluster biologically
related genes into modules.

Qualitative comparison of Celda with principal components
for module detection

Many popular scRNA-seq clustering workflows, including
ascend (9), Seurat (19) and TSCAN (21), perform ad hoc
dimensionality reduction using PCA before cell clustering.
The resulting PCs are used in downstream analyses such as
clustering and 2-D embedding as they maintain the rela-
tive distance between cells while alleviating noise potentially
present in genes expressed at a low level. Genes that have
extreme loading scores (positive or negative) to a principal
axis will be highly correlated with the corresponding PC and
are often plotted together in a heatmap when assessing the
quality of PCs or choosing the number of PCs (19,60). How-
ever, the biology of the genes associated with PCs is rarely
assessed or utilized in downstream analyses. Advantages of
Celda modules are that the per cell module probabilities can
be used for dimensionality reductions similar to the PCs,
and the biology of the co-expressed genes within each mod-
ule can be used for discovery of biological programs. To
qualitatively compare transcriptional modules from Celda
with those that can be derived using PCA, we analyzed the
same PBMC dataset using Seurat (Figure 5). There are three
major issues when trying to define gene modules using PCA.
The first issue is that biological programs from different cell
types can be represented at each end of the PC. For example,
when examining PC2 from the PCA generated by Seurat,
the top 15 genes negatively correlated with PC2 contained
B-cell markers CD79A, MS4A1 and CD79B, and MHC
class II genes, while the top 15 genes positively correlated
with PC2 contained T- and NK-cell marker genes includ-
ing TRAC, CD3D, CD7, CTSW and NKG7 (Figure 5A).
Similarly, the B-cell and pDC subpopulations were enriched
with negative PC2 scores, while the NK cells and a subset of
T cells were enriched with positive PC2 scores (Figure 5B).
The average expressions of the top 15 genes negatively cor-
related with PC2 and the top 15 genes positively correlated
with PC2 further confirmed enrichment of PC2-associated
genes in different cell types (Figure 5C, D). The second is-
sue is that transcriptional programs co-expressed in a sub-
set of cell populations can be conflated within the same PC.
For example, B-cell marker genes such as CD79A, MS4A1
and CD79B were negatively correlated with PC2 along with
MHC class II genes such as HLA-DRA and HLA-DPA1.
While the MHC class II genes are highly expressed in the B-
cell populations, they are also highly expressed in the den-
dritic cell populations where B-cell marker genes are absent.
The third issue is that a gene can be highly correlated with
many PCs. For example, CST7, NKG7 and GZMA were
among the top 15 genes in PCs 2, 3 and 4, while CD7 was
among the top 15 genes in PCs 1, 2 and 8 (Supplementary
Figure S10). Overall, these results illustrate that genes from
different cell types and different biological programs can be
associated with the same PC and a single gene can be asso-
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Figure 4. Celda identifies transcriptional modules shared across cell populations. (A) Selected example UMAPs showing modules with high probabilities
in at least two different cell types: module 12 in B cells and pDCs, module 44 in DCs and CD14+ monocytes, module 40 in NK and NKT cells, and module
65 in naive cytotoxic T and cytotoxic T cells. (B) Selected UMAPs showing modules with high probabilities in at least three different cell types: modules
15, 45 and 47 in DCs, pDCs and monocytes, and module 75 in B, T and NK cells. (C) Selected UMAPs showing modules with high probabilities in at least
four different cell types: modules 7, 14 and 6 in B cells, DCs, pDCs and monocytes, and module 33 in DCs, pDCs, monocytes and NK cells. (D) Selected
UMAPs showing modules with high probabilities in all 20 cell clusters. Analyzing modules can reveal novel insights about biological programs active in
one or more cell types.



NAR Genomics and Bioinformatics, 2022, Vol. 4, No. 3 11

CD79A
MS4A1
IGHM
CD79B
IGHD
IGKC
BANK1
TCL1A
LINC00926
CD74
HLA−DPA1
HLA−DQB1
CD22
HLA−DPB1
HLA−DRA
S100A6
CST7
SRGN
GZMA
CCL5
IFITM1
ANXA1
NKG7
CTSW
CD7
CD3D
TRAC
TMSB4X
IL32
S100A4

−2

0

2

S100A6

CST7
GZMA
NKG7 SRGN CCL5

IFITM1
ANXA1

−2
0
2

0
0.5
1M

od
ul

e 
49

M
od

ul
e 

40

M
od

ul
e 

34

M
od

ul
e 

68

M
od

ul
e 

37

M
od

ul
e 

32
F

−20
−10
0
10

0
1
2

CTSW
CD3D
TRAC

TMSB4X
IL32 S100A4

M
od

ul
e 

39

M
od

ul
e 

74

M
od

ul
e 

78

M
od

ul
e 

72

M
od

ul
e 

51 −2
0
2

0
0.5
1

CD22
LINC00926
IGHD
MS4A1
IGHM
CD79B
CD79A

IGKC

BANK1
TCL1A CD74

HLA−DPA1
HLA−DPB1

HLA−DQB1
HLA−DRA

M
od

ul
e 

10

M
od

ul
e 

5

M
od

ul
e 

12

M
od

ul
e 

6

M
od

ul
e 

14

M
od

ul
e 

7 −2
0
2

0
0.5
1

−1
0
1

CD7

Figure 5. Qualitative comparison of gene co-variation patterns derived from Celda and PCA. (A) The 15 genes with the most positive loadings for PC2 and
15 genes with the most negative loadings for PC2 are shown in rows of the heatmap. The 50 cells with the lowest PC2 scores and the 50 cells with the highest
PC2 scores are shown in the columns of the heatmap. The top annotation row contains Celda cell subpopulation labels. (B) UMAP colored by scores for
PC2. (C) UMAP colored by the average scaled expression of the top 15 genes negatively correlated with PC2. (D) UMAP colored by the average scaled
expression of the top 15 genes positively correlated with PC2. (E) Heatmaps and UMAPs of six Celda modules containing the top 15 genes negatively
correlated with PC2. (F) Heatmaps and UMAPs of 11 Celda modules containing the top 15 genes positively correlated with PC2. Overall, these results
show that the genes most highly correlated with PC2 from PCA can have different patterns of expression across cell types. In contrast, Celda provided
additional insight to gene co-variation by categorizing these top genes into more refined transcriptional modules.
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ciated with multiple PCs, which can obscure the biological
interpretation of these transcriptional programs.

Celda provided additional insight to gene co-variation
by categorizing these top genes into more refined transcrip-
tional modules. For example, among the top 15 genes neg-
atively correlated with PC2, seven genes were in module
10 and expressed across all B-cell subpopulations (Figure
5E). However, other genes were clustered in five other mod-
ules and exhibited different patterns across cell populations.
IGKC was found in module 5 by itself and was expressed
only in one of the B-cell subpopulations (cell cluster 3).
TCLA and BANK1 were in module 12 which was present
in B-cell and pDC populations. Similarly, the MHC class II-
associated genes were found in modules 6, 14 and 7. These
three modules had high probability in B-cell, DC and pDC
populations and moderate probability in different subsets
of monocyte populations to varying degrees. Among the
top 15 genes positively correlated with PC2, five were clus-
tered in modules 40, 68 and 39 (Figure 5F). These mod-
ules showed enrichment in NK, NKT cell and cytotoxic
T-cell populations which were enriched with positive PC2
scores. However, 10 remaining genes clustered in eight other
modules showed patterns undetected by PC2. For exam-
ple, S100 family genes S100A6 and S100A4 were found in
modules 49 and 51, which were present in DCs, monocytes
and subsets of T and NK cells. SRGN was in module 34
which was present in NKs, DCs, pDCs and monocytes, and
had moderate probability in T cells. CD7 and IFITM1 were
found in module 37 which had high probability in NKs
and T cells. Annexin family gene ANXA1 was grouped in
module 32 which was present in subsets of T cells, NKs,
monocytes, DCs and CD34+ cells to varying degrees. T-cell
receptor genes TRAC and CD3D were grouped in mod-
ule 74 which was present across all T-cell subpopulations.
TMSB4X was grouped in module 78 which had high prob-
ability in T cells and moderate probability in all other cell
populations. IL32 was in module 72 which had high prob-
ability in proliferating T cells and moderate probability in
other T-cell populations. Overall, these results suggest that
Celda can identify transcriptional programs representing
unique biological processes with better clarity than what
can be readily parsed by associating genes with PCs from
PCA.

Benchmarking of Celda clustering

To systematically benchmark Celda’s ability to cluster genes
into modules, we compared the performance of Celda CG,
PCA and k-means to accurately cluster genes into modules
based on simulated data with true gene module labels. To
create distinct, non-overlapping modules from PCA, each
gene was assigned to a single PC based on the magnitude
of its loading ranks across all PCs (see the Materials and
Methods). Six datasets were simulated with increasing sim-
ilarity between cell populations and modules (Figure 6A).
Celda CG outperformed PCs in clustering co-expressed
genes into transcriptional modules for all simulated cluster-
ing difficulties (Figure 6B). Median ARIs for the six increas-
ing clustering difficulties were 0.98, 0.88, 0.84, 0.57, 0.10
and 0.01 for Celda CG, and 0.20, 0.06, 0.04, 0.02, 0.01 and

0.01 for PCs. These results demonstrate that Celda CG was
more accurate at identifying modules of co-expressed genes
compared with a PCA and k-means-based approaches. For
cell clustering, we utilized the ‘DuoClustering2018’ R pack-
age (61) and compared Celda’s performance with that of 11
other algorithms across nine datasets using median ARI.
Based on median ARI across all datasets, Celda ranked 6
out of the 12 algorithms tested. However, Celda performed
within 0.1 median ARI of the top algorithm in 6 of the 9
datasets, suggesting that the cell clustering accuracy is rel-
atively close to other tools (Supplementary Figure S11A).
In the KohTCC and Zhengmix4eq datasets, performance of
Celda increased with the addition of one extra cluster. These
results suggest that cells can be clustered with Celda with ac-
curacy comparable with other approaches (Supplementary
Figure S11B). The run times for different tools used in Duo-
Clustering benchmark are shown in Supplementary Figure
S12. Finally, we observed that the speed of Celda CG scales
proportionately with dataset size. A median of 161.3, 218.8
and 312.9 s was used to generate the clustering results for
2000 variable genes, and 4340, 33 148 and 68 579 cells for
PBMC 4k, 33k and 68k datasets, respectively (Supplemen-
tary Figure S13). A median of 122.7 and 344.2 s was used
to generate the clustering results for the PBMC 4k dataset
with 1000 and 4000 variable genes (Supplementary Figure
S13).

DISCUSSION

Celda is a novel discrete Bayesian hierarchical model for
scRNA-seq data that can perform co-clustering of cells
into subpopulations and genes into transcriptional mod-
ules. When applied to a well-characterized PBMC dataset,
Celda revealed novel cell populations missed by other ap-
proaches and provided information about the combination
of transcriptional programs that distinguished each popu-
lation. Raw scRNA-seq count data are generally discrete
and sparse after UMI corrections are applied. Many avail-
able workflows that perform cell clustering for scRNA-
seq count data often require pre-processing the data be-
fore clustering. Seurat (19), ascend (9), TSCAN (21), SC3
(17), CIDR (11) and scran (18) all perform cell clustering
based on dimensionality reduced data, which requires some
of the pre-processing steps including normalization of to-
tal counts in each cell, logarithmic transformation and/or
z-score standardization to center and scale the variables.
Celda is based on hierarchical Dirichlet multinomial distri-
butions which inherently work with sparse non-negative in-
teger count data without prior normalization. Multinomial
distributions have been shown to model UMI-corrected
data without inflation better than conventional normaliza-
tion strategies (62). For example, the single plasma B cell
was identified by Celda because it had nearly twice the
raw counts compared with any other cell in the PBMC
dataset. We also used the top 2000 most variable genes
determined by variance-stabilizing transformation (19) for
clustering the PBMCs in this particular analysis. We note
that this is not a requirement when running Celda. For
example, we previously clustered this dataset with Celda
by including 4529 genes with at least three counts across
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Figure 6. Celda CG achieves a higher accuracy for clustering of genes into modules compared with k-means and a PCA-based approach. Datasets were
simulated according to the generative process of the Celda CG model. Higher values of β produced more similar transcriptional modules within each
cell population and higher values of δ produced a more equal distribution of counts between genes within each module. A range of L values from 10 to
200 was simulated for each combination of the parameters. (A) UMAPs of genes for one of 10 replicate simulations at L = 100 were generated to show
the relationship between the 2000 most variable genes. Each point on the UMAP represents a single gene and is colored by its true module label. Genes
closer together in the UMAP have more similar expression patterns across cells. (B) The ARI shows the similarity between the true module labels and the
gene clustering results for Celda CG, k-means or PCA. Points and vertical lines represent medians and interquartile ranges of 10 replicate simulations.
Celda CG achieved a higher median ARI compared with k-means and PCA for all L values in five out of six datasets.

three cells (26). While the overall cluster solutions are sim-
ilar, applying the variability filter in this analysis promoted
the clustering of CD8A and CD8B into a unique mod-
ule that helped to define the naive CD8+ T-cell popula-
tion. In general, limiting the analysis to variable genes can
decrease the computational time and help identify mod-
ules of genes with lower overall counts, but will exclude
some genes from being characterized in transcriptional
modules.

Celda is a discrete Bayesian model that is based on solid
statistical principles that borrow some ideas developed in
the field of topic modeling. Popular topic models such as
LDA and NMF can be conceived as a special case of Celda
with a certain set of prior assumptions. Celda groups genes
into modules which are co-expressed across all cells in the
dataset, whereas topics from LDA or factors from NMF
identify groups of genes that co-vary across a subset of cells.
Furthermore, each gene is grouped into a single module in
Celda whereas genes will be active in all topics or factors to
varying degrees. We note that Celda can actually be used in
conjunction with other factorization methods. Celda mod-
ules produce a reduced dimensional representation of the
dataset which can in turn be used as input into other fac-
torization methods. The factors identified by this procedure
will represent combinations of modules that define con-
tinuous cell states active to different degrees within each
cell. Other bi-clustering methods such as QUBIC2 identify
blocks of co-expressed genes within a subset of samples. In
the output of these tools, each gene and sample may be-
long to multiple blocks or not be assigned to a block at all.
In contrast, Celda is a co-clustering method which assigns
each cell to a single subpopulation and each gene to a single
module. Given the differences in goals of the two types of

clustering approaches, we did not benchmark Celda against
other bi-clustering methods.

One major challenge with clustering tools applied to any
data type is determining the number of clusters. Statistical
metrics to assess cluster stability can be used in conjunc-
tion with prior biological knowledge to settle on a solution
that is robust and gives the most biological insight. Seurat
implements modularity-based community detection where
a resolution parameter is used to customize the granular-
ity level at which community structures are detected, but
does not provide inherent metrics for choosing the num-
ber of clusters (19,60,63). Ascend sets a supervised prun-
ing window in the agglomerative hierarchical clustering pro-
cedure using Ward’s minimum variance to determine the
number of subpopulations (9,64). TSCAN uses Gaussian
mixture modeling which relies on the Bayesian informa-
tion criterion (BIC) to determine the number of clusters
(21,65). In Celda, we use RPC (25) to assist in choosing
the number of cell clusters (K) and transcriptional mod-
ules (L). We note that the elbows in the RPC plots can
provide good starting point for choosing these numbers.
However, further splitting of modules or cell populations
by choosing higher L or K may be useful in some settings
and can be performed after examining UMAPs and mod-
ule heatmaps. Another limitation of our current model is
that technical differences between batches of samples are
not taken into account. In the future, we plan to develop
distributions that can specifically model technical varia-
tion between groups of samples. Overall, Celda presents
a novel model-based clustering approach towards simul-
taneously characterizing cellular and transcriptional het-
erogeneity in biological samples profiled with scRNA-seq
assays.
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The PBMC datasets used in this study are available at https:
//support.10xgenomics.com/single-cell-gene-expression/
datasets/2.1.0/pbmc4k, https://support.10xgenomics.
com/single-cell-gene-expression/datasets/1.1.0/pbmc33k
and https://support.10xgenomics.com/single-cell-gene-
expression/datasets/1.1.0/fresh 68k pbmc donor a. The
source code for Celda, in the form of an installable
R package, is available at the Bioconductor repos-
itory https://www.bioconductor.org/packages/celda.
The development version is located on GitHub at:
https://github.com/campbio/celda. Scripts for reproducing
the published results are available under the ‘Celda’ folder
at https://github.com/campbio/Manuscripts.
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