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Abstract: Statins are the cornerstone of lipid-lowering therapy. Although generally well tolerated,
statin-associated muscle symptoms (SAMS) represent the main reason for treatment discontinuation.
Mitochondrial dysfunction of complex I has been implicated in the pathophysiology of SAMS. The
present study proposed to assess the concentration-dependent ex vivo effects of three statins on mito-
chondrial respiration in viable human platelets and to investigate whether a cell-permeable prodrug
of succinate (complex II substrate) can compensate for statin-induced mitochondrial dysfunction.
Mitochondrial respiration was assessed by high-resolution respirometry in human platelets, acutely
exposed to statins in the presence/absence of the prodrug NV118. Statins concentration-dependently
inhibited mitochondrial respiration in both intact and permeabilized cells. Further, statins caused an
increase in non-ATP generating oxygen consumption (uncoupling), severely limiting the OXPHOS
coupling efficiency, a measure of the ATP generating capacity. Cerivastatin (commercially withdrawn
due to muscle toxicity) displayed a similar inhibitory capacity compared with the widely prescribed
and tolerable atorvastatin, but did not elicit direct complex I inhibition. NV118 increased succinate-
supported mitochondrial oxygen consumption in atorvastatin/cerivastatin-exposed platelets leading
to normalization of coupled (ATP generating) respiration. The results acquired in isolated human
platelets were validated in a limited set of experiments using atorvastatin in HepG2 cells, reinforcing
the generalizability of the findings.

Keywords: platelets; HepG2 cells; statins; cell-permeable succinate; NV118; mitochondria

1. Introduction

Atherosclerosis is the major pathomechanism of ischemic cardiovascular diseases
that together with stroke are the leading causes of global mortality [1]. According to
Mach et al. [2], the current guidelines for the management of dyslipidemias recommend
more stringent targets for lipid control in these pathologies; in this respect, statins are
the first-line treatment for regulating cholesterol levels in cardiac and metabolic diseases.
Statins reduce the liver synthesis and increase plasma clearance of LDL-cholesterol by
inhibiting hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase, the rate-controlling
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enzyme in cholesterol biosynthesis [3]. Despite the fact that statins are generally well toler-
ated (with plasma concentrations normally in the nanomolar range [4]), a limited number
of side-effects have been reported in the literature. Among these, statin-associated muscle
symptoms (SAMS) that vary in intensity from weakness and myalgias to myopathy and in
most severe (yet very rare) cases, rhabdomyolysis, are most frequently encountered [5,6].

Mitochondrial dysfunction has been systematically reported to play an important
role in the pathophysiology of SAMS [7–9]. Thus, statins interfere with mitochondrial
function in a concentration-dependent manner in various cell lines, animal and human
tissue samples either due to the HMG-CoA inhibition or off-target effects. With respect
to the latter, varied and complex interference with the activity of the electron transport
system (ETS) and mitochondrial content have been reported in skeletal muscle [9–13].

In the past decade, peripheral blood platelets have been increasingly used as a source
of viable mitochondria to investigate cellular respiratory dysfunction in order to comple-
ment studies reporting organ-related mitochondrial dysfunction in various pathologies [14].
Due to the low invasiveness through which they are obtained (especially as compared to
muscle cells), platelets are an attractive source of human mitochondria for studies of toxic
effects elicited by statin exposure [15,16].

In the literature, a frequently reported statin-related impairment of the ETS is the
inhibition of NADH-linked respiration [8,17]. In order to bypass this complex I defect,
enhancing complex II (succinate)-dependent respiration could be a viable approach. How-
ever, the dicarboxylic acid succinate displays a very limited cellular uptake, a disadvantage
that has been recently overcome by using cell-permeable succinate prodrugs in various
conditions associated with impairment of NADH-supported respiration [18–20].

The present study performed in isolated human platelets was aimed to: (i) evaluate
and localize the ETS inhibition of three statins: atorvastatin, simvastatin (as the mostly
prescribed lipophilic statins) and cerivastatin (as a positive control of toxicity, since it was
withdrawn from the market in 2001 due to fatal cases of rhabdomyolysis [21]), (ii) assess the
drug effects on adenosine triphosphate (ATP)-generating (oligomycin-sensitive) mitochon-
drial respiration and (iii) investigate whether NV118, a cell-permeable succinate prodrug,
can compensate for the statin-induced mitochondrial dysfunction. Since the pleiotropic
effects of statins were reported to occur at micromolar concentrations, we chose to titrate
them in such concentrations in order to assess the potency of the novel prodrug.

2. Results
2.1. Statins Decreased Mitochondrial Respiration in Intact Platelets in a Concentration-
Dependent Manner

The effect on mitochondrial respiration with increasing concentrations up to 320 µM of
three different statins was evaluated in intact human platelets. Significant respiratory inhi-
bition was elicited by all three statins when applied in the highest concentration, reducing
mitochondrial respiration to 35.9% ± 13, 46.8% ± 8 and 17.0% ± 2 of baseline for sim-
vastatin, atorvastatin and cerivastatin, respectively (Figure 1B). Cerivastatin significantly
decreased mitochondrial respiration in intact platelets starting from the concentration of
60 µM (79.6% ± 2).

2.2. Statins Induced Mitochondrial Dysfunction in Permeabilized Platelets via Several Distinct
Mechanisms

In order to further dissect the mechanisms of statin-related ETS impairment, the
concentration-dependent effect of three concentrations (40, 80 and 160 µM) of each statin
on mitochondrial respiration was evaluated in permeabilized platelets.
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Figure 1. Statins induced a concentration−dependent inhibition of mitochondrial respiration in 
intact human platelets. (A) Representative traces of cerivastatin (red) and DMSO (grey) titration. 
Respiration of human platelets was measured after sub-maximal uncoupling with FCCP (2 µM). 
(B) The concentration-dependent effect of simvastatin (open square), atorvastatin (open circle) and 
cerivastatin (open triangle) was measured by titrating increasing concentrations of statin or vehi-
cle (DMSO) (black rhombus). Data is expressed as mean±SEM. FCCP, carbonyl cyanide p-(trifluo-
romethoxy) phenylhydrazone; DMSO, dimethyl sulfoxide; ROX, residual oxygen consumption. 
Two-way ANOVA with Bonferroni post hoc test was performed on antimycin-corrected data. * p < 
0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001 vs. DMSO. 
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In order to further dissect the mechanisms of statin-related ETS impairment, the con-
centration-dependent effect of three concentrations (40, 80 and 160 µM) of each statin on 
mitochondrial respiration was evaluated in permeabilized platelets. 
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generating efficiency, and was calculated according to a preestablished formula (1-
LEAK/maximal phosphorylating respiration) [22]. The OXPHOS coupling efficiency inte-
grates both uncoupling (increased LEAK) and electron transport (ET) inhibition which 
work additively to limit ATP production. The coupling efficiency was significantly de-
creased already at the lowest concentration tested (40 µM) to 36% ± 9 (p < 0.001), 27% ± 5 
(p < 0.01) and 80% ± 6 (p < 0.05) of control for cerivastatin, atorvastatin, and simvastatin, 
respectively (Figure 2B) reaching: 5% ± 3 (p < 0.01), 3.3% ± 2.4 (p < 0.001), and 31.7% ± 11.9 
(p < 0.01) at 160 µM. 

LEAK respiration (increase in the non-ATP generating oxygen consumption, i.e., un-
coupling) was significantly increased for cerivastatin and atorvastatin but not for simvas-
tatin (Figure 2C). All three statins presented a concentration-dependent reduction of the 
ET capacity and maximum OXPHOS that varied with each statin. At the highest concen-
tration (160 µM), platelet mitochondria ET capacity was significantly reduced to 70% ± 4 
by cerivastatin (p < 0.05), 56.3% ± 4 by atorvastatin (p < 0.01) and 23.6% ± 7 by simvastatin 
(p < 0.01) compared to control (Figure 2D) and maximum OXPHOS was reduced to 45% ± 
8 by cerivastatin (p < 0.05), 28.8% ± 4 by atorvastatin (p < 0.01) and 17.6% ± 7 by simvastatin 
(p < 0.001) as compared to control (Figure 2E). 

When examining the NADH (complex I) and succinate (complex II) pathways sepa-
rately (Figure 2F,G), when applied in the lowest concentration (40 µM), simvastatin elic-
ited the mildest reduction in NADH-dependent OXPHOS (80% ± 5 of control) of the three 
statins. At the same concentration, both atorvastatin and cerivastatin significantly 

Figure 1. Statins induced a concentration−dependent inhibition of mitochondrial respiration in
intact human platelets. (A) Representative traces of cerivastatin (red) and DMSO (grey) titra-
tion. Respiration of human platelets was measured after sub-maximal uncoupling with FCCP
(2 µM). (B) The concentration-dependent effect of simvastatin (open square), atorvastatin (open
circle) and cerivastatin (open triangle) was measured by titrating increasing concentrations of statin
or vehicle (DMSO) (black rhombus). Data is expressed as mean±SEM. FCCP, carbonyl cyanide
p-(trifluoromethoxy) phenylhydrazone; DMSO, dimethyl sulfoxide; ROX, residual oxygen consump-
tion. Two-way ANOVA with Bonferroni post hoc test was performed on antimycin-corrected data.
* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001 vs. DMSO.

Oxidative phosphorylation (OXPHOS) coupling efficiency is a measure of the ATP
generating efficiency, and was calculated according to a preestablished formula (1-LEAK/
maximal phosphorylating respiration) [22]. The OXPHOS coupling efficiency integrates
both uncoupling (increased LEAK) and electron transport (ET) inhibition which work
additively to limit ATP production. The coupling efficiency was significantly decreased
already at the lowest concentration tested (40 µM) to 36% ± 9 (p < 0.001), 27% ± 5 (p < 0.01)
and 80% ± 6 (p < 0.05) of control for cerivastatin, atorvastatin, and simvastatin, respectively
(Figure 2B) reaching: 5% ± 3 (p < 0.01), 3.3% ± 2.4 (p < 0.001), and 31.7% ± 11.9 (p < 0.01)
at 160 µM.

LEAK respiration (increase in the non-ATP generating oxygen consumption, i.e.,
uncoupling) was significantly increased for cerivastatin and atorvastatin but not for sim-
vastatin (Figure 2C). All three statins presented a concentration-dependent reduction of
the ET capacity and maximum OXPHOS that varied with each statin. At the highest
concentration (160 µM), platelet mitochondria ET capacity was significantly reduced to
70% ± 4 by cerivastatin (p < 0.05), 56.3% ± 4 by atorvastatin (p < 0.01) and 23.6% ± 7
by simvastatin (p < 0.01) compared to control (Figure 2D) and maximum OXPHOS was
reduced to 45% ± 8 by cerivastatin (p < 0.05), 28.8% ± 4 by atorvastatin (p < 0.01) and 17.6%
± 7 by simvastatin (p < 0.001) as compared to control (Figure 2E).
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µM, respectively) of atorvastatin (open circle), cerivastatin (open triangle) and simvastatin (open 
square), respectively. OXPHOS coupling efficiency (B), LEAK (C), maximal ET capacity (D), maxi-
mal OXPHOS (E), NADH-linked OXPHOS (F), and succinate-linked OXPHOS (G) capacities were 
evaluated. Data is expressed as mean±SEM of the percent of control (platelets exposed to the cor-
responding volume of DMSO for each of the 3 concentrations of statin). Two-way ANOVA with 
Bonferroni post hoc test was performed on antimycin-corrected data. DMSO, dimethyl sulfoxide; 
ET, electron transport; LEAK, non-phosphorylating resting stat; OXPHOS, oxidative phosphoryla-
tion; ROX, residual oxygen consumption. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001 vs. 
DMSO. 

Figure 2. Statins induced a concentration−dependent inhibition of mitochondrial respiration in
permeabilized human platelets. (A) Representative traces of atorvastatin 40 µM (blue) and DMSO
(grey). Concentration-dependent effects were assessed for 3 concentrations (40 µM, 80 µM and
160 µM, respectively) of atorvastatin (open circle), cerivastatin (open triangle) and simvastatin
(open square), respectively. OXPHOS coupling efficiency (B), LEAK (C), maximal ET capacity (D),
maximal OXPHOS (E), NADH-linked OXPHOS (F), and succinate-linked OXPHOS (G) capacities
were evaluated. Data is expressed as mean±SEM of the percent of control (platelets exposed to the
corresponding volume of DMSO for each of the 3 concentrations of statin). Two-way ANOVA with
Bonferroni post hoc test was performed on antimycin-corrected data. DMSO, dimethyl sulfoxide; ET,
electron transport; LEAK, non-phosphorylating resting stat; OXPHOS, oxidative phosphorylation;
ROX, residual oxygen consumption. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001 vs. DMSO.

When examining the NADH (complex I) and succinate (complex II) pathways sepa-
rately (Figure 2F,G), when applied in the lowest concentration (40 µM), simvastatin elicited
the mildest reduction in NADH-dependent OXPHOS (80% ± 5 of control) of the three
statins. At the same concentration, both atorvastatin and cerivastatin significantly inhibited
NADH-linked respiration (25.9% ± 6 and 35.5% ± 7 of control, respectively), and the
inhibition was further augmented (respiration decreased) for the higher concentrations.
Also, when applied in the highest concentration (160 µM) simvastatin (but not atorvastatin
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or cerivastatin) significantly decreased the succinate-dependent OXPHOS (Figure 2G) by
26.7% ± 8. To be noted, atorvastatin and cerivastatin did not inhibit succinate-supported
respiration. The elevated succinate-linked OXPHOS respiration values for atorvastatin
and cerivastatin at 80 µM (Figure 2G) are likely related to increased uncoupling (increased
LEAK), as demonstrated for these statins (Figure 2C).

2.3. Simvastatin and Atorvastatin (but Not Cerivastatin) Directly Inhibited Complex
I-Linked Respiration

We further specifically evaluated the effect of statins on NADH-linked mitochondrial
oxygen consumption to investigate whether the decrease in NADH-linked respiration ob-
served (Figure 2E) was due to a direct inhibition of complex I (NADH-dehydrogenase) or
related to an upstream effect limiting the supply of NADH to complex I. To provide access
of NADH to complex I of mitochondria, platelets and their mitochondria were permeabi-
lized with digitonin and alamethicin (a 20-amino acid channel-forming peptide antibiotic),
respectively. The respiratory activity of complex I was calculated as a ratio of respiration
of two additions of NADH (before and after 160 µM statin/DMSO addition) (Figure 3A).
Both simvastatin and atorvastatin elicited a significant decrease in NADH-linked oxy-
gen consumption (p < 0.001 and p < 0.01, respectively), with a more severe reduction for
simvastatin (Figure 3C). In contrast, cerivastatin did not inhibit NADH-induced oxygen
consumption in the permeabilized mitochondria. In fact, in the presence of cerivastatin,
NADH-induced oxygen consumption was significantly increased. This observation sug-
gests that cerivastatin elicits mitochondrial toxicity via a mechanism different from direct
complex I inhibition.
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Figure 3. Statin effects on NADH−linked oxygen consumption in alamethicin-permeabilized platelet mitochondria.
(A) Representative trace of simvastatin 160 µM (green) and DMSO (grey). (B) Oxygen consumption of permeabilized
platelet mitochondria was measured at three points: Figure 0. mM) next in the presence of the statin (160 µM)/DMSO
control (DMSO-grey bar, simvastatin-green bar, atorvastatin-blue bar, cerivastatin-red bar) and then after the addition
of statin plus a second dose of NADH (0.75 mM). (C) Calculated NADH-linked oxygen consumption (∆) for each statin
and DMSO control, evaluated as the ratio between the two consecutive additions of NADH (NADH2/NADH1). Data is
expressed as mean ± SEM of rotenone-corrected data, one-way ANOVA with Bonferroni post hoc test. DMSO, dimethyl
sulfoxide. ** p < 0.01; **** p < 0.001 vs. DMSO.
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2.4. Cell-Permeable Succinate Bypassed the NADH-Linked Mitochondrial Dysfunction Induced by
Statins in Human Platelets

Since we had demonstrated that cerivastatin and atorvastatin caused mitochondrial
dysfunction via the inhibition of NADH-linked respiration (Figure 2A) we further inves-
tigated whether the respiratory impairment caused by a concentration of 80 µM of these
statins can be alleviated in the presence of the cell-permeable succinate prodrug NV118.
A representative overlay trace of statin-exposed platelets in the presence or absence of
NV118 is depicted in Figure 4A. The addition of the prodrug to either atorvastatin or
cerivastatin-exposed platelets resulted in an increase in the ET capacity of the treated
platelets (Figure 4B1,B2) by increasing succinate-supported mitochondrial oxygen con-
sumption (Figure 4C1,C2) leading to levels of coupled respiration similar to those of the
control samples (Figure 4D1,D2).
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Figure 4. The effects of NV118 on statin−dependent respiratory dysfunction in human platelets. (A) Representative overlay
trace of statin-exposed platelets in the absence (red) or presence (blue) of the succinate prodrug NV118. NV118 effects in
cerivastatin (B1,C1,D1) and atorvastatin (B2,C2,D2) exposed platelets were measured as compared to its vehicle (DMSO). As
negative control of the experiment, platelets were exposed only to DMSO (DMSO-DMSO). Data is expressed as mean±SEM.
One-way ANOVA with Bonferroni post hoc test was performed on antimycin-corrected data. ATORVA, atorvastatin; CERI,
cerivastatin; DMSO, dimethyl sulfoxide; ET, electron transport. ns = no significance; * p < 0.05; ** p < 0.01.
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2.5. Cell-Permeable Succinate Bypassed Mitochondrial Dysfunction Induced by Statins in
HepG2 Cells

In order to assess whether the effects of succinate can be reproduced in different cells,
we selected the human-derived liver cancer cell line HepG2. Oxygen consumption of
HepG2 cells was assessed after exposure to the same concentrations of atorvastatin used in
the previously described protocol in intact platelets, causing a reduction up to 27% ± 1 of
control at 320 µM (Figure 5A). The addition of NV118 to the atorvastatin exposed HepG2
cells elicited results comparable to those obtained in human platelets. In the presence of
NV118, ET capacity increased (Figure 5B) by increasing succinate-supported mitochondrial
oxygen consumption (Figure 5C). Further, coupled (ATP producing) respiration (calculated
as the respiratory rate before and after oligomycin addition) was normalized in NV118-
treated samples (Figure 5D).
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Figure 5. The effects of NV118 on statin−dependent respiratory dysfunction in HepG2 cells. (A) Res-
piration was assessed after sub-maximal uncoupling with FCCP (4 µM) followed by increasing
concentrations of atorvastatin or vehicle (DMSO). NV118 effects on atorvastatin exposed HepG2 cells
(B–D) were measured as compared to its vehicle (DMSO). As negative control of the experiment
HepG2 cells were exposed only to DMSO (DMSO-DMSO). Data is expressed as mean ± SEM. One-
way ANOVA with Bonferroni post hoc test was performed on antimycin-corrected data. ATORVA,
atorvastatin; DMSO, dimethyl sulfoxide; ET, electron transport. ns = no significance; * p < 0.05;
** p < 0.01; **** p < 0.0001.

3. Discussion

The main finding of this study is that statins caused a significant reduction of OXPHOS
coupling efficiency, i.e., the respiratory capacity to produce ATP, even in the low µM range.
The effect was mediated via a two level-impairment of mitochondrial respiration: increased
uncoupling (increased LEAK state) and inhibition of electron transport, mostly through
the reduction of NADH-linked respiration. The properties of each statin are unique and
are summarized in Table 1.
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Table 1. Summary of the respiratory effects of the studied statins.

Effect Simvastatin Atorvastatin Cerivastatin

OXPHOS coupling efficiency reduction YES YES YES
ET capacity inhibition YES YES YES

NADH-linked ETS inhibition YES YES YES
Direct inhibition of NADH-dehydrogenase YES YES NO

Succinate-linked ETS inhibition YES NO NO
Uncoupling (increased LEAK respiration) NO YES YES

In our study we used human platelets as a source of primary human mitochondria.
As platelets are known to rely on OXPHOS they can act as a mirror of mitochondrial
function in other tissues. The comparable mitochondrial effects of drug-induced toxicity
between human platelets and HepG2 cells we observed, have been previously shown
by Piel et al. [18] confirming the suitability of platelets for the study of drug-induced
mitochondrial effects.

Our observations are in line with the pioneering study of Kaufmann et al. [23], which
reported that exposure of rat myoblasts to cerivastatin, atorvastatin and simvastatin for
24 h at 100 µM resulted in cytotoxicity, inhibition of complexes I, III, IV and decreased
mitochondrial membrane potential. However, the uncoupling effects of statins appears to
be cell type-dependent. In contrast to our data in freshly isolated human platelets, Kaufman
et al. [23] reported that cerivastatin, but not atorvastatin or simvastatin elicited uncoupling
in rat myoblasts. More recently, Broniarek et al. [24] reported in mitochondria isolated
from a stable human endothelial cell line (EA.hy926 derived from human umbilical vein)
an uncoupling effect at concentration up to 100 µM and inhibition of respiration for higher
concentrations (up to 300 µM) for atorvastatin (but not for pravastatin). The same group
further reported in the same in vitro experimental model that even lower concentrations of
atorvastatin (100 nM) elicited a decrease in both maximal respiration (as result of super-
complexes rearrangement) and the total cellular coenzyme Q10 content [24]. Interestingly,
these authors also reported a significant increase in the expression of UCP2 protein in
mitochondria isolated from the endothelial cells exposed to 100 nM atorvastatin [25]. Vev-
era et al. [11] showed in an in vivo study that 4-week treatment with simvastatin reduced
platelet respiration in rats. Furthermore, the same group also showed in humans that a
six-week treatment with statins in therapeutic concentrations resulted in decreased NADH-
linked respiration in permeabilized, but not intact human platelets, suggesting some kind
of in vivo compensation for the statin effect. The observation that the in vivo effects of
statins on NADH-linked respiration might be compensated has been recently proposed by
Gvozdjakova et al. [26]. These authors showed that NADH-linked OXPHOS was, in fact,
increased in patients with different pathologies, e.g., diabetes, nephropathy, or dialysis,
that were treated with statins [26]. Moreover, pharmacokinetics studies have demonstrated
that the plasma levels of statins under normal conditions are in the nanomolar range,
which strongly suggests that statin therapy does not induce mitochondrial inhibition under
normal therapeutic conditions [4,27,28]. In a recent elegant study carried out by the group
of Rasmussen [13], the authors reported that chronic treatment with simvastatin resulted in
higher respiratory efficiency in both peripheral blood mononuclear cells and platelets and
an increase in complex I activity in these blood cells while having as side effect an increased
generation of mitochondrial superoxide. While providing evidence that in clinical setting
statins are not deleterious for mitochondrial respiration of blood cells, the authors do not
exclude the possibility that even in therapeutic doses, statins could decrease the function
of mitochondria in skeletal muscle despite improving the one of circulating cells.

In practice, however, situations may occur in which plasma statin concentration is
increased beyond the therapeutic range. One study suggests that 60% of cases of statin-
induced rhabdomyolysis were associated with drug-drug interactions [29]. Statins are
metabolized through cytochrome P450 and when administered with other inhibitors of this
pathway, their plasma levels increase [30]. Among the inhibitors of the cytochrome P450
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pathway, the most frequently prescribed are: amiodarone, gemfibrozil, calcium channel
blockers, cyclosporine, azole antifungals, macrolide antibiotics, and HIV protease inhibitors.
Consumption of grapefruit juice in high amounts has also been reported to increase statin
concentrations in plasma. All of these are possible concomitant treatment in patients
chronically taking statins [2,31–34]. Diltiazem increased statin plasma levels by a factor of
4 while grapefruit juice in some cases increases it by a factor of 15 [35,36]. Furthermore, it
should be noted that statin tissue concentrations differ from their serum concentrations,
with muscle levels down to only a third of those in the serum while the liver presents
concentrations that are twice as high as in serum [4].

Furthermore, some of the above-mentioned drugs have been reported to cause mi-
tochondrial dysfunction via the inhibition of the NADH-liked respiration by themselves;
thus, a cumulative effect is likely to occur when administered together with statins [37–40].
In this respect, Wagner et al. [41] showed that propranolol had similar effects to statins on
mitochondrial respiration and, when the drugs were combined, their effects were additive.

Certain situations have been reported in the literature to increase the risk of developing
muscle symptoms in patients using statins. For example, hypothyroidism, a condition
where statin therapy is indicated, has been associated with increased risk of myopathy that
can be due to a combination of increased oxidative stress and mitochondrial dysfunction
reported to occur in this disease [5,42]. Alcohol intake of more than 30 g per day in men
or 20 g per day in women was also associated with higher risk of SAMS [43]; in this
case, the increase in reactive oxygen species generation by chronic alcohol consumption
was associated with a decrease in ATP synthase and NADH-dehydrogenase enzymatic
levels [44]. As demonstrated in the present study, statin use alone decreases NADH-linked
respiration in a concentration-dependent manner. Also, there is a difference between the
concentrations which cause mitochondrial impairment in intact and permeabilized cells.
Since the three studied statins are all lipophilic [7] it is more likely that the acute experiments
carried out in the permeabilized setting are closer to the situation of chronic treatment,
where the statins have ample time to permeate the cells. The toxic effects on skeletal muscle
have been mostly associated with high doses of lipophilic statins (e.g., atorvastatin and
simvastatin) and less with the hydrophilic ones (e.g., pravastatin and rosuvastatin) [45].

Age must also be taken into account as SAMS tend to be more frequent in elderly
people (over 80) [5]. Since advanced age determines enzymatic changes that lead to
lower oxidative capacity and ATP generation (per mitochondrial volume) [46], decreased
OXPHOS coupling efficiency (actual ATP production) by statins, and possibly other con-
comitant treatment, could elicit SAMS in these patients.

Most of the literature data on statin-induced mitochondrial dysfunction report a
direct effect on complex I with the reduction of NADH-linked respiration [10,45,47]. The
severe impairment of NADH-linked respiration elicited by titration of cerivastatin in
intact cells demonstrated here was possibly not a surprise since this statin was early
withdrawn from the market due to several lethal cases of rhabdomyolysis [21]. However,
in permeabilized cells the inhibition of NADH-linked respiration and coupling efficiency
(ATP production) was comparable to that of atorvastatin. One of the most intriguing
findings unraveled by the present study is that the reduction of NADH-linked respiration
induced by cerivastatin originates upstream of complex I itself, limiting the supply of
NADH to complex I. This could be an explanation as to why cerivastatin caused such
an alarming number of lethal cases of rhabdomyolysis, which led to its withdrawal from
the market [21] while simvastatin and atorvastatin are still in current use. However, the
underlying mechanism remains to be determined.

Judging by the high concentrations required to induce mitochondrial dysfunction with
statins, most probably mitochondrial impairment is only one of the several mechanisms
through which statin-induced myopathy occurs [45]. To name a few possibilities: inhibition
of carnitine palmitoyltransferase I (CPT-I) which leads to decreased mitochondrial β-
oxidation (fatal condition) or inhibition of the mevalonate pathway causing decreased
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availability of geranylgeranyl-pyrophosphate and impairment of ATP production via
decreasing mitochondrial membrane potential [23,48–50].

Statin use has also been linked with reduced plasma levels of vitamin D [51], since the
main source of vitamin D is provided by the conversion of 7-dehydrocholesterol (which
requires cholesterol for biosynthesis) under the influence of UV radiation [52]. Low levels
of vitamin D, apart from osteomalacia, also cause muscle weakness and myopathy [52].
Supplementation of vitamin D has been reported to improve statin tolerance [53]. Vita-
min D supplementation could very well be a good way to improve statin adherence, by
reducing SAMS, however this data has yet to be confirmed by large scale randomized
controlled trials [5,52].

Ubiquinone (coenzyme Q10) deficiency is the direct consequence of isoprenois in-
termediates depletion in the mevalonate pathway associated with HMG-CoA inhibition
by statins and has been initially considered the most relevant pathomechanism for the
induction of SAMS [8,10]. Whereas early isolated case reports indicated a decrease in
muscle CoQ in statin-treated patients, data from the recent LIFESTAT study showed that
both muscle content and plasma level of CoQ10 were comparable in simvastatin-treated
patients with and without myalgia [54]. However, previous studies reported that plasma
levels of ubiquinone are decreased in statin-treated patients by approximately 0.5 µmol/L,
regardless the type of statin used. This level of ubiquinone represents somewhere between
30–40% of the total ubiquinone serum levels under normal conditions. One explanation
is that since a considerable amount of ubiquinone is bound to LDL-cholesterol, levels
of ubiquinone go down as LDL-cholesterol is diminished by the statin [9]. At variance,
in the cohort of simvastatin-treated patients reported by Durhuus et al. [13], a 5-fold in-
crease of serum ubiquinone has been reported. However, supplementation of CoQ10 in
patients treated with statins offered conflicting results regarding the benefit in reduction of
SAMS or CK levels [9] or superoxide production by blood cells (regardless the presence of
SAMS) [13]. This is most probably due to the fact that serum and muscle ubiquinone levels
are differently modulated and, since the serum levels of ubiquinone did not correlate with
the activities of the ETS enzymes, CoQ should not be used as a marker when assessing the
effects of statins on energy metabolism [55]. Instead, the level of mitochondrial superoxide
in peripheral blood cells has recently emerged as putative biomarker for SAMS [13].

Metformin and acetaminophen are widely used drugs which, similarly to statins,
have been reported to inhibit the NADH-supported mitochondrial respiration and this
unfavorable effect has been recently overcome by the use of cell-permeable succinate [19,20].
Similarly, the NADH-linked mitochondrial respiratory impairment caused by cerivastatin
and atorvastatin in the present study was counteracted by means of a cell-permeable
succinate prodrug, NV118 that bypassed the mitochondrial dysfunction and recovered the
coupled (ATP-generating) respiration. The beneficial effects of the novel cell-permeable
succinate compound are depicted in Figure 6.

Mitochondrial complex II oxidizes succinate and allows the transfer of electrons
within the ETS which in turn allows the translocation of protons through complex III
and IV leading to the establishment of a proton gradient across the mitochondrial inner-
membrane and the subsequent proton transport through complex V with the generation
of ATP [19]. Studies in isolated mitochondria in the LEAK state have shown that when
supplied with saturating levels of succinate part of the electron flow is reversed and travels
back through complex I generating reactive oxygen species (ROS) [56]. However, the risk
of ROS increases through this mechanism seem to be low in the presence of complex I
inhibition, which is exactly when cell-permeable succinates should be used [20,57].

Cell-permeable succinates can be used as a means to stimulate succinate supported
respiration, eliminating the need for electron transfer through the impaired mitochondrial
complex I whether it is induced by statins or other compounds, as has been shown previ-
ously [18–20]. As such, this makes cell-permeable succinates promising candidates for the
treatment of SAMS.
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tion. Scheme 10. ubiquinone; e−, electron; FADH2, dihydroflavine-adenine dinucleotide; Fe+3,
iron(III); Fe+2, iron(II); H+, proton; NAD+, Nicotinamide adenine dinucleotide oxidized form; NADH,
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4. Materials and Methods
4.1. Chemicals and Human Samples

All chemicals were obtained from Sigma-Aldrich (Saint Louis, MO, USA). The cell-
permeable succinate prodrug was kindly provided by Abliva AB (Lund, Sweden) [18], and
is also available via Oroboros Instruments in the MitoKit-CII (https://www.oroboros.at/
index.php/product/mitokit-cii/).

Platelets were isolated from venous blood from healthy volunteers both men and
women, aged between 27–32 (with one exception, a female aged 66), drawn in K2EDTA
tubes according to a previously described protocol [15]. In brief, platelets were subjected to
a sequence of differential centrifugations; the first at 500× g for 10 min and the second at
4600× g for 5–10 min.

4.2. Mitochondrial Respiration

Mitochondrial respiration was assessed by high-resolution respirometry using O2k-
FluoRespirometers (Oroboros Instruments GmbH, Innsbruck, Austria) and a buffer (MiR05)
containing: 0.5 mM EGTA, 3 mM MgCl2, 60 mM K-lactobionate, 20 mM taurine, 10 mM
KH2PO4, 20 mM HEPES,110 mM sucrose and 1 g/L bovine serum albumin [58]. Experi-
ments with human platelets were performed at 200 × 106cells/mL at 37 ◦C.

The acute effects of statin exposure on mitochondrial respiration were evaluated by
means of four different protocols:

Protocol I—Intact cells. Intact human platelets were subjected to Carbonyl cyanide-
4-(trifluoromethoxy)phenylhydrazone(FCCP)-induced sub-maximal uncoupling (2 µM),
to increase the resolution of the potential negative effects of statins on mitochondrial
respiration, as compared to control (Dimethyl sulfoxide-DMSO). After the addition of
FCCP, increasing concentrations of statins were titrated into the chamber (from 20 to 320
µM). In order to correct for the contribution of non-mitochondrial respiration, complex I
inhibition was obtained with rotenone (2 µM) and complex III inhibition with antimycin A
(1 µg/mL). The same experiments were repeated on a line of HepG2 cells using atorvastatin
in order to assess replicability in other cells.

Protocol II—Permeabilized cells. Mitochondrial respiration in permeabilized human
platelets was measured in the presence of increasing statin concentrations (40, 80, and
160 µM) and compared to DMSO (volume corresponding to the one used at the highest
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statin concentration), using a previously established protocol [15]. The concentrations were
chosen after running a series of pilot experiments to identify the concentrations affecting
mitochondrial function (data not shown).

Protocol III—Permeabilized mitochondria. Evaluation of the effect of statins on NADH-
induced oxygen consumption. In order to ascertain whether the statins directly or indi-
rectly inhibit complex I (NADH-dehydrogenase), platelet mitochondria were exposed to
NADH before and after the addition of the highest concentration of statin that had been
shown to decrease mitochondrial respiration in previous experiments. Specifically, per-
meabilized platelets with permeabilized mitochondria (digitonin, 1 µg/1 × 106 platelets
and alamethicin, 5 µg/mL, respectively) were exposed to the specific complex I substrate
NADH (0.75 mM), followed by a single addition of statin (160 µM) vs. DMSO. Residual
NADH-linked respiration was evaluated by a second addition of NADH with the same
concentration in order to measure the difference in response of the mitochondrial respiration
before and after statin exposure. Complex I was then inhibited using rotenone (2 µM).

Protocol IV—Intact cells and prodrug treatment. Intact platelet respiration was mea-
sured in the presence of a statin concentration of 80 µM (that elicited a clear decrease in
mitochondrial respiration in the previous experiments). Cell-permeable succinate, NV118
(500 µM) or a DMSO control, was then added in an attempt to bypass mitochondrial
complex I dysfunction. Coupled respiration was assessed using an ATP-synthase in-
hibitor, oligomycin (1 µg/mL), after which consecutive titrations of FCCP were added to
achieve maximal activity of the ETS. To evaluate the degree of residual and/or unspecific,
non-mitochondrial respiration (ROX) elicited by the prodrug or cellular oxidative side
reactions remaining after the inhibition of the ETS, complex I was inhibited with rotenone
(2 µM), complex III with antimycin A (1 µg/mL), and complex IV with sodium azide
(10 mM). As control, mitochondrial respiration in platelets exposed to the volume of DMSO
corresponding to the injection volume of the statin and of the prodrug, were measured.

The same experiments were repeated in a line of HepG2 cells using atorvastatin in
order to assess replicability in other cells.

4.3. Data Analysis

Statistical analysis was performed using GraphPad PRISM software (GraphPad Soft-
ware version 8.0; La Jolla, CA, USA). All data are expressed as mean ± SEM. To account for
the presence of residual oxygen consumption all data were corrected for non-mitochondrial
oxygen consumption [22]. Statistical analyses (one-way or two-way ANOVA with Bonfer-
roni post hoc test) were performed on the antimycin-corrected data or rotenone-corrected
data (n = 4–6 for the protocols using human platelets and n = 3 for the protocols using
HepG2 cells).

5. Conclusions

Statins induce a concentration-dependent, two-pronged dysfunction of human mito-
chondria resulting in a severe impairment of the ATP-generating capability. The complex-I
related inhibition of electron transfer can be compensated by intracellular delivery of the
complex II substrate succinate. Since the current guidelines recommend the use of statins
in the highest tolerated dose [2] and SAMS still represent the major reason for treatment
discontinuation in medical practice [59], the use of a cell-permeable succinate could be a
potential strategy in the acute treatment of severe statin-associated muscle symptoms and
rhabdomyolysis.
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ADP Adenosine diphosphate
ATP Adenosine triphosphate
Cit. c Cytochrome c
DMSO Dimethyl sulfoxide
ET Electron transport
ETS Electron transport system
FCCP Carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone
LDL Low-density lipoprotein
LEAK Non-phosphorylating respiration
OXPHOS Oxidative phosphorylation
NADH Nicotinamide adenine dinucleotide reduced form
ROS Reactive oxygen species
ROX Residual oxygen consumption
SAMS Statin-associated muscle symptoms
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