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A B S T R A C T   

Background and Purpose: Reducing trismus in radiotherapy for head and neck cancer (HNC) is important. 
Automated deep learning (DL) segmentation and automated planning was used to introduce new and rarely 
segmented masticatory structures to study if trismus risk could be decreased. 
Materials and Methods: Auto-segmentation was based on purpose-built DL, and automated planning used our in- 
house system, ECHO. Treatment plans for ten HNC patients, treated with 2 Gy × 35 fractions, were optimized 
(ECHO0). Six manually segmented OARs were replaced with DL auto-segmentations and the plans re-optimized 
(ECHO1). In a third set of plans, mean doses for auto-segmented ipsilateral masseter and medial pterygoid 
(MIMean, MPIMean), derived from a trismus risk model, were implemented as dose-volume objectives (ECHO2). 
Clinical dose-volume criteria were compared between the two scenarios (ECHO0 vs. ECHO1; ECHO1 vs. ECHO2; 
Wilcoxon signed-rank test; significance: p < 0.01). 
Results: Small systematic differences were observed between the doses to the six auto-segmented OARs and their 
manual counterparts (median: ECHO1 = 6.2 (range: 0.4, 21) Gy vs. ECHO0 = 6.6 (range: 0.3, 22) Gy; p = 0.007), 
and the ECHO1 plans provided improved normal tissue sparing across a larger dose-volume range. Only in the 
ECHO2 plans, all patients fulfilled both MIMean and MPIMean criteria. The population median MIMean and MPIMean 
were considerably lower than those suggested by the trismus model (ECHO0: MIMean = 13 Gy vs. ≤42 Gy; 
MPIMean = 29 Gy vs. ≤68 Gy). 
Conclusions: Automated treatment planning can efficiently incorporate new structures from DL auto- 
segmentation, which results in trismus risk sparing without deteriorating treatment plan quality. Auto- 
planning and deep learning auto-segmentation together provide a powerful platform to further improve treat
ment planning.   

1. Introduction 

The majority of squamous-cell head and neck cancer (HNC) patients 
present with locally advanced disease (LA-HNC) [1], which has a high 
relapse probability with local control rates of 15–40% and a poor 
prognosis with only 50% of patients surviving up to five years after 
completed treatment [2]. In addition to being curative, treatments 
should be driven by individualization preserving organ function and 
quality of life [1]. In radiotherapy (RT) for LA-HNC, this could be 
accomplished by assigning patient-specific dose-volume objectives for 
normal tissue complication probabilities (NTCPs) and tumor control 
probabilities (TCPs) for a wide range of organs at risk (OARs) and tumor 

volumes [3,4]. However, such an approach requires automation to allow 
for widespread adoption within a clinically feasible time frame. 

While automation should concentrate on the entire RT workflow, a 
recent study has demonstrated that the pressing need in radiation 
oncology lies within segmentation and treatment planning [5]. Further, 
introducing new OARs with associated dose-volume criteria in HNC, a 
tumor site that already includes a large collection of OARs and target 
volumes, would add substantial load both in terms of manual contouring 
and planning as new dose-volume objectives require more parameters to 
tweak. State-of-the-art auto-segmentation algorithms for HNC OARs [6] 
and tumor volumes [6,7] have demonstrated physician level accuracy 
and considerable time savings as opposed to manual segmentation. 
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Auto-segmentation is more reproducible than manual segmentation, is 
likely to provide more consistent segmentations, and has the potential to 
improve outcomes of clinical trials [8]. Based on the RTOG 0617 trial 
data, Thor et al. [8] found the trial’s manual heart segmentations to vary 
considerably in the superior-inferior direction compared to deep 
learning auto-segmented hearts, and the dose to the auto-segmented 
hearts was significantly higher. Similarly to auto-segmentation, auto
mated treatment planning has proven to be efficient and accurate: In the 
prospective HNC study by Voet et al. [9], the treating physician chose 
automatically generated over manually optimized treatment plans in 
97% of cases, and others have recently found automated plans to have a 
67% superior success rate [10]. 

In this HNC-focused work, auto-segmentation was combined with 
automated treatment planning to study whether new masticatory OARs 
could be introduced and trismus risk decreased. Automated treatment 
planning was utilizing our in-house treatment planning system [11] and 
trimsus risk was assessed from a published model [12]. 

2. Material and methods 

Data for ten patients on the Institutional Review Board Approved 
#16-422 study were included. These patients had previously been 
treated using three-phase intensity-modulated RT to 70 Gy in 2 Gy 
fractions for LA-HNC of the oropharynx, and were specifically selected 
for the current study to explore the usability of the trismus risk model. 

2.1. Deep learning auto-segmentation 

A total of eight OARs were segmented de novo using a combination 
of two deep learning auto-segmentation methods. Six of these OARs 
(brainstem (BS), mandible, parotid glands (PGs), and submandibular 
glands (SGs)) were generated using a local block-wise self-attention 
Unet (UnetSA) method developed in-house [13] while the two remain
ing OARs (ipsilateral masseter and ipsilateral medial pterygoid, Mi and 
MPi) were generated using the DeepLabV3+ method with the resnet-101 
backbone [14]. The reported performance of these two algorithms is of 
similar magnitude as assesseed in hold-out validation data, e.g., the 
population average DSC was 0.84–0.85 ± 0.04–0.05 for the PGs [13], 
0.87 ± 0.02 for the left and right masseters and 0.81 ± 0.03 for the left 
and right medial pterygoids [14]. The UnetSA OARs had previously been 
trained on manually segmented OARs defined by different HNC treat
ment planners in a total of 48 treatment planning CT scans [13] while 
the training OARs for the DeepLabV3+ M and MP had been segmented 
post-treatment by a single radiation oncology resident in another dataset 
consisting of 148 treatment planning CT scans [12]. The two segmen
tation pipelines are executed in batch mode and requires on average one 
to two minutes per patient. 

2.2. Automated treatment planning 

For the purpose of this study, all plans were re-optimized using our 
in-house developed automated treatment planning system, the Expe
dited Constrained Hierarchical Optimization (ECHO) [11], followed by 
dose calculation using Varian Eclipse v.15.0. Within ECHO, all critical 
clinical criteria are enforced as hard constraints, and the desirable goals 
are optimized sequentially by solving multiple constrained optimization 
problems. Briefly, in the initial step, tumor dose-volume criteria are 
emphasized, and then transformed into constraints for further steps. In 
the next step, constrained by the achieved tumor dose characteristics, 
OAR objectives are optimized. In a final step, subject to prior tumor and 
OAR dose characteristics, delivery-related criteria and dose character
istics outside the tumor region are optimized. In the current study, all 
plans used IMRT as the treatment modality with the original beam 
configuration and enabled jaw-tracking. 

ECHO is currently implemented clinically for the treatment of oli
gometastases, paraspinal tumors [15], and prostate cancer, but is not yet 

fully available for HNC, and by the time of conducting this study only the 
last third phase (the tumor boost plan) had been integrated with ECHO 
as a guidance during the optimization process to inform planners 
regarding the remaining two phases. The included ten patients were 
previously used to develop this pipeline. Given that the prescribed dose 
to the concerned third phase was 20 Gy, all dose-volume criteria were 
scaled down with a factor of 3.5 (70 Gy prescription/20 Gy = 3.5). The 
dose-volume criteria considered are depicted in Table S1 both for the 
total prescription and the third phase scaled prescription. 

In addition to the ECHO reference plan (ECHO0) in which all 
manually OARs, previously defined by the case-specific HNC treatment 
planners, were used, two additional treatment plans were optimized via 
ECHO for each patient: in the first plan (ECHO1), the manually 
segmented BS, mandible, PGs, and SGs were replaced with their UnetSA 
counterparts. In the second plan (ECHO2), we introduced DeepLabV3+- 
based segmentations of Mi and MPi along with objective functions for 
their mean doses. The criteria applied to Mi and MPi mean doses resulted 
from NTCP modeling of trismus in 421 HNC internal patients and cor
responded to a 10% mild trismus rate [12], and while these were pro
posed for internal use three years ago, they have not been widely 
adopted given the added manual segmentation load required prior to 
our auto-segmentation solution. 

2.3. Comparisons 

To assess the impact of substituting already existing manually 
segmented OARs with auto-segmented OARs for the six UnetSA OARs, 
which is the underlying motivation behind the current study, dose was 
compared between ECHO0 and ECHO1. To further study the suitability 
of the Mi and MPi criteria since they are not being used for treatment 
planning in our clinic currently, the two DeepLabV3+ OARs, Mi and 
MPi, ECHO1 and ECHO2 were instead compared considering ECHO1 the 
reference treatment plan. It is worth emphasizing that the dose was re- 
optimized replacing the manual OARs with the auto-segmented OARs. 
In all dose comparisons, a Wilcoxon signed-rank test was used and sig
nificance was denoted at p < 0.01, which was Bonferroni-corrected for 
four comparisons, i.e. ECHO0 vs. ECHO1 and ECHO1 vs. ECHO2 with two 
separate comparisons for the auto-segmented OARs and the remaining 
manually segmented OARs and PTV. In all dose comparisons, the clinical 
criteria were compared (Table S1). 

The six UnetSA OARs for which there was also manually segmented 
OARs were compared geometrically with these manual OARs using the 
volumetric Dice Similarity Coefficient (DSCv), the 95th percentile of the 
Hausdorff distance (Hausdorff95), and centroid distances in axial, cor
onal and sagittal planes (CENTAxial, CENTSag and CENTCor). The centroid 
distance is that between the centers of mass of two compared segmen
tations, and its inclusion here was motivated by CENTAxial that was 
recently shown to have the strongest correlation with dose differences 
between automated and manually segmented trial hearts among 18 
investigated volume similarity metrics in the RTOG 0617 clinical trial 
data [8]. CENTSag and CENTCor were included to allow for comparison of 
centroid distances in all three planes. The UnetSA OARs and their 
manual counterparts in addition to Mi and MPi were also qualitatively 
evaluated relative to the anatomy in which any deviations were recor
ded on a slice-by-slice basis. 

Lastly, for the six UNET OARs in ECHO1, the volume similarity 
metrics were associated with the observed dose differences between the 
manual and the UnetSA OARs (|DoseManual-DoseUnetSA|) using linear 
regression in which significance was denoted at p < 0.003 (corrected for 
six structures*three volume similarity metrics). Similar to the compar
ison above, dose metrics used in defining the clinical dose-volume 
criteria were compared (Table S1). 
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3. Results 

3.1. Treatment plans based on auto-segmented OARs emphasize overall 
normal tissue dose sparing 

All ECHO0 and ECHO1 plans fulfilled the BS and PGs criteria while 
eight, two, and one ECHO0 plans and eight, one, and zero ECHO1 plans 
fulfilled the contralateral SG, mandible, and ipsilateral SG criteria, 
respectively (Table 1). At the clinical criteria, doses to the auto- 
segmented OARs in the ECHO1 plans were systematically lower than 
doses to the manual OARs in the ECHO0 plans, but the differences were 
small (median (range) for all six OARs combined: ECHO1 = 6.2 (0.4, 21) 
Gy vs. ECHO0 = 6.6 (0.3, 22) Gy; p = 0.007). Outside of the compared 
dose-volume criteria, normal tissue sparing was improved in the ECHO1 
plans in particular for BS, ipsilateral PG, and contralateral SG in addition 
to slightly more consistent OAR doses across all patients and for all six 
OARs (Fig. 1). The dose-volume criteria for the remaining structures, for 
which no auto-segmentations were available, were adhered to with a 
similar extent and, while tumor homogeneity was somewhat improved 
in the ECHO1 plans, no statistically significant differences were observed 
(Table S2; Fig. S1). 

All 30 optimized treatment plans except for one ECHO0 plan and one 
ECHO1 plan for the same patient fulfilled the Mi and MPi mean dose 
criteria by a considerable margin (Mi = 3.6 (1.2–9.1) Gy vs. criterion =
12 Gy; MPi = 8.8 (1.6–18.9) Gy vs. criterion = 19.4 Gy). However, only 
in the ECHO2 plans all patients fulfilled the Mi and MPi mean dose 
criteria: the MPi mean dose was reduced from 20 Gy to 18.9 Gy in the 
patient not previously fulfilling this criterion. The ECHO2 plans pro
vided normal tissue sparing to a larger extent also outside of the speci
fied Mi and MPi mean dose criteria compared to the ECHO1 plans as 
illustrated in the narrower DVH bounds in the lower panel of Fig. 1. No 
statistically significant dose differences were established between either 
the auto-segmented OARs or the remaining organs (p = 0.06, 0.49). 

3.2. Auto-segmented and manually segmented OARs differ primarily in 
the superior-inferior direction 

Even though the auto-segmented OARs were not post-processed, the 
similarity metrics indicated that they were comparable to the manually 
segmented OARs for the majority of patients and structures: the popu
lation median DSCv was 0.85 (range: 0.32–0.96), and the population 
median Hausdorff95 was 0.41 (0.10–3.61) cm (Fig. 2). Smaller structures 
had overall lower DSCv compared to larger structures (SGs: DSCv = 0.77 
(0.47–0.79) vs. the five remaining OARs: DSCv = 0.86 (0.32–0.96)), 
which is expected given that DSCv is volume dependent and more 
forgiving for larger structures. The lowest DSC and highest Hausdorff95 
was due to one manually segmented brainstem that did not extend 
sufficiently in the superior-inferior direction. 

Interestingly, the centroid distances indicated that differences be
tween the auto-segmented and the manual OARs were primarily located 
in the axial plane as the CENTAxial distances were considerably larger 
than CENTSag and CENTCor (median (range): CENTAxial = 0.10 (0.0–2.8) 
cm; CENTSag = 0.05 (0.0–0.3) cm and CENTCor = 0.05 (0.0–0.6) cm). 
One extreme example was a BS, in which the manual version was 
cropped almost to 50% of its inferior-superior extension and in which 
CENTAxial was 2.8 cm compared to a CENTSag of 0.01 cm and a CENTCor 
of 0.64 cm. The auto-segmented BS, PGs, and SGs better adhered to the 
anatomy than did their manual counterparts in the vast majority of 
patients (8/10, 7/10, and 6/10 patients, respectively). The auto- 
segmented mandible captured the anatomy better or equally well as 
the manual mandible in 7/10 patients. All auto-segmented Mi and MPi 
followed the anatomy, which was probably facilitated by the generous 
intensity gradients given the nearby bony anatomy including e.g., the 
mandible, and only minor anterior/posterior extensions could have been 
performed in the border slices of two masseters and one medial 
pterygoid. 

3.3. The axial centroid distance captures the dose difference between 
manually and deep learning auto-segmented OARs but correlations are 
weak 

The correlation between the volume similarity metrics and |Dose
Manual-DoseUnetSA| for the six UnetSA OARs was overall weak and no 
significant linear association was established (significance: p < 0.003; p- 
value range: 0.02–0.64). Across all OARs, the stronger associations with 
|DoseManual-DoseUnetSA| were observed with CENTAxial with median R2 

= 0.15 (range: 0.09–0.24) and p = 0.15 (range: 0.09–0.20). The corre
sponding median across DSC, Hausdorrf95, CENTSag and CENTCor was R2 

= − 0.06 (range: − 0.09, 0.44) and p = 0.50 (0.02–0.64)). 

4. Discussion 

This automation proof-of-concept HNC planning study has demon
strated that automated treatment planning combined with auto- 
segmented OARs results in comparable level of normal tissue dose 
sparing as that of using manually segmented OARs, but with an addi
tional emphasis on dose sparing outside the optimized and evaluated 
specified clinical dose-volume criteria. Further, introducing auto- 
segmentations for two novel OARs provides plans of similar quality, 
which is important in order to advance new science in terms of dose- 
volume criteria and associated OARs into clinical routine more rapidly 
compared to the pace of traditionally non-automated approaches. 

At the dose-volume criteria, dose for the six auto-segmented OARs in 
the ECHO1 plans were systematically different compared to the dose to 
their manually segmented counterparts in the ECHO0 plans, these dif
ferences were small and importantly sizeable sparing was observed 
outside the criteria in the ECHO1 plans compared to in the ECHO0 plans 
(Fig. 1). For the remaining non-auto-segmented structures, criteria were 
adhered to with a similar extent, and while tumor dose homogeneity was 
somewhat improved in the ECHO1 plans no systematic difference was 

Table 1 
Population median (range) doses for the eight studied OARs and all combined at 
the clinical max and mean dose-volume criteria. In ECHO0, optimization was 
performed based on manual segmentations, and in ECHO1, the manually 
segmented brainstem, mandible, parotid glands and submandibular glands were 
replaced with the corresponding UnetSA OARs, and in ECHO2, the DeepLabV3+
OARs (ipsilateral masseter and medial pterygoid) were also included in addition 
to the UnetSA OARs. Note: In the second column, doses in parenthesis indicate 
acceptable levels. * Automated DeepLabV3+ OARs inserted after optimization.  

Organ Prescription: 20 Gy ECHO0 ECHO1 ECHO2  

Clinical criteria Median 
(Range) 

Median 
(Range) 

Median 
(Range) 

Brainstem Max Dose ≤15.4 Gy 
(≤17.1 Gy) 

4.5 (0.3, 
13) Gy 

5.6 (0.4, 
15) Gy 

5.7 (0.3, 
14) Gy 

Mandible Max Dose ≤20 Gy 21 (15, 
22) Gy 

21 (15, 
22) Gy 

21 (14, 
21) Gy 

Masseter Ipsilateral: Mean 
Dose ≤12 Gy 

3.7 (1.2, 
9.0) Gy* 

3.6 (1.3, 
9.2) Gy 

3.4 (1.2, 
9.0) Gy 

Medial Pterygoid Ipsilateral: Mean 
Dose ≤19.4 Gy 

8.2 (1.6, 
20) Gy* 

9.4 (1.7, 
20) Gy 

9.6 (1.6, 
19) Gy 

Parotid gland Contralateral: Mean 
Dose ≤2.9 Gy 
Ipsilateral: Mean 
Dose ≤5.7 Gy (≤7.4 
Gy) 

1.2 (0.4, 
2.2) Gy 
2.2 (1.4, 
4.7) Gy 

1.3 (0.4, 
2.1) Gy 
2.5 (1.7, 
3.1) Gy 

1.3 (0.4, 
2.8) Gy 
2.6 (1.7, 
3.1) Gy 

Submandibular 
gland 

Contralateral: Mean 
Dose ≤7.4 Gy 
Ipsilateral: Mean 
Dose ≤11.1 Gy 

6.6 (1.6, 
19) Gy 
18 (10, 
20) Gy 

6.2 (1.8, 
18) Gy 
19 (12, 
20) Gy 

6.3 (1.8, 
18) Gy 
19 (12, 
20) Gy 

All eight OARs All criteria above 5.5 (0.3, 
22) Gy 

5.6 (0.4, 
22) Gy 

5.5 (0.3, 
21) Gy  
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observed. In one of the few published HNC studies that have focused on 
dose differences between auto-segmented OARs and their manual cor
respondents and in which dose was, similarly as in this study, re- 
optimized and arose from automated treatment planning, van Rooij 
et al. [16] did not observe a similar dose sparing pattern as demon
strated here. Instead, they observed significantly higher constrictor and 
esophagus doses based on their auto-segmentations (p = 0.005, 0.002) 
[16]. It should be pointed out that the performance of our auto- 
segmentations is similar for the PGs (left, right: 0.85 ± 0.04, 0.85 ±
0.06 vs. 0.83 ± 0.03, 0.83 ± 0.02) and SGs (left, right: 0.78 ± 0.08, 0.76 
± 0.12 vs. 0.82 ± 0.07, 0.81 ± 0.13), but our BS DSCs are considerably 
higher (0.82 ± 0.18 vs. 0.64 ± 0.16). Another and likely important 
distinction is that knowledge-based planning (KBP) was used to generate 
their automated treatment plans. Since KBP is based on a library of 
existing treatment plans, the ultimate treatment plan quality will be 
determined based on the quality of the plans in the library with available 
range in anatomy, beams, image quality, etc. An analogy of the limita
tion with such a library approach can be made with atlas-based auto- 
segmentation [6]. Our automated treatment planning system, ECHO, 
does not rely on a library of plans but instead operates via constrained 
hierarchical optimization in which hard constraints are first fulfilled 

(typically tumor coverage and max dose OARs) followed by prioritizing 
desirable ‘soft’ clinical dose-volume criteria in a three-step approach 
[11]. 

Even without constraining the Mi mean dose ≤12 Gy and MPi mean 
dose ≤19.4 Gy, the majority of treatment plans fulfilled these criteria 
and the population median doses were 3.7 Gy and 8.2 Gy (Fig. S2). The 
Mi mean dose ≤12 Gy and MPi mean dose ≤19.4 Gy criteria were 
originally proposed to prevent mild trismus (≥Grade 1) to exceed 10% 
in a previously treated cohort [12], but our findings indicate that they 
are not well calibrated, and more specifically they are too generous. 
Converted to the current fractionation scheme (assuming α/β = 3 Gy) 
and scaled down to the 20 Gy prescription, the univariate linear 
regression relationship derived by Beasley et al. [17] suggests Mi mean 
dose ≤6.2 Gy (mouth opening ≥45 mm). At a 10% predicted trismus 
risk, the model by Lindblom et al. [18] proposes Mi mean dose ≤2.6 Gy 
or ≤5.1 Gy (mouth-opening ≤35 mm, patient-reported trismus) while at 
a same 10% risk level, the model by Kraijengaa et al. [19] (mouth- 
opening ≤35 mm; baseline mouth-opening ≤46 mm) indicates Mi mean 
dose ≤4.9 Gy. At a median, six of the ten patients included here met 
these four published Mi mean dose levels for which the median value 
was 5.0 Gy, which scaled up to the 70 Gy prescription corresponds to 18 

Fig. 1. Population median DVHs for the eight auto-segmented OARs (uncertainty bounds: population ranges). Two upper panels: DVHs for the manually segmented 
OARs in the ECHO0 plans (red) and the UnetSA OARs in the ECHO1 plans (blue). Lower panel: DVHs for the ECHO1 (red) and ECHO2 (blue) plans based on the 
DeepLab OARs. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Gy, which can be compared to our current 42 Gy criterion. Kraijengaa 
et al. [19] further suggests MPi mean dose ≤53 Gy (20 Gy prescription: 
15.1 Gy), which was also fulfilled by six of our patients, and is consid
erably lower than our current 68 Gy MPi mean dose. Taken together, we 
are currently updating our criteria to Mi mean dose <18 Gy and MPi 
mean dose <53 Gy, but we will retain the previous criteria as upper 
bounds in situations where the new criteria cannot be met also given 
that the current study is limited to ten cases and includes only the tumor 
boost plan and not the elective nodal volumes, and we will closely 
monitor the level of adherence and revise accordingly. 

Only a weak correlation was identified between the volume simi
larity metrics and |DoseManual-DoseUnetSA|. The small sized dataset 
including only 10 patients may have been a limitation to illustrate a 
clear association. Again, dose was re-optimized for the new set of auto- 
segmentations. Despite the overall weak correlations, CENTAxial better 
explained the dose differences between paired structures than did DSC 
or Hausdorff95. These results are similar to the findings in [8] in which 
18 volume similarity metrics between clinical trial hearts and auto- 
segmented hearts were associated with three heart dose metrics differ
ences and the strongest associations were observed using CENTAxial 
(CENTAxial vs. DSCV and Hausdorff95: R2 = 0.44–0.51 vs. 0.32–0.51 and 
0.33–0.57). In addition to provide the global similarity metrics such as 
DSCV and Hausdorff95, we suggest to also report the centroid distances 

in all three planes. This would provide a quick quantitative indicator to 
the direction of disagreements likely in need of further quality assurance 
and potentially post-processing. 

In summary, we have demonstrated that automated treatment 
planning for HNC based on deep learning auto-segmented OARs is 
possible, and results in plans emphasizing overall normal tissue dose 
sparing also outside the specified clinical dose-volume criteria. In 
addition, incorporating new dose-volume criteria for novel auto- 
segmented masticatory OARs into this framework has proven feasible 
and provided a rapid evaluation and refinement of dose-volume criteria 
to reduce trismus risk. The two deep learning auto-segmentation algo
rithms used have been packaged using a singularity container [20] for 
HNC OAR segmentation, which is open-source and available via our 
CERR model library [21]. Internally, this HNC OAR auto-segmentation 
container is currently deployed with our treatment planning system to 
facilitate the planners with an OAR segmentation that only requires 
quality assurance and/or minor editing. Work is on-going to fully 
expand our automated ECHO treatment planning system for HNC. 
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[18] Lindblom U, Gärskog O, Kjellén E, Laurell G, Levring Jäghagen E, Wahlberg P, 
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