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ABSTRACT Machine learning has proven to be a powerful method to predict anti-
microbial resistance (AMR) without using prior knowledge for selected bacterial
species-antimicrobial combinations. To date, only species-specific machine learning
models have been developed, and to the best of our knowledge, the inclusion of in-
formation from multiple species has not been attempted. The aim of this study was
to determine the feasibility of including information from multiple bacterial species
to predict AMR for an individual species, since this may make it easier to train and
update resistance predictions for multiple species and may lead to improved predic-
tions. Whole-genome sequence data and susceptibility profiles from 3,528 Mycobac-
terium tuberculosis, 1,694 Escherichia coli, 658 Salmonella enterica, and 1,236 Staphy-
lococcus aureus isolates were included. We developed machine learning models
trained by the features of the PointFinder and ResFinder programs detected to pre-
dict binary (susceptible/resistant) AMR profiles. We tested four feature representation
methods to determine the most efficient way for introducing features into the mod-
els. When training the model only on the Mycobacterium tuberculosis isolates, high
prediction performances were obtained for the six AMR profiles included. By adding
information on ciprofloxacin from the additional 3,588 isolates, there was no reduc-
tion in performance for the other antimicrobials but an increased performance for
ciprofloxacin AMR profile prediction for Mycobacterium tuberculosis and Escherichia
coli. In conclusion, the species-independent models can predict multi-AMR profiles
for multiple species without losing any robustness.

IMPORTANCE Machine learning is a proven method to predict AMR; however, the
performance of any machine learning model depends on the quality of the input
data. Therefore, we evaluated different methods of representing information about
mutations as well as mobilizable genes, so that the information can serve as input
for a robust model. We combined data from multiple bacterial species in order to
develop species-independent machine learning models that can predict resistance
profiles for multiple antimicrobials and species with high performance.
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Antimicrobials have been used for infectious disease treatment for decades. Bacteria
may develop antimicrobial resistance (AMR), making them insensitive to certain

antibiotic treatments (1). AMR in bacteria is mainly mediated by the acquisition of
chromosomal mutations and/or the horizontal acquisition of mobilizable genes. To
date, many patients with infectious diseases have been prescribed inappropriate
antibiotics, leading to increased mortality and health care costs due to AMR (2). It is
therefore vital to accurately determine the AMR profiles of microorganisms causing
infections (3).

Species identification and antimicrobial susceptibility testing have traditionally been
performed using conventional testing of the bacterial phenotype. However, with the
increasing availability of next-generation sequencing for routine diagnostics, it has
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been suggested that species identification and antimicrobial susceptibility testing
might be performed in a single analysis based on the genomic sequence (4).

A number of bioinformatics tools, including the ResFinder (18) and PointFinder (6)
programs, that predict AMR from DNA sequence data using prior knowledge have been
developed and made available for the global research and diagnostic communities.
PointFinder detects chromosomal mutations for a few selected bacterial species, while
ResFinder solely detects mobilizable genes. Since 2018, these two prediction tools have
been merged and are available on the ResFinder (version 3.0) web server. However, it
has been shown that such tools are highly dependent on the literature, as they provide
accurate predictions only for the well-studied AMR mechanisms (8).

Machine learning represents an alternative method to predict AMR from sequence
data without the need for prior knowledge of chromosomal mutations and mobilizable
genes (8). Many machine learning methods can take into consideration the effects of
combinations of mutations and/or mobilizable genes. To date, several studies have
been able to predict AMR profiles for various bacterial species and antibiotic combi-
nations using different machine learning algorithms (2, 8–11). The major variation
between the studies is how the bacterial genomes are translated into features that are
then used as input to the machine learning methods. These studies can roughly be
divided into methods that utilize k-mers, single nucleotide polymorphisms (SNPs), AMR
genes, and whole-genome sequence (WGS) data as features (2, 12, 13). The success of
machine learning is not limited by the available literature or whether the organism is
known or not. In contrast to the literature-based methods, machine learning may also
be capable of discovering new resistance mechanisms.

Here we present machine learning models trained with chromosomal mutations and
mobilizable genes. As the data representation methods play an important role in
obtaining an accurate prediction of AMR profiles, we evaluated the effect of using
different data representations. We demonstrate that performances improved over
those of Point-/ResFinder can be obtained using the mutations and genes identified by
Point-/ResFinder as input, but without parsing the information input into the machine
learning methods about which mutations and genes are known to be associated with
AMR. Importantly, we demonstrate that information from one species might improve
the predictions for other species. Thus, we demonstrate that it is possible to develop
robust multioutput and species-independent models for AMR typing to also eventually
cover species for which no prior knowledge is available.

RESULTS

Genetic variations that may mediate AMR were detected using the ResFinder and
PointFinder programs. These genetic factors were then presented to the machine
learning methods by the use of various representations. These representations included
binary representation, scored representation, amino acid representation, nucleotide
representation, and a combination of the binary and scored representations, as de-
scribed in Materials and Methods. In order to compare the robustness of these
representation methods, the random forest model was applied to the Escherichia coli
and Mycobacterium tuberculosis isolates to predict ciprofloxacin and rifampin resistance
profiles, respectively. The results are provided in Table 1. Due to the 5-fold cross-
validation method applied, all of the results obtained with the validation data are the
averages of the values obtained with the five different machine learning models.

For M. tuberculosis and E. coli, predictions based on the different representations
performed equally well (P value 0.5 � significance threshold 0.05), and the best
performance was observed for the combination method with E. coli. In the further
analyses, use of the combination of the binary and scored representation methods was
chosen, as this combination maintains the simplicity of the binary model in combina-
tion with the preciseness of the scoring model, while it has fewer features than the
amino acid and nucleotide representations.

Single output versus multiple outputs. We then tested the prediction power of
individual prediction models for each antimicrobial against an aggregated multioutput
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model. The random forest and neural network models were applied to predict all the
AMR profiles for the M. tuberculosis isolates both together and separately, as shown in
Table 2. The single- and multioutput model performances were compared by a paired
t test. The P value for both of the test results was 0.374 using random forests and neural
networks. Therefore, the null hypothesis that there is no difference in the performances
between the single- and multioutput models was accepted for the 0.05 significance
threshold.

The random forest and neural network models performed equally well, as shown in
Table 2. In order to handle the missing outputs, we imputed missing output values for
the random forest model. The missing values were replaced by the predictions ob-
tained by a random forest model that was trained only with the isolates having no
missing values. The imputed data were used to predict resistance profiles, whereas the

TABLE 1 Application of random forest models to the differently represented E. coli and M.
tuberculosis data setsa

Species (no. of isolates) and
data representation method
(no. of features)

AUC

Validation data Test data

E. coli (1,694)
Binary representation (1,119) 0.98 � 0.01 0.97
Scored representation (2,167) 0.98 � 0.01 0.97
Scored � binary representation (4,219) 0.98 � 0.01 0.98
Amino acid representation (52,199) 0.98 � 0.01 0.97
Nucleotide representation (14,483) 0.98 � 0.02 0.97

M. tuberculosis (1,785)
Binary representation (6,735) 0.94 � 0.04 0.92
Scored representation (11,120) 0.94 � 0.04 0.92
Scored � binary representation (21,975) 0.94 � 0.04 0.92
Amino acid representation (261,085) 0.93 � 0.04 0.92
Nucleotide representation (87,205) 0.93 � 0.04 0.92

aFor the performances with E. coli, the model was trained and validated with 1,422 isolates and tested with
272 isolates. For the performances with M. tuberculosis, the model was trained and validated with 992
isolates and tested with 793 isolates. All of these M. tuberculosis isolates had complete resistance profiles.
AUC, area under the curve.

TABLE 2 Application of random forest and neural network models to M. tuberculosis dataa

Model and
antimicrobial

AUC

Single output Multiple outputs

Validation data Test data Validation data Test data

Random forests
(1,785 isolates)

Rifampin 0.94 � 0.04 0.92 0.92 � 0.06 0.92
Isoniazid 0.91 � 0.03 0.93 0.91 � 0.03 0.93
Streptomycin 0.89 � 0.05 0.91 0.88 � 0.07 0.90
Ethambutol 0.89 � 0.09 0.80 0.86 � 0.08 0.80
Pyrazinamide 0.82 � 0.06 0.79 0.83 � 0.09 0.79

Neural networks
(3,528 isolates)

Rifampin 0.95 � 0.04 0.94 0.94 � 0.04 0.94
Isoniazid 0.90 � 0.02 0.94 0.88 � 0.04 0.94
Streptomycin 0.86 � 0.05 0.88 0.86 � 0.07 0.87
Ethambutol 0.94 � 0.06 0.87 0.93 � 0.06 0.87
Pyrazinamide 0.86 � 0.05 0.83 0.83 � 0.08 0.83

aThe genetic variations are represented by the combination of the binary and scored representations. The
model with random forests was trained and validated with 992 isolates and tested with 793 isolates, and
the model with neural networks was trained and validated with 2,293 isolates and tested with 1,235
isolates. The M. tuberculosis data used in the random forest model included only the complete resistance
profiles, whereas the data used in the neural network model did not. This explains why more isolates were
included in the neural network model than in the random forest model. As the number of M. tuberculosis
isolates having AMR profiles for all antimicrobials was only 92, ciprofloxacin was discarded for these models.
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imputed data for the isolates were not considered in the model assessment process.
Because of the imputation process, we continued with the artificial neural networks.

Additionally, in order to gain more insight into the predictions made by the random
forest and neural network models, the first 20 and 50 most important features per
species are provided in Tables S3 and S4 in the supplemental material for the random
forest and neural network models, respectively, and Data Sets S2 and S3 for the random
forest and neural network models, respectively.

Single species versus multiple species. The next comparison made in the study
was between the performances of the models for single and multiple species. The data
set that included multiple species was generated by merging all the single species into
one data set using the first input merging method (see Materials and Methods). The
performances of both models are shown as area-under-the-curve (AUC) values in
Table 3, and the difference between the model performances was tested using a paired
t test. For the test results, the P value was 0.488. The null hypothesis that there is no
difference in performances between the single- and multispecies models was accepted at
the 0.05 significance threshold. In the assembly process, one of the Staphylococcus aureus
isolates (Pathosystems Resource Integration Center [PATRIC] accession number 1280.9410)
and eight Salmonella enterica isolates (PATRIC accession numbers 340190.17, 340190.19,
340190.21, 90105.22, 90105.18, 90105.19, 340190.7, and 340190.20) failed. These failed
isolates were not included in the models.

Discrete databases versus concatenated database. Two different ways of gener-
ating a multiple-species data set were tested in this study. In method 1 (see Materials
and Methods), the sequence of each species was aligned only to its own reference
sequence.

In method 2, the sequence of each species was aligned to the sequences in a
concatenated reference database, and the sequences of 197 isolates failed to align.

The one-hidden-layer neural network model was applied to the multispecies data
sets, and the model performances are shown in Table 4. The model receiver operating

TABLE 3 Application of neural network model to single species data and merged species dataa

Antimicrobial

AUC for the following species (no. of isolates):

E. coli (1,694)
M. tuberculosis
(3,528) S. enterica (658) S. aureus (1,236)

E. coli, M.
tuberculosis,
S. enterica, and
S. aureus

Validation
data

Test
data

Validation
data

Test
data

Validation
data

Test
data

Validation
data

Test
data

Validation
data

Test
data

Rifampin NA NA 0.94 � 0.04 0.94 NA NA NA NA 0.94 � 0.04 0.95
Isoniazid NA NA 0.88 � 0.04 0.94 NA NA NA NA 0.93 � 0.03 0.94
Streptomycin NA NA 0.89 � 0.06 0.87 NA NA NA NA 0.89 � 0.06 0.89
Ethambutol NA NA 0.93 � 0.06 0.87 NA NA NA NA 0.91 � 0.05 0.92
Pyrazinamide NA NA 0.82 � 0.11 0.83 NA NA NA NA 0.85 � 0.04 0.87
Ciprofloxacin 0.99 � 0.01 0.97 0.90 � 0.12 0.97 0.75 � 0.15 0.85 0.98 � 0.01 0.99 0.98 � 0.01 0.97
aThe results for M. tuberculosis were slightly different from the results shown in Table 2, as the output dimension was changed. NA, the result is not available.

TABLE 4 Application of neural network models to multispecies data sets, which were
produced by the different methods

Antimicrobial

AUC for E. coli, M. tuberculosis, S. enterica, and S. aureus

Discrete databases Concatenated databases

Validation data Test data Validation data Test data

Rifampin 0.94 � 0.04 0.95 0.95 � 0.04 0.95
Isoniazid 0.93 � 0.03 0.94 0.95 � 0.02 0.95
Streptomycin 0.89 � 0.06 0.89 0.88 � 0.07 0.89
Ethambutol 0.91 � 0.05 0.92 0.91 � 0.05 0.92
Pyrazinamide 0.85 � 0.04 0.87 0.87 � 0.05 0.87
Ciprofloxacin 0.98 � 0.01 0.97 0.98 � 0.00 0.96
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characteristic (ROC) curves and loss plots, along with the performances, are shown in
Fig. 1 and 2, respectively.

According to the paired t test results, the P value for the test results was 0.404. The
null hypothesis that there is no difference between the performances of the discrete
and concatenated databases was accepted at the significance threshold of 0.05.

The one-hidden-layer neural network model performances for the multispecies data
were compared with the multiple-hidden-layer neural network model performances,
and no significant change was observed between the one-hidden-layer model and
each individual multiple-hidden-layer models (P values � [0.175, 0.363] � significance

FIG 1 The ROC curves are shown for the models trained with the multispecies data sets. (Left) The model was trained with the data aligned to the discrete
databases; (right) the model was trained with the data aligned to the concatenated databases. Rif, rifampin; Iso, isoniazid; Str, streptomycin; Eth, ethambutol;
Pyr, pyrazinamide; Cip, ciprofloxacin.

FIG 2 The model training and validation data loss plots are shown. The models were trained with the multispecies data sets generated by aligning to the
discrete (left) and concatenated (right) databases. The plots show that the models do not indicate overfitting when iterated 5,000 times.
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threshold 0.05). The performances of the multiple-hidden-layer neural network models
with data from the concatenated database are shown in Fig. S1.

In our theory, when the multispecies model was trained with a sufficient number of
species, the model should be able to predict the AMR profiles for new species never
before trained by the model. In this study, we attempted to show that with a simple
experiment. We trained our one-hidden-layer neural network model with all of the
species used in the study, which were E. coli, M. tuberculosis, S. enterica, and S. aureus,
to teach the model ciprofloxacin resistance patterns. Afterwards, the model was tested
with a completely new data set including data for 900 Klebsiella pneumoniae isolates
and ciprofloxacin resistance profiles retrieved from the PATRIC database. All of the steps
followed in the study were completed for this new data set, such as detecting
mutations, insertion/deletions (indels), and mobilizable genes, using the Point-/Res-
Finder tools. However, the sequences in the new data set including data for K.
pneumoniae isolates were aligned to those in the concatenated database, which does
not include the sequence of the K. pneumoniae reference genome. As expected, the
sequence of the whole K. pneumoniae genome did not align to the sequences in the
concatenated database, and only part of it aligned to the E. coli and S. enterica reference
gene sequences. The prediction of ciprofloxacin resistance for K. pneumoniae was close
to random and is shown in Fig. S2.

Point-/ResFinder versus machine learning. The prediction performances of the
machine learning models were compared with the prediction performances obtained
with the Point-/ResFinder programs. The machine learning models used for the com-
parison were neural networks for all the species. All of the data sets were generated by
combining the scored and binary representation methods. The performances were
measured as the Matthews correlation coefficient (MCC) (14), shown in Table 5, because
Point-/ResFinder can produce only a binary output. In addition, sensitivity, specificity,
and F-1 scores are provided in Table S2. The probability threshold for the resistant
isolates was set to 0.5 for the machine learning predictions.

DISCUSSION

The primary objective of this study was to test the feasibility of developing a
multioutput and species-independent model for the prediction of AMR. This was
accomplished by artificial neural networks trained with multispecies data. Furthermore,
we also improved the Point-/ResFinder tools’ predictive capacity by predicting AMR
profiles not encompassed by the databases through the use of machine learning
models.

Multispecies model. To date, there are many bacterial species that have not been
either annotated or very well studied, so little is known about them (15). Even in these
cases, with no information available in the literature, the species-independent models
presented here allow the prediction of resistance profiles regardless of the number of

TABLE 5 Point-/ResFinder results compared with the machine learning predictionsa

Species-drug combination

MCC

Point-/ResFinder Machine learning

Validation data Test data Validation data Test data

E. coli-ciprofloxacin 0.71 0.70 0.96 0.94
M. tuberculosis-ciprofloxacin 0.91 0.71 0.62 0.78
M. tuberculosis-rifampin 0.83 0.87 0.72 0.81
M. tuberculosis-isoniazid 0.86 0.88 0.56 0.71
M. tuberculosis-streptomycin 0.61 0.78 0.39 0.58
M. tuberculosis-ethambutol 0.60 0.60 0.18 0.18
M. tuberculosis-pyrazinamide 0.60 0.60 0.38 0.28
S. enterica-ciprofloxacin 0.89 0.89 0.49 0.37
S. aureus-ciprofloxacin NA NA 0.97 0.95
aThe PointFinder and ResFinder programs were not able to predict ciprofloxacin resistance for S. aureus
because the database did not contain any prior knowledge on this at the time of testing. NA, the result is
not available.
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species in the data set. An approach similar to the one presented here may prove useful
in directly predicting AMR from metagenomic samples. Metagenomic approaches have
the advantages of avoiding culture bias and probably of having turnaround times
shorter than those of classical microbiology methods (16). Moreover, by combining the
species-independent model with the multioutput model, one can predict multiple
resistance profiles for multiple species in a time-efficient manner.

On the other hand, our study missed a diverse data set including more species in
order to reach accurate predictions for metagenomics studies. As shown in the exper-
iment with K. pneumoniae, the model is not able to predict the AMR profile of a
completely unknown species. Therefore, in any such future studies, the training data
should be enriched with related species (e.g., same genus) to the unknown species.

Data representation through Point-/ResFinder. In contrast to other similar stud-

ies, this study did not rely solely on k-mer information as the input data type. Instead,
we applied the PointFinder and ResFinder programs to detect the chromosomal
mutations and mobilizable genes, respectively.

One drawback of this approach might be that the Point-/ResFinder tools restrict the
features to a limited number of genes and thereby miss some information due to the
lack of whole-genome information. Nevertheless, a recent study has shown that AMR
gene information can provide enough information to the model (2). It has been proven
by the performances of our models that the compulsory information buried in the core
resistome is sufficient. Moreover, the models developed here overcome some of the
limitations of the Point-/ResFinder tools. The robustness of Point-/ResFinder depends
on the information provided in the literature and on the manual database curation.
These databases do not include all existing chromosomal mutations and mobilizable
genes mediating AMR, which are then rendered undetectable by these tools, but
remain interpretable. Hereby, the machine learning models have the advantage of
limiting the amount of prior knowledge and database curation needed to predict AMR.
This was the case for the ciprofloxacin resistance profiles, which were predictable by the
machine learning models for S. aureus, even though they were not included in
PointFinder at the time of testing.

An advantage of using the genes in the PointFinder database instead of the whole
genome is that the plasticity problem is overcome (17). Plasticity implies that reference
genomes of the same bacterial species may be different. For this reason, we found the
AMR genes in the PointFinder database to be more reliable, as they are manually
curated after screening several reference genes (18).

Some of the features important for the random forest and neural network model
predictions were not found to be associated with any of the resistance profiles provided
by the Point-/ResFinder databases. This implies that machine learning might allow the
discovery of new chromosomal mutations and mobilizable genes mediating AMR,
which can be verified experimentally. Furthermore, some of the unassociated features
might be the consequence of coresistance.

Point-/ResFinder versus machine learning performances. Regarding the second

objective of the study, the machine learning prediction results were compared with the
Point-/ResFinder results.

For E. coli, the machine learning method performed better than the Point-/ResFinder
tools in predicting ciprofloxacin resistance. Point-/ResFinder predict AMR using the
epidemiological cutoff values, whereas the machine learning models were fed the AMR
profiles interpreted using clinical breakpoints. Therefore, the discordant performances
might be the consequence of the gap between the epidemiological cutoff values and
the clinical breakpoints. For instance, the gyrA (S83L) mutation without the presence of
the gyrA (D87G) and parC (S80I) mutations causes only low-level ciprofloxacin resis-
tance in E. coli and does not yield resistance according to clinical breakpoints (19). Thus,
this single gyrA mutation causes only epidemiological resistance and not clinical
resistance. Moreover, to overcome the inconsistency between the interpretive criteria
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for resistance, it might be more appropriate to predict minimum inhibitory concentra-
tion (MIC) values rather than binary resistance profiles.

For M. tuberculosis, the Point-/ResFinder tools performed significantly better than
the machine learning models for predicting ethambutol and pyrazinamide resistance
profiles (P value 0.006 � significance threshold 0.05). However, it has been discussed by
previous studies (20, 21) that phenotypic drug susceptibility testing (DST) is unreliable
for ethambutol and pyrazinamide. Due to the unreliability of DST, the poor machine
learning performances might be the consequence of incorrectly profiled isolates; in that
case, the prior knowledge used to build the Point-/ResFinder database might be biased.

For S. enterica, the machine learning model obtained one of the lowest perfor-
mances according to the AUC, in which the AUC was far below that obtained with the
Point-/ResFinder tools. S. enterica had the most imbalanced data set in the study: only
35 out of 658 isolates (5%) were resistant. In the S. enterica case, we observed that the
random forest model provided a better performance than the neural network model.
Without up-sampling, the random forest model reached AUCs of 0.87 � 0.07 and 0.95
for the validation and test data sets, respectively, and the neural network model
reached AUCs of 0.74 � 0.15 and 0.87 for the validation and test data sets, respectively
(these results are not shown in the Results section). The artificial neural network model
is more complex than the random forest model and requires larger data sets for proper
performance. The most probable reason for the low performance of the neural network
model according to the AUC obtained is the limited number of resistant isolates in the
data set. As discussed below, there was no significant difference between the perfor-
mances of the neural network and random forest models with E. coli, 20% of isolates of
which were resistant. This supports the idea that the neural network model for S.
enterica requires more resistant isolates for more accurate predictions. However, these
low performances were eliminated by learning through other species.

It was expected that the machine learning models would provide more accurate
predictions than the Point-/ResFinder tools. In contrast, we observed that Point-/
ResFinder outperformed the machine learning models in six out of eight cases. The
antimicrobials tested in the models have been well studied, and most of the resistance
mechanisms have been discovered so far. This implies that the Point-/ResFinder tools
have sufficient prior knowledge to predict AMR profiles with few mistakes. For the
less-studied AMR mechanisms, such as those conferring resistance to azithromycin and
tigecycline, the machine learning models are expected to outperform Point-/ResFinder,
as the advantage of the prior knowledge will be limited.

Feature representation methods. The data representation methods are supposed

to play a crucial role in the machine learning methods. Ideally, the data should be
informative and nonredundant in order to optimize the learning of the models. For this
purpose, we tested different representation methods. The first method, binary repre-
sentation, was the simplest representation method tested in this study. This method is
considered simple because it does not convey information on which amino acid or
nucleotide is the wild type or the mutant but merely contains information about the
presence/absence of a mutation. The second method, scored representation, includes
a more detailed representation of each identified SNP, but this extra information comes
with the possibility of adding extra noise to the model as well. The third model, amino
acid representation, simplifies the identification of which amino acid or nucleotide is
responsible for the resistance profiles, as each of the possibilities is introduced into the
data. The biggest disadvantage of this representation method is that it produces a large
number of features, which has a tendency to decrease the signal-to-noise ratio for small
data sets. The fourth method, nucleotide representation, might reduce the preciseness
of the amino acid representation method. The reason for this is that the method
includes only positions having nucleotide mutations, but it does not inform the model
about the consequence of the amino acid changes. However, this method drops the
feature expansion caused by the amino acid representation method. Despite these
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differences, we did not observe any significant difference in the results obtained
between the data representation methods.

Random forest model versus neural network model. Each of the machine
learning models applied in this study has different advantages. The random forest
model is a simple ensemble model. The model has a limited number of hyperparam-
eters and this makes it easier to tune. The random forest model achieved good
performances for prediction of the AMR profiles for E. coli and M. tuberculosis for the
different representation types. It was, however, challenging to deal with the missing
outputs with the currently available implementations of the random forest model in the
Scikit-learn Python package. We found the PyTorch Python package implementation of
neural networks more convenient for handling missing values.

The artificial neural network model performs nonlinear mapping from the input
layer to the output layer through the use of an extensive number of parameters which
are tuned to allow flexibility. While this flexibility endures complex models, it is also a
cause of overfitting problems. The model is capable of handling missing values and
supports multioutput problems. In terms of model performance, we did not detect any
significant difference between the artificial neural network and the random forest
algorithms.

Conclusion. In this study, machine learning models were made eligible for perform-
ing multioutput and multispecies tasks without losing any prediction power. By intro-
ducing a new methodology for the Point-/ResFinder tools, the tool predictions are not
particularly improved since Point-/ResFinder have the advantage of strong prior knowl-
edge for the species-antimicrobial combinations tested. However, the models were
capable of predicting the ciprofloxacin resistance profile for at least one species (S.
aureus) not included in the Point-/ResFinder database. Further studies are needed to
validate the multispecies predictions, including additional antimicrobial agents, bacte-
rial isolates, and bacterial species, to capture the global AMR variation. This will pave
the way for applying multitask machine learning models to metagenomic studies.

MATERIALS AND METHODS
Data sets. The study covered four bacterial species: Mycobacterium tuberculosis, Escherichia coli,

Salmonella enterica, and Staphylococcus aureus. Data for 3,528 M. tuberculosis isolates were obtained from
the Relational Sequencing TB Data Platform at platform.reseqtb.org (22), and data for 1,694 E. coli, 658
S. enterica, and 1,236 S. aureus isolates were obtained from the Pathosystems Resource Integration Center
(PATRIC) database (ftp://ftp.patricbrc.org/genomes_by_species/) (23). All the accession numbers are
available in Data Set S1 in the supplemental material.

All of the AMR profiles obtained are based on clinical breakpoints. The M. tuberculosis resistance
profiles were detected by phenotypic drug susceptibility testing (DST), which yields MICs (22, 24). All of
the interpretations were already performed based on the World Health Organization (WHO)-defined
critical concentrations and are available on the Relational Sequencing TB Data Platform. The E. coli, S.
aureus, and S. enterica resistance profiles were obtained by considering the available interpretations and
MICs. MIC values were interpreted, based on the clinical breakpoints for resistance established by the
Clinical and Laboratory Standards Institute (CLSI) for E. coli and S. aureus (25), to be consistent with the
interpretations already performed for PATRIC, which were based on CLSI breakpoints. The clinical
breakpoints from the European Committee on Antimicrobial Susceptibility Testing (EUCAST; http://www
.eucast.org/clinical_breakpoints/) were used for S. enterica due to the limited number of resistance
phenotypes observed when the CLSI breakpoints were applied. Among the interpretations already
available for S. enterica, only the isolates with resistance profiles were included, as they were considered
resistant according to both the CLSI and the EUCAST breakpoints.

In total, 1,785 M. tuberculosis isolates had resistance profiles for rifampin, isoniazid, streptomycin,
ethambutol, and pyrazinamide and 92 M. tuberculosis isolates had complete resistance profiles for those
five antimicrobials and ciprofloxacin. For the remaining M. tuberculosis isolates, the profiles for some
antimicrobials were missing.

For the additional species, E. coli, S. enterica, and S. aureus, among the profiles for resistance to the
antimicrobials mentioned above, only the ciprofloxacin resistance profiles were available. The two
available antimicrobials for S. enterica and S. aureus (streptomycin and rifampin, respectively) needed to
be excluded due to unknown breakpoints for streptomycin and an insufficient number (�5%) of resistant
isolates for rifampin.

The data sets for all of the species were imbalanced, where the greatest imbalance was for
ciprofloxacin in S. enterica, 5% of the isolates of which were resistant, and ethambutol and pyrazinamide
in M. tuberculosis, 15% and 10% of the isolates of which, respectively, were resistant. The total number
of isolates, including their phenotypes and the clinical breakpoints, used are shown in Table S1.
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The sequence data were assembled using the SPAdes algorithm (26) and were clustered using the
KMA alignment method (27). These clusters were then used for machine learning. The overview of the
study methodology is shown in Fig. 3.

Data clustering. To avoid having similar data in different training/validation/test sets, the data were
clustered before being divided into sets, and the isolates in each cluster were kept together in the
training/validation/test set.

Isolates were clustered based on genome similarities. Raw data in fastq/fasta format were assembled
using the SPAdes algorithm (version 3.9.0) with the following parameters: -k 21, – careful, – only-
assembler, and -t 16. The resulting scaffolds were merged with 16 N-nucleotide spacers in order to be
treated by the clustering program. These merged scaffold files were then clustered using the KMA
alignment method (version 1.1.0) with the following parameters: -k 16, -Sparse, -ht 0.9, and -hq 0.9 -NI,
where the -ht and -hq parameters correspond to the template and query coverage thresholds, respec-
tively. The values of both of the parameters were set to 0.9, corresponding to a 90% template and query
coverage threshold in k-mer space. It should be noted that the N-nucleotide patches merging the
scaffolds ensure that k-mers spanning more than one contig are avoided.

PointFinder. The PointFinder program identifies chromosomal mutations caused by point mutations
and insertion/deletions (indels), while taking frameshifts, premature stop codons, RNA mutations, and
promoter mutations into consideration. The PointFinder program (version 2.0) (6) was used for the
detection of chromosomal mutations, not necessarily those mediating AMR, in M. tuberculosis, S. enterica,
E. coli, and S. aureus. In this study, the prediction step was completed using the machine learning
algorithms (see details below) instead of using prior knowledge. PointFinder was used with the KMA
alignment option. For the assembled isolates, the default KMA options were changed manually in the
PointFinder script. Among the default parameters, the -1t1 flag parameter was removed. The predictions
made by PointFinder were compared with the machine learning prediction results. It should be noted
that at the time of testing, the PointFinder database did not contain any information regarding
ciprofloxacin resistance for S. aureus.

ResFinder. The ResFinder program (18) predicts AMR profiles based on the detection of mobilizable
genes. The ResFinder tool (version 4.0) applies the KMA alignment method for detecting AMR genes in
the fastq files as the default. The AMR genes detected by the KMA alignment method using the ResFinder
database (version 4.0) were used as the input to the machine learning methods. The machine learning
prediction results were compared with the ResFinder results produced using the default parameters.

Data formatting. All of the chromosomal mutations and mobilizable genes detected were merged
and reformatted. The data were formatted so that the rows represent the isolates, while the columns
contain information about chromosomal mutations and mobilizable genes. Basically, each feature in
each column corresponds to a chromosomal mutation at some position or a mobilizable AMR gene. The
representations of these features are discussed in the following subsections.

(i) Input representation methods. Four different input representation methods were compared.

FIG 3 Workflow of the study. Isolates were clustered before division into training, validation, and test sets. The presence and absence
of resistance-related mobilizable genes were found using the ResFinder program, and mutations in resistance-related genes were found
using the PointFinder program. The output from these programs was then reformatted to be used as the input for machine learning.
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(a) Binary representation. If a mutation was detected, the position was marked 1; if not, it was marked
�1. Insertions and deletions were considered one position regardless of the indel size. The presence and
absence of mobilizable genes were represented by the template coverages of the genes, which were
repeated for the following methods.

(b) Scored representation. Amino acids were represented as the Blosum 62 matrix score (28) between
the observed and the wild-type amino acid. Mutations in RNA genes or promoter regions were scored
by use of the nucleotide substitution matrix. The nucleotide substitution matrix scores mutations as �3
and nucleotide matches as 1, which match the penalties applied by the KMA alignment method.
Insertions were considered to be one position regardless of the indel size, and deletions were considered
position by position. They were scored with a linear gap penalty of �5.

(c) Amino acid representation. In the amino acid representation, each chromosomal mutation was
represented binarily by the 20 amino acids, insertions, deletions, and additional PointFinder terminology
options (explained below). Furthermore, due to mutations in promoter regions or RNA genes, four
nucleotide options were also added to the mentioned features to represent nucleotide mutations in
noncoding regions. The feature corresponding to the observed amino acid or nucleotide was marked 1;
other features were marked �1. Indels were represented as explained above for the scored represen-
tation method.

(d) Nucleotide representation. The nucleotide representation method shared all the properties with
the amino acid representation method, except that all mutations were represented by the four nucle-
otide, insertions, deletions, and additional PointFinder terminology options (explained below).

As mentioned above, some additional features had to be added to the amino acid and nucleotide
features due to the PointFinder terminology. For instance, PointFinder depicts a stop codon, frame-
restoring mutations, and unknown RNA mutations by specific characters. These extra characters are
considered mutations in the binary representation method, the mutations (except for the unknown RNA
mutations) are scored �5 in the scored representation method, and the characters are added to the
amino acid and nucleotide representation methods as additional features. The unknown RNA mutations
are scored 0 in the scored method because of the lack of information regarding the mutated version of
nucleotides. The four representation methods and an example are shown in Fig. 4.

In addition, a combination of the representation methods was also tested. The binary and scored
approaches were combined so that each mutation is represented by two features, the first of which
includes the mutation score and the second of which has binary information regarding the absence/
presence of the mutation. Furthermore, the mobilizable genes were represented again by template
coverages.

(ii) Input merging. The following two different methods were used to create input vectors for more
than one species.

(a) Method 1. The input matrix to the machine learning methods was separated into sections
corresponding to each species. Mutations were found by running the sequence of each species against
the sequences of genes known to be relevant for that species using PointFinder. All other inputs were
put to �1.

(b) Method 2. Instead of aligning the sequence of each species to its own specific sequence database,
the sequence of each species was aligned to the sequences in a combined reference database. This
combined reference database includes the databases for the four different species used in the study,
namely, M. tuberculosis, E. coli, S. enterica, and S. aureus. The alignment process was completed by the use
of KMA via PointFinder, as in method 1. With this approach, the feature merging step was automatically
included.

(iii) Output formatting. The AMR profiles were represented in binary format, where resistance was
marked 1 and susceptibility was marked 0, according to the results of phenotypic susceptibility tests.
Moreover, intermediate resistant isolates were considered resistant for M. tuberculosis. No intermediate
resistant isolates occurred in the remaining data sets.

(iv) Output merging. The AMR profiles were merged for multioutput prediction purposes. The
columns were concatenated, while the data structure was maintained as rows for isolates and columns
for AMR profiles. Unavailable resistance profiles were assigned a value of �1.

Prediction models. AMR profiles were predicted using two different models, namely, the random
forest (29) and artificial neural network (30) models.

The random forest models were constructed using the Python (version 2.7.14) package Scikit-learn
(version 0.20.3) (31), with the number of trees in the forest being set to 200; the remaining parameters
were left at the default settings. These parameters were determined to be optimal for all four of the
representation methods.

The fully connected neural network models were constructed using the Python package PyTorch
(version 1.1.0) (32). The model architectures include one to three hidden layers. The one-hidden-layer
model including 200 hidden neurons was applied to all the data sets generated. The multiple-hidden-
layer models were applied only to the multispecies data since this data set might require more complex
models. A rectified linear unit (ReLU) was used as the activation function; in the output layer, the sigmoid
activation function was applied. The stochastic gradient descent algorithm with L2 regularization was
selected to update the initialized weights, and the binary cross entropy loss function was applied to
calculate the cost. The learning rate was varied between the models based on the input data type. The
learning rate was set to 0.01 for the binary data sets (the binary, amino acid, and nucleotide data
representation methods) and to 0.001 for the continuous data set (the scored data and the combination
of the binary and scored data representation methods).
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The model was fed by batch inputs with a batch size of 100. The number of epochs was set to 5,000
for the multispecies data sets and 1,000 for the remaining data sets. The hyperparameters were tuned
based on the average of the validation data performances. The test data were used to assess overfitting
and were not utilized for hyperparameter tuning. The prediction models were applied both to the
normalized (zero mean and unit variance) and to the nonnormalized data sets. The best model

FIG 4 (a) Schematic representation of the four input representations tested. As demonstrated above, a thymine-to-cytosine mutation in the DNA sequence,
which corresponds to a cysteine-to-arginine amino acid mutation in the protein sequence, was represented in four different ways. The binary representation
method marked this as position 1, since a mutation occurred in that position. The scored representation method assigned a score of �3 to the amino acid
mutation, based on the Blosum 62 matrix. The amino acid and nucleotide representation methods represented the mutation using the sparse coding, where
all the possible features were represented, the corresponding feature to the mutation was marked 1; the remaining features were marked �1. *, additional
features from PointFinder and insertion and deletion options. (b) An example of scored and nucleotide representation methods. Pos, position.
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performances obtained using the tuned parameters were reported for the nonnormalized validation and
test data sets.

In the S. enterica case, the isolates with a resistance phenotype were up-sampled due to the vastly
imbalanced data set. Each resistant isolate was repeated five times in the data set, and all the repeated
isolates were kept in the same cross-validation partitions.

Cross-validation. A 5-fold cross-validation was used for hyperparameter tuning and model assess-
ment. The data set was divided into five partitions; one out of the five partitions was used as the
validation data, and the rest were used as the training data. The final performance of the model
corresponds to the average of the five performances.

At the start of the study, one-sixth of the clusters were taken out as a test data set to assess the
model, and the rest were used for the 5-fold cross-validation. The modified 5-fold cross-validation
method is shown in Fig. 5.

Performance assessment. (i) ROC curves. The model performances were assessed with receiver
operating characteristic (ROC) curves. The ROC curve plots true-positive rates, known as sensitivity, versus
false-positive rates, known as one minus specificity, for all applicable thresholds. The area under the
curve (AUC) was used to reduce the curves to a single number.

(ii) Loss plots. In order to track training and validation data performances, the loss plots were
generated by the use of custom Python scripts. The loss plots show the average loss per epoch, which
can be used to flag overfitting/underfitting problems.

(iii) Paired t test. The differences between the model performances were determined by paired t
tests based on the performances obtained from the 5-fold cross-validation loop.

Software availability. The software used for this study is available on Bitbucket (https://deaytan
@bitbucket.org/deaytan/). As a fixed seed was not used for the random weight initializer in neural
networks, slightly different results (AUC, �0.01) might be experienced by the user.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
FIG S1, PDF file, 2.9 MB.
FIG S2, TIF file, 0.1 MB.
TABLE S1, DOCX file, 0.02 MB.
TABLE S2, DOCX file, 0.01 MB.
TABLE S3, DOCX file, 0.01 MB.
TABLE S4, DOCX file, 0.02 MB.
DATA SET S1, XLSX file, 0.1 MB.
DATA SET S2, XLSX file, 0.01 MB.
DATA SET S3, XLSX file, 0.01 MB.
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