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Abstract: Candida albicans is one of the most impactful fungal pathogens and the most common cause of
invasive candidiasis, which is associated with very high mortality rates. With the rise in the frequency
of multidrug-resistant clinical isolates, the identification of new drug targets and new drugs is crucial in
overcoming the increase in therapeutic failure. In this study, the first validated genome-scale metabolic
model for Candida albicans, iRV781, is presented. The model consists of 1221 reactions, 926 metabolites,
781 genes, and four compartments. This model was reconstructed using the open-source software
tool merlin 4.0.2. It is provided in the well-established systems biology markup language (SBML)
format, thus, being usable in most metabolic engineering platforms, such as OptFlux or COBRA.
The model was validated, proving accurate when predicting the capability of utilizing different carbon
and nitrogen sources when compared to experimental data. Finally, this genome-scale metabolic
reconstruction was tested as a platform for the identification of drug targets, through the comparison
between known drug targets and the prediction of gene essentiality in conditions mimicking the
human host. Altogether, this model provides a promising platform for global elucidation of the
metabolic potential of C. albicans, possibly guiding the identification of new drug targets to tackle
human candidiasis.

Keywords: Candida albicans; global stoichiometric model; drug targets; metabolic reconstruction;
gene essentiality

1. Introduction

In the last few decades, a significant increase in nosocomial fungal infections has been observed,
and Candida species are by far the most common cause of invasive fungemia in humans [1,2].
Among Candida species, Candida albicans is the main etiological agent of invasive candidiasis [3,4],
being associated to high mortality rates [4]. Together with its virulence traits [5,6], its ability to acquire
drug resistance [7–9] makes this opportunistic pathogen a severe threat.

Only three classes of antifungal drugs are licensed to treat Candida infections (azoles, echinocandins,
and amphotericin B), and only some azoles and echinocandins are recommended as first-line agents [10].
Currently, there has been a rise in the frequency of multidrug-resistant clinical isolates, and therapeutic
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options are running low. This is true for C. albicans, but even more so for other emerging non-albicans
Candida species, such as C. glabrata, C. krusei and C. auris. For example, in recent studies, almost 40% of
the Candida glabrata isolates shown to be resistant to at least one echinocandin were also resistant to
fluconazole [11,12]. In non-albicans pathogenic Candida species, the scenario is even more frightening,
as several of them display, either intrinsic or easily acquired resistance to several of the available
antifungal agents. For example, in a recent case, Candida auris isolates were identified as resistant to
the three classes of available antifungal drugs, further raising public concern on the future efficacy of
current antifungal therapeutic options [13]. The identification of new drug targets and new drugs is
crucial to overcome the increase in therapeutic failure.

Genome-scale metabolic models have the potential to provide a holistic view of cell metabolism.
Historically, these global mathematical descriptions of cell metabolism have mostly been linked to
metabolic engineering of microbial cell factories, given their potential to simulate global metabolic
behavior and provide hints to guide experimental optimization of such organisms for the production
of added-value compounds [14]. However, recent examples have shown the potential of these models
in the quest for novel drug targets in pathogenic organisms [15–19]. For example, Abdel-Haleem et al.
in 2018, described the reconstruction of genome-scale metabolic models for five life cycle stages of
Plasmodium falciparum, enabling the identification of potential drug targets that could be used as both,
anti-malarial drugs and transmission-blocking agents [20].

Here, we present the first validated in silico genome-scale metabolic reconstruction of C. albicans,
the iRV781. This model is provided in the well-established SBML format and can easily be read in
most metabolic engineering platforms such as OptFlux [21] and COBRA [22]. The model validation
procedure is detailed, and evaluation of the potential of this model for research is advanced for new
drug targets in this fungal pathogen.

2. Materials and Methods

2.1. Model Development

The Candida albicans iRV781 genome-scale metabolic model was developed following the
methodology represented in Figure 1, using merlin 4.0.2 [23] for the reconstruction process, as described
elsewhere [24], and OptFlux 3.0 [21], for the curation and validation of the model. All predictions were
performed using the IBM CPLEX solver (IBM, Armonk, NY, USA). Merlin is a platform that enables the
semi-automatic reconstruction of metabolic models, providing a user-friendly interface that assists the
user in the manual curation process [19].

2.2. Genome Annotation and Assembling the Metabolic Network

The genome sequence of the reference strain Candida albicans SC5314 was obtained from NCBI’s
Assembly database, accession number ASM18296v3 (www.ncbi.nlm.nih.gov/assembly) [25] and the
Taxonomy ID from NCBI (www.ncbi.nlm.nih.gov/taxonomy) [26], which is required by merlin to
univocally identify the organism under study throughout the reconstruction process. In order to
establish a proximity between species, the 16S rRNA gene of several known closely related species was
used to construct a Phylogenetic tree, the sequences being retrieved from NCBI’s database and aligned
using MEGA X 10.0.5 (Pennsylvania State University, State College, PA, USA) [27]. The evolutionary
history was inferred by using the Maximum Likelihood method and Tamura-Nei model [28] (Figure S1).
The genome-wide functional annotation was processed by merlin based on taxonomy and frequency of
similar sequences trough remote Basic Local Alignment Search Tool (BLAST) [29] similarity searches to
the UniProtKB/Swiss-Prot database [30] (http://www.UniProt.org/) and HMMER [31]. Protein-reaction
associations, available in the Kyoto Encyclopedia for Genes and Genomes (KEGG) BRITE database,
were used to assemble the draft network. All reactions classified as spontaneous or non-enzymatic
were also included in the first draft of the model. The assembly of the metabolic network is performed
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by merlin, using genome annotation to determine which reactions will be included in the model,
based on an algorithm described in detail elsewhere [23].J. Fungi 2020, 6, x FOR PEER REVIEW 3 of 19 
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Figure 1. Methodology for the reconstruction of the Candida albicans iRV781 metabolic model.
Adapted from [14].

2.3. Reversibility and Balancing

In order to ensure that all reactions in the network are balanced, unbalanced reactions were
identified, using the corresponding merlin tool, manually verified and corrected. Reaction reversibility
was also confirmed to avoid gaps and mispredictions of the model, through the corresponding merlin
tool and using Braunschweig Enzyme Database (BRENDA) [32] as reference and the data provided
elsewhere [33]. Since there are no guarantees that the EC numbers available in the different databases
will be updated, a manual inspection was also performed to correct a few cases of enzymes with
deleted/transferred EC numbers, using public databases (BRENDA [34], UniProt, MetaCyc [35] and
KEGG [36]) and literature search.

2.4. Compartmentalization

This model includes four compartments: Extracellular, cytoplasm, mitochondrion and cytoplasmic
membrane. The prediction of compartments for each enzyme and carrier was performed using the
WoLF PSORT protein subcellular localization predictor [37].

2.5. Transport Reactions

Given the existence of compartments in the model, it is necessary to create transport reactions
for the metabolites. Transport reactions were generated using genomic information together with the
public database TCDB [35] by merlin’s TranSyT [36]. Transport reactions across internal and external
membranes for currency metabolites, such as H2O, CO2, and NH3, which are often carried by facilitated
diffusion, were added to the model with no gene association.



J. Fungi 2020, 6, 171 4 of 19

2.6. Biomass Equation

The biomass formation was represented by an equation that includes proteins, DNA, RNA,
lipids, carbohydrates, and cofactors, and detailed information for the composition of each one of these
macromolecules. The content of each component was determined based on the literature or using
experimental data. All the calculations were performed as described previously [38]

For the phosphorus to oxygen ratio the same theoretical ratio used in the S. cerevisiae iMM904
metabolic model was applied, 1.5.This ratio represents the relationship between ATP synthesis and
oxygen consumption, indicating the number of orthophosphate molecules used for ATP synthesis per
atom of oxygen consumed during oxidative phosphorylation [14]. Three generic reactions contributing
to this ratio were automatically generated by merlin, and were updated to replicate the same ratio as in
the iMM904 model:

Reaction R00081_C4:

1.0 Oxygenmito + 4.0 Ferrocytochrome cmito + 6.0 H+
mito↔ 2.0 H2Omito + 4.0

Ferricytochrome cmito + 6.0 H+
cyto

(1)

Reaction T02161_C4:

1.0 Ubiquinolmito + 2.0 Ferricytochrome cmito + 1.5 H+
mito↔ 1.0 Ubiquinonemito + 2.0

Ferrocytochrome cmito + 1.5 H+
cyto

(2)

Reaction T00485_C4:

1.0 Orthophosphatemito + 1.0 ADPmito + 3.0 H+
cyto↔ 1.0 ATPmito + 1.0 H2Omito

+ 3.0 H+
mito

(3)

The final balance reaction:

3.0 Orthophosphatemito + 1.0 Oxygenmito + 3.0 ADPmito + 2.0 Ubiquinoolmito↔ 3.0 ATPmito

+ 5.0 H2Omito + 2.0 Ubiquinonemito
(4)

This model also includes ATP requirements for biomass formation and maintenance (non-growth).
The growth ATP requirements, 23.346 mmoles ATP/g Dry Cell Weight (DCW), were introduced directly
into the biomass equation; this value was calculated based on ATP requirements for biosynthesis of cell
polymers for S. cerevisiae, adjusted for the composition in macromolecules of the biomass equation [39].

Non-growth associated ATP maintenance, the amount of ATP required by the cell even when
it is not growing, was represented in the model by an equation that forces ATP consumption via a
specific flux. The boundaries of this flux were inferred from Candida tropicalis [40]. See File S1 for more
detailed information on the computation of the biomass equation.

2.7. Curation of the Model

Throughout the curation process, reactions were edited, manually added to, or removed from the
model to correct some gaps in the network, using KEGG pathways, MetaCyc Database, and literature
data as standards.

2.8. Strains and Growth Media

Candida albicans reference strain SC5314 was batch-cultured at 37 ◦C, with orbital agitation
(250 rpm) in Yeast Nitrogen Base (YNB) medium without amino acids: 5 g/L glucose (Merck), 6.8 g/L
YNB (Difco). Solid media contained, besides the above-indicated ingredients, 20 g/L agar (Iberagar).
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2.9. Carbon and Nitrogen Source Utilization Assessment

The capability of utilizing different carbon and nitrogen sources for cell growth was assessed by
comparing in silico predictions to literature data for C. albicans. For the few carbon or nitrogen sources
for which the model predictions were not consistent with literature data, wet-lab experiments were
conducted. Specifically, the utilization of cellobiose, D-Ribose, and mannitol as carbon source, by the
C. albicans reference strain SC5314, was evaluated in solid YNB medium containing either 5 g/L glucose
as control, or 5 g/L of either one of the mentioned carbon sources. C. albicans cell suspensions used
to inoculate the agar plates, were mid-exponential cells grown in YNB medium with 5 g/L glucose,
until culture OD600nm = 0.5 ± 0.05 was reached and then diluted in sterile water to obtain suspensions
with OD600nm = 0.05 ± 0.005. These cell suspensions and subsequent dilutions (10−1; 10−2; 10−3) were
applied as 4 µL spots onto the surface of solid YNB media, with the indicated carbon sources. Growth
was assessed after incubation at 37 ◦C for 24 h.

2.10. Network Simulation and Analysis

All the phenotype simulations were performed with Flux Balance Analysis (FBA) in OptFlux
3.0 [21] using the IBM CPLEX solver (IBM, Armonk, NY, USA). Gene essentiality was also determined by
OptFlux 3.0 which provides a tool that allows to determine critical genes automatically by performing
individual gene knockouts and simulating growth in a given environmental condition. Environmental
conditions that simulated the Roswell Park Memorial Institute (RPMI, Buffalo, NY, USA) medium
were used, in order to replicate the human serum conditions.

3. Results and Discussion

3.1. Model Characteristics

The final version of the iRV781 model includes 781 genes associated with 1221 reactions, among
which, 174 are transport reactions, and 196 are external drain reactions (exchange constraints set to mimic
the environmental conditions), involving 927 metabolites and four different compartments. Analyzing
the distribution of proteins by compartments, 205 are plasma membrane proteins, 521 cytoplasmatic
proteins and 139 mitochondrial proteins.

In order to elucidate the characteristics of our model we selected well-characterized genome-scale
metabolic models of C. glabrata [41] and S. cerevisiae [42] as a comparison. Table 1 shows the distribution
of those reactions by the main pathways in the three models. In general, the number of reactions by
pathway is quite similar to C. glabrata, S. cerevisiae or both.

Although our model has common standard identifiers for reactions (KEGG ID), it is not possible
to assess how the reactions differ among the three models, since the remaining two models do not
possess the same identifiers. However, considering only the proteins associated with an EC number,
it is possible to make a comparison across the existing models. More than 80% of the proteins with an
associated EC number in our model are also present at least in one of the other 2 models (S. cerevisiae or
C. glabrata). Furthermore, about 65% of the proteins are shared by the three models while about 20%
are unique in iRV781 (Figure 2). The complete list of unique EC numbers can be found in File S3.
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Table 1. Number of reactions in the main pathways of the C. albicans iRV781 model in comparison to C.
glabrata iNX804 model and S. cerevisiae iMM904 model.

C. albicans C. glabrata S. cerevisiae

iRV781 iNX804 iMM904

Amino acid metabolism 218 223 217
NAD biosynthesis 20 20 24

Cofactors and vitamins 122 120 127
Nucleotide metabolism 120 138 135

Alternate carbon
metabolism 27 31 27

Glycolysis/gluconeogenesis 26 18 22
Citrate cycle 24 20 13

Pentose phosphate
pathway 18 16 13

Pyruvate metabolism 31 28 18
Oxidative

phosphorylation 10 13 19

Sterol metabolism 29 30 49
Fatty acid metabolism 87 81 108

Glycerolipid metabolism 13 9 12
Phospholipid
metabolism 34 44 52
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In most cases, the observable differences in EC numbers were related to outdated EC numbers
or were compensated with other enzymes that are responsible for the same reactions in the model.
However, some cases stand out as potential unique features of C. albicans:

• The enzyme 1.13.99.1, inositol oxygenase, responsible for the conversion of myo-inositol into
D-glucuronate. This enzyme seems to be involved in resistance to toxic ergosterol analogs [44],
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is also present in other Candida species, including some important pathogens (C. parapsilosis,
C. dubliniensis, C. auris), but absent in C. glabrata.

• The enzyme 1.1.1.289, sorbose reductase, responsible for the interconversion of L-sorbose into
D-sorbitol. In fact, the presence this enzyme allows C. albicans to use L-sorbose as carbon
source [45], unlike S. cerevisiae.

• The enzyme 1.14.19.17, sphingolipid 4-desaturase, responsible for the conversion of
dihydroceramide into N-Acylsphingosine. This protein is involved in sphingolipid metabolism,
with possible impact in azole resistance in C. albicans [46]. The presence of this enzyme may
represent a specific resistance feature of some Candida species, being present in C. parapsilosis,
C. dubliniensis, C. auris, but not in C. glabrata.

• The enzyme 1.1.99.2, L-2-hydroxyglutarate dehydrogenase, is a metabolite repair enzyme
responsible for the conversion of (S)-2-hydroxyglutarate into 2-oxoglutarate. In other organisms
such as plants [47] or humans [48], the inactivation of this enzyme leads to the accumulation of
the toxic (S)-2-hydroxyglutarate.

• The enzyme 2.7.1.59, N-acetylglucosamine kinase, responsible for the conversion of
N-acetyl-D-glucosamine into N-acetyl-D-glucosamine 6-phosphate. Many yeast species, including
S. cerevisiae have lost their ability to utilize N-acetyl-D-glucosamine as carbon source, however,
genetically altered yeasts are able to use it, based on expression of C. albicans genes [49]. In fact,
this enzyme allows C. albicans to utilize this carbon source, a feature that is particularly important
for its survival inside the phagosomes [50].

• The enzyme 3.5.1.25, N-acetylglucosamine-6-phosphate deacetylase, responsible for the conversion
of N-acetyl-D-glucosamine 6-phosphate into D-glucosamine 6-phosphate. Like 2.7.1.59,
this enzyme is also involved in N-acetyl-D-glucosamine metabolism.

• The enzyme 1.4.3.3, D-amino-acid oxidase, responsible for the conversion of a D-amino acid into a
2-oxo carboxylate and ammonia, is the first enzyme involved in the catabolism of D-amino acids
and may allow the utilization D-amino acids as a source of carbon or nitrogen in some yeasts [51].
It may be an interesting feature to be explored in C. albicans.

3.1.1. Gap Filling and Model Curation

During the process of manual curation described in the methods section, a total of 66 reactions
were manually added to the initial model obtained from the results of re-annotation to fill gaps.
Additionally, evidence from the literature was always considered, or of the well-studied S. cerevisiae.
On the other hand, 336 reactions were removed from the initial model, have been removed for being
unconnected reactions, general reactions, reactions using metabolites that are not included in the
model, or reactions for which it was manually verified that the model does not have the enzyme coding
gene. Additionally, the compartment of 79 reactions was changed, and 94 reactions were altered to
become balanced. The complete list of alterations can be found in File S2.

3.1.2. Biomass Equation

The biomass equation (Table 2) includes the composition of proteins, DNA, RNA, lipids,
carbohydrates, and cofactors. For the composition of DNA, the whole genome sequence was used to
estimate the amount of each deoxyribonucleotide as described in [52], while mRNA, rRNA, and tRNA
were used to estimate the total RNA in the cell as described in [14]. For the amino acid composition, the
percentage of each codon usage was calculated from the translated genome sequence [52], using the
e-BiomassX tool [53].
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Table 2. Biomass Composition used in the model iRV781. More detailed information is found in File S1.

Metabolite g/gDCW Metabolite g/gDCW

Protein components Lipids
L-Valine 0.02001 Lanosterol 0.00166

L-Tyrosine 0.02153 Squalene 0.00088
L-Tryptophan 0.00671 Ergosterol 0.00247
L-Threonine 0.02311 Phosphatidylserine 0.00299

L-Serine 0.02908 Phosphatidylinositol 0.00417
L-Proline 0.01616 Phosphatidylcholine 0.00681

L-Phenylalanine 0.02407 Phosphatidylethanolamine 0.00542
L-Methionine 0.00869 Cardiolipin 0.00201

L-Lysine 0.03535 Phosphatidic acid 0.00271
L-Leucine 0.03874 Phosphatidylglycerol 0.00174

L-Isoleucine 0.02992 Tetradecanoic acid 0.00003
L-Histidine 0.01067 Hexadecanoic acid 0.00073

L-Glutamate 0.03084 Palmitoleic acid 0.00022
L-Cysteine 0.00410 Octadecanoic acid 0.00035
L-Aspartate 0.02508 Oleic acid 0.00163

L-Asparagine 0.02841 Linoleate 0.00054
L-Arginine 0.02203 Linolenate 0.00008
L-Alanine 0.01334 Triacylglycerol 0.00573

Glycine 0.01077 Monoacylglycerol 0.00620
L-Glutamine 0.02158 Diacylglycerol 0.00087

Sterol esters 0.01177

Carbohydrates

Chitin 0.01368 Soluble Pool
Mannan 0.14669 Thiamine 0.00290

β (1.3)-Glucan 0.23962 Ubiquinone-6 0.00290
NADP+ 0.00290

Deoxyribonucleotides NAD+ 0.00290
dTTP 0.02072 FMN 0.00290
dGTP 0.01266 FAD 0.00290
dCTP 0.01118 CoA 0.00290
dATP 0.02114 Biotin 0.00290

Pyridoxal phosphate 0.00290

Ribonucleotides 5-Methyltetrahydrofolate 0.00290
UTP 0.00603
GTP 0.00714
CTP 0.00561
ATP 0.00714

Carbohydrate [54], Lipid [55], Sterol [55], Phospholipid [56], and Fatty acid [57] compositions
were inferred from literature data. Essential metabolites were included in the biomass composition
to qualitatively account for the essentiality of their synthesis pathways [41,58]. The growth and
non-growth ATP requirements were adopted from S. cerevisiae [59].

3.2. Validation of the iRV781 Model

3.2.1. Carbon and Nitrogen Source Utilization

Based on the literature, phenotypic growth data were collected from different sources. Data related
to C. albicans strains, other than the reference SC5314 strain, was also considered in the analysis to
increase the number of carbon and nitrogen sources tested.

In a first simulation, this model correctly predicted the usability of 92% of the 39 tested
carbon sources. According to data available on Royal Netherlands Academy of Arts and Sciences
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(CBS-KNAW) Fungal Biodiversity Centre webpage [60], the C. albicans CBS562 strain seems not
to be able to use cellobiose or D-ribose as sole carbon sources, contrary to the model’s prediction.
Therefore, the utilization of cellobiose and D-ribose by C. albicans SC5314 was evaluated experimentally
to assess whether the prediction failure could result from a different metabolic capacity exhibited
by the reference strain. The results confirmed the model’s prediction regarding the utilization of
cellobiose and D-Ribose (Figure 3), suggesting that the reference C. albicans strain has higher metabolic
capabilities, when compared to other strains. The model’s prediction failed only for mannitol that,
according to the model, cannot be used as sole carbon source by C. albicans, contradicting experimental
evidence gathered for the C. albicans SC5314 strain [61,62] (Figure 3). It was not possible to identify
the source of this problem in the built model. Nonetheless, the model is able to correctly predict the
usability of 97% of the tested substrates.
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Figure 3. Utilization of glucose (control), cellobiose, D-Ribose, and mannitol by C. albicans reference
strain SC5314 as carbon source in solid YNB medium. Initial OD600nm = 0.5 ± 0.05. Growth was
assessed after incubation at 37 ◦C for 24 h.

Altogether, the constructed model proved accurate when predicting the utilization of different
carbon and nitrogen sources, when compared to experimental data (Table 3). It correctly predicts the
usability of 97% of the tested carbon sources, and 80% of the 15 tested nitrogen sources. It should be
noted that in the nitrogen tests, none of the literature data was obtained using the reference strain;
therefore, it is likely that the C. albicans SC5314 strain is able to use a larger number of nitrogen sources
than the previously tested strains.
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Table 3. Comparison between in vivo and in silico phenotypic behavior of C. albicans under different
carbon and nitrogen sources. Growth (+); lack of growth (−).

Biomass

In Vivo In Silico Reference

Carbon Source
N-acetylglucosamine + + [62,63]

Glucose + + [61–63]
Maltose + + [63]

Galactose + + [61–63]
Sucrose + + [63]
Fructose + + [61–63]
Mannitol + − This study
Acetate + + [63]
Ethanol + + [63]
Glycerol + + [61–63]
Mannose + + [61,62]

Citrate + + [60]
Lactate + + [62]
Sorbitol + + [62]

L-sorbose + + [60]
D-xylose + + [60]

L-rhamnose − − [60]
α,α-trehalose + + [60]

Cellobiose + + This study
Salicin − − [60]

Myo-inositol − − [60]
D-ribose + + This study
Ribitol − − [60]

D-glucuronate − − [60]
D-galacturonate − − [60]

Succinate + + [60]
D-gluconate + + [60]

Arbutin − − [60]
D-arabinose − − [60]

Galactitol − − [60]
Starch + + [60]

D-glucosamine + + [60]
Inulin − − [60]

Melibiose − − [60]
Lactose − − [60]

Raffinose − − [60]
Erythritol − − [60]

Xylitol + + [60]
L-arabinitol − − [60]

Nitrogen Source
Nitrate − − [60,64]
Nitrite − − [60,64]

Ethylamine + − [60]
L-Lysine + + [60]

Ammonia + + [60,64]
Cadaverine + − [60]

Glucosamine − + [60]
Creatine − − [60]

Creatinine − − [60]
Imidazole − − [60]

L-asparagine + + [60,64]
Urea + + [60,64]

Hydroxylamine − − [60,64]
Hydrazine − − [60,64]

D-Tryptophan − − [60]
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3.2.2. Growth Parameters in Batch Culture

Experimental data obtained elsewhere [65] from synthetic minimal media batch cultures with
glucose as carbon source were used to validate the model quantitatively. The model was simulated in
environmental conditions that simulate the medium used in Rozpȩdowska et al., 2011. The glucose
uptake flux was fixed to qGlucose = 7.56 mmol g−1 dry weight h−1 as per such work, and the remaining
nutrients flux were left unconstrained, as the model in this condition is glucose-limited. Once again, the
model proved to be robust as the experimentally observed growth rate is similar to that predicted by the
model (Table 4). Additionally, the formation of glycerol, acetic acid, and ethanol as by-products was not
predicted to occur, which is in agreement with the experimental data, except for ethanol, that appears
to be produced in trace amounts. C. albicans, as a crabtree-negative yeast [66], under aerobic conditions
does not produce significant concentrations of ethanol. Nonetheless, the model predicts ethanol
production under low-oxygen conditions (qOxygen < 7.56 mmol g−1 dry weight h−1).

Table 4. Growth parameters of iRV781 and comparison with in vivo values for C. albicans and S. cerevisiae.

Specific Growth
Rate (h−1)

q (mmol g−1 dry weight h−1)

Glucose Ethanol Glycerol Acetic Acid

In silico C. albicans 0.53 7.56 0 0 0
In vivo C. albicans [60] 0.51 7.56 0.38 0 0
In vivo S. cerevisiae [60] 0.38 13.26 21.87 1.98 <0.1

C. albicans is unable to grow in anaerobic conditions in minimal media. However, C. albicans
colonization is known to spread into anaerobic niches of the gastrointestinal tract or in the inner sections
of biofilms where the oxygen availability is scarce or null. Dumitru et al., 2004 reported a defined
anaerobic growth medium for studying Candida albicans. In this medium (GPP) oleic acid and nicotinic
acid were added as required growth factors for anaerobic growth [67]. Interestingly, S. cerevisiae
under anaerobiosis also requires growth factors, such as ergosterol and Tween 80, a source of oleic
acid, if growing in a defined medium (SMM), it should be noticed that SMM medium also contains
nicotinic acid in its composition despite not being a required growth factor in anaerobic conditions [68].
Cultivation was simulated in the absence of oxygen in GPP medium and GPP medium supplemented
with oleic acid and nicotinic acid, to assess if this model can predict growth in anaerobic conditions.
Our model predicts the growth only in media supplemented with specific anaerobic growth factors.
For the simulation, the glucose uptake flux was set to qGlucose = 6.58 mmol g−1 dry weight h−1,
to compare the growth parameters with the reported values for S. cerevisiae. Indeed, for the same
anaerobic conditions, the specific growth rate of the model and the ethanol production are similar to
data reported for S. cerevisiae [68], though the model does not predict the production of glycerol in
such conditions (Table 5).

Table 5. Anaerobic growth assessment of iRV781 model in defined media with or without anaerobic
supplements. DMM [68] (defined minimal medium); DMMsup. [68] (defined minimal medium
supplemented with ergosterol and Tween 80); GPP [67] (glucose-phosphate-proline); GPPsup. [67]
(glucose-phosphate-proline supplemented with oleic acid and nicotinate).

Condition
Specific Growth

Rate (h−1)

q (mmol g−1 dry weight h−1)

Glucose Ethanol Glycerol

In silico GPP 0 0 0 0
In silico GPPsup. 0.08 6.58 10.80 0
In silico DMM 0 0 0 0

In silico DMMsup. 0.08 6.58 10.80 0
S. cerevisiae DMM [68] 0.10 6.58 9.47 1.11
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3.3. Gene Essentiality Assessment: A Tool for Drug Target Discovery?

A set of C. albicans essential genes [69], were used to evaluate the model’s ability to predict
essentiality. For each gene a simulation was performed, on the same environmental conditions,
described in the reference [69] (YNB medium), eliminating the corresponding reactions for that gene.
Only protein-coding genes present in the model were considered. The model was able to correctly
predict 78% (84 out of 108) of the identified essential genes (File S5). It is important to highlight that,
in this type of models, the regulatory network is not considered, so it is expected that some predictions
are not close to reality.

To evaluate whether the assessment of gene essentiality could be a promising tool in drug target
discovery, each one of the identified essential enzymes in the RPMI medium was searched in the
DrugBank database [70], as a possible drug target of known antimicrobial agents. RPMI medium
simulates human serum, thus allowing to simulate the natural environment faced by Candida albicans
in systemic infections.

Interestingly, 11 ERG genes, including the well-known azole drug target ERG11, were predicted by
the model to be essential in RPMI medium. Although most ERG genes are not essential, the inhibition
of the activity of this pathway has a fungistatic effect indeed. They encode the enzymes that guide
the last steps of ergosterol biosynthesis. This pathway is the main target of azole drugs, one of the
most common antifungal agents to treat Candida infections [71]. These drugs act by blocking ergosterol
biosynthesis inhibiting the Erg11 encoded by the ERG11 gene. When an azole drug binds to this
enzyme, ergosterol synthesis is inhibited, leading to lower concentrations of this metabolite in the
plasma membrane [72]. Given that ergosterol is part of the C. albicans’ biomass, it is acceptable to
consider that enzymes that participate in its synthesis pathway can be essential, making most ERG
genes attractive alternatives as new drug targets [73].

Many additional proteins stand out as promising new drug targets, including some for which
there are already predicted inhibitory drugs, based on the results for homologous proteins in other
organisms. For example, Atovaquone is a drug used as a fixed-dose combination with Malarone for
treating uncomplicated malaria cases or as chemoprophylaxis in travelers. This drug is an analogue of
ubiquinone and targets enzyme 1.3.5.2 encoded by URA9 in Plasmodium falciparum. Atovaquone acts
as a competitive inhibitor of ubiquinol inhibiting the mitochondrial electron transport chain at the bc1
complex, resulting in a loss of mitochondrial function [74]. It would be interesting to check if these
drugs are also active against C. albicans by targeting CaUra9.

Another promising example of a predicted C. albicans drug target is Fol1, which corresponds to
enzyme 2.5.1.15. Fol1 is the target of the sulfa drugs (sulfonamides and sulfones), a very well-known
class of drugs, used to treat infectious diseases [75]. The effect of sulfa drugs on C. albicans has
not been sufficiently investigated. However, it seems that sulfa-fluconazole combination results in
increased antifungal activity against C. albicans, leading to the reversal of azole resistance in previously
resistant strains [76].

Since a reaction can be catalyzed by a protein encoded by more than one gene, and genes may
encode more than one protein, we decided to analyze the model’s critical reactions. This analysis
allowed to increase the number of confirmed drug targets predicted as essential enzymes.

As an example, the FKS genes stand out. They are not considered essential as the
enzyme beta-1,3-glucan synthase can be encoded by more than one FKS/GSC/GSL genes [77].
However, the model predicts the reaction in which this enzyme participates as essential.
The beta-1,3-glucan synthase is the target of the echinocandin class of antifungal drugs.
Via noncompetitive inhibition, these drugs block the enzyme and stop beta-1,3-glucan synthesis,
compromising the integrity of the cell wall [78].

Other drugs, such as ethionamide, sulfacetamide, azelaic acid, cerulenin or trimethoprim,
were identified as targeting proteins from various organisms. These proteins are homologous to
the proteins encoded by genes identified as essential in RPMI, in the C. albicans’ model (Table 6).
Altogether, these results suggest that the iRV781 model may prove useful in the prediction of new



J. Fungi 2020, 6, 171 13 of 19

drug targets. The predictions of this model may extend to other pathogenic Candida species. In fact,
if we search the 12 genes present in Table 6 in emerging non-albicans Candida species, they all have
orthologous genes in C. parapsilosis and C. dubliniensis, 11 of them have orthologs in C. auris and 8 of
them in C. glabrata.

Despite the methodology for the reconstruction of genome-scale metabolic models being
standardized, eukaryotic models remain a challenge, due to their large genomes and complexity [79].
These models always seek to get as close as possible to reality; however, given the complexity of
the networks, they are always subject to some errors, which may cause small deviations in the
predictions. Some errors may include incorrect assignment of GPR associations, reaction directionality
or reversibility, incongruous stoichiometric parameters, missing reactions and inaccurate biomass
composition [79]. Additionally, network properties, that go beyond metabolism, cannot be addressed
with currently existing modeling tools at a global scale, thus limiting the predictive power that may be
drawn from global stoichiometric models. Still, they provide a fresh view of a pathogen’s metabolism,
while offering a tool to inspect the metabolism itself as a target for new drugs.

Genome-scale metabolic reconstructions are effective in drug target prediction and are expected
to continue to expand in the future [80]. Gene essentiality assessment is the most common method to
identify potential drug targets, and for a better prediction, it is necessary to consider the medium in
which the organism is exposed. In this work, gene essentiality was searched for in RPMI medium in
order to simulate the natural environment faced by Candida albicans in systemic infections. However, it is
important to highlight that in theses reconstructions, it is not considered that cells may need time
to adapt to genetic perturbations or environmental variability [79]. Additionally, yeast interactions
with other microorganisms and the secretion of compounds that can influence their surrounding
environment are not taken into account [81]. Despite these inaccuracies, genome-scale metabolic
reconstructions have proved to be very efficient discovering new drug targets, and once a model is
built, drug targets can be predicted relatively easily. In fact, the experimental validation of the targets
and the identification of the effective drugs represents a more demanding challenge [82].



J. Fungi 2020, 6, 171 14 of 19

Table 6. Drug targets evaluated for gene essentiality prediction in RPMI medium, as identified by the iRV781. Data retrieved from DrugBank database; only drugs
with known pharmacological action were selected.

Systematic Name Standard Name EC Number Organism Drug PDB Entry Similarity Coverage

C1_08590C_A ERG1 1.14.14.17
Candida albicans Terbinafine - - -
Candida albicans Tolnaftate - - -

C1_09720W_A URA1 1.3.5.2 Plasmodium falciparum Atovaquone 5DEL 37% 81%

C2_02460W_A ERG7 5.4.99.7 Candida albicans Oxiconazole - - -

C5_00190C_A FAS1 1.3.1.9
Mycobacterium tuberculosis Ethionamide

4V8W 30% 45%Mycobacterium tuberculosis Isoniazid

C5_00770C_A FOL1 4.1.2.25 Saccharomyces cerevisiae Sulfacetamide 2BMB 42% 65%

C5_02710W_A TRR1 1.8.1.9 Staphylococcus aureus Azelaic acid 4GCM 42% 98%

C7_03130C_A DFR1 1.5.1.3 Escherichia coli Trimethoprim 4GH8 35% 77%

C5_00770C_A FOL1 2.5.1.15
Escherichia coli Sulfonamides and sulfones 1AJ2 36% 40%
P. falciparum Sulfonamides and sulfones 6KCM 26% 65%

C1_02420C_A GSC1
2.4.1.34

Candida albicans Anidulafungin - - -
C1_05600W_A GSL1 Candida albicans Caspofungin - - -
CR_00850C_A GSL2 Candida albicans Micafungin - - -

C3_04830C_A FAS2 2.3.1.41 Escherichia coli Cerulenin 2BYX 31% 8%

CR_00850C_A ERG11 1.14.14.154 Candida albicans Azoles - - -
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4. Conclusions

The first validated global metabolic model for the human pathogen C. albicans is presented in this
study. The model was manually curated and validated thoroughly, constituting a powerful platform
for the study of C. albicans metabolic potential and weaknesses. The iRV781 model includes 781 genes
associated with 1221 reactions, the number of reactions in the main pathways being similar to those in
C. glabrata and S. cerevisiae models. However, about 20% of the proteins associated with EC numbers
in iRV781 are unique in relation to these models. The model proved accurate when predicting the
utilization of different carbon and nitrogen sources, and in anaerobic growth in defined anaerobic
media. In silico growth parameters are also in agreement with the experimental data. We were able to
identifyas essential genes in RPMI medium some which are already known targets antifungal agents
and other antimicrobial agents used in clinical practice. This observation suggests that the C. albicans
global stoichiometric model, presented herein, may be a promising platform for the identification of
further targets for new antifungal drugs.

Supplementary Materials: The following are available online at http://www.mdpi.com/2309-608X/6/3/171/s1,
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number, File S4: iRV781 sbml file, File S5: Gene essentiality.
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