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The treatment of advanced renal cell carcinoma remains a challenge. To develop novel
therapeutic approaches, primary cell cultures as an in vitro model are considered more
representative than commercial cell lines. In this study, we analyzed the gene expression
of previously established primary cell cultures of clear cell renal cell carcinoma by bulk
(3’m)RNA sequencing and compared it to the tissue of origin. The objectives were the
identification of dysregulated pathways under cell culture conditions. Furthermore, we
assessed the suitability of primary cell cultures for studying crucial biological pathways,
including hypoxia, growth receptor signaling and immune evasion. RNA sequencing of
primary cell cultures of renal cell carcinoma and a following Enrichr database analysis
revealed multiple dysregulated pathways under cell culture conditions. 444 genes were
significantly upregulated and 888 genes downregulated compared to the tissue of origin.
The upregulated genes are crucial in DNA repair, cell cycle, hypoxia and metabolic shift
towards aerobic glycolysis. A downregulation was observed for genes involved in
pathways of immune cell differentiation and cell adhesion. We furthermore observed
that 7275 genes have a similar mRNA expression in cell cultures and in tumor tissue,
including genes involved in the immune checkpoint signaling or in pathways responsible
for tyrosine kinase receptor resistance. Our findings confirm that primary cell cultures are a
representative tool for specified experimental approaches. The results presented in this
study give further valuable insights into the complex adaptation of patient-derived cells to
a new microenvironment, hypoxia and other cell culture conditions, which are often
neglected in daily research, and allow new translational and therapeutic approaches.

Keywords: in vitro model, cell culture conditions, ccRCC, RNA-Seq, renal cancer, patient-derived model
May 2022 | Volume 12 | Article 8831951

https://www.frontiersin.org/articles/10.3389/fonc.2022.883195/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.883195/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.883195/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.883195/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.883195/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:Marieta.Toma@ukbonn.de
https://doi.org/10.3389/fonc.2022.883195
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.883195
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.883195&domain=pdf&date_stamp=2022-05-11


Simon et al. Molecular Aspects: ccRCC Primary Cultures
HIGHLIGHTS

• Extensive characterization of primary cell cultures compared
to the tissue of origin

• Several pathways are alternated in cell culture conditions
• Cell cultures showed signs of pseudohypoxia
• Pathways and genes of therapeutic relevance remained stable
• Primary cells expressed same levels of VEGFA, VEGFC and

EGFR in vitro
• The PD-1 pathway was similarly expressed under cell culture

conditions
• Primary cell cultures are feasible in vitro tool for specific

experimental approaches
INTRODUCTION

Clear cell renal cell carcinoma (ccRCC) accounts for 70-75% of
renal cancer entities (1). Since ccRCC is resistant to conventional
chemotherapy and radiation, in case of advanced or metastatic
disease immune checkpoint inhibitors and tyrosine kinase
inhibitors are the current systemic therapeutic approach (2, 3).
But only 42% of treated patients respond to these therapeutics,
with a median progression-free survival of 11.6 months (4, 5).
The exact molecular changes causing ccRCC progression as well
as initial or acquired therapy resistance are still unknown.

For decades, cell cultures have been used for the investigation
of tumor biology in vitro and testing feasibility, effectiveness and
toxicity of new drugs. However, the commercially available cell
lines mostly used, e.g. 786-O or A498, do not represent models
close to the tissue of origin, raising questions about their genetic
alterations and changes in metabolism acquired over time, or
even their origin to begin with (6–8).

Primary cell cultures as an individual, patient-derived in vitro
model promise higher similarity to the tissue of origin (9–11).
Most current studies confirmed that established primary cells lines
of RCC entities match the phenotype of ccRCC or non-neoplastic
renal tissue by immunohistochemistry, immunofluorescence (11)
or assessment of specific characteristic gene mutations, e.g. the
VHL gene mutation in ccRCC (12, 13). Proteomic analysis of five
paired primary RCC and derived primary cell lines revealed 65%
matched spots on mass-spectrometry analysis (14). A further
study showed that 27 of 28 investigated proteins have a similar
expression in primary cell lines from RCC and matched tissue of
origin (15). However, the knowledge about alternated gene
expression on a broad spectrum in patient-derived cultures
remains sparse. The adaptation mechanisms of cell cultures to a
new microenvironment and in vitro conditions like hypoxia or a
missing extracellular matrix have been rarely investigated,
although they potentially affect nearly every experimental
research and its results. At the same time, it is widely unknown,
which pathways are unaffected by these adaptational alterations
and to which extend the cell cultures can therefore be seen as a
representative in vitro model. To our knowledge, this is the first
study investigating at a large scale the gene expression changes of
Frontiers in Oncology | www.frontiersin.org 2
ccRCC primary cell cultures and matched tumor tissue by 3’
mRNA sequencing, exploring specific pathways that are
dysregulated or differently expressed under culture conditions as
well as identifying pathways which are equally or similarly
expressed in vitro.
MATERIAL AND METHODS

All materials, if not stated otherwise, were acquired by Thermo
Fisher Scientific (Waltham, USA).

This study was performed with the informed consent of all
patients as well as the ethics committee at Bonn University
Hospital (No. 219/17).

Establishing the Primary Cell Line Cultures
Fresh tumor tissue from eight patients was obtained and
cultivated as reported before (16). All patients underwent
partial or complete nephrectomy for ccRCC at Bonn
University Hospital (Table 1). In short, approximately 2 cm3

tumor tissue as well as non-neoplastic tissue were obtained. The
tissue was minced and digested in 10 mL RPMI 1640 containing
200 U/mL collagenase type II, 100 U/mL hyaluronidase type V
(Sigma Aldrich, USA) and 2% penicillin/streptomycin at 37°C
under constant shaking (150 rpm). After 2 hours, the cells were
filtered using sterile 70 µm- and 40 µm-sieves/filter (VWR
International, Germany). After the cells were washed twice
with DPBS and centrifuged (1000 rpm, 5 min), the supernatant
was carefully discarded. The primary cells were cultivated in
serum-reduced medium (SRM) (DMEM/F12) containing
supplements (5% FBS, 1% penicillin/streptomycin, 10 ng/mL
hrEGF (R&D Systems, USA), 10 ng/mL FGF-basic (PeproTech,
Germany), 1x B27-supplement, 1x Lipid Mixture 1 (Sigma
Aldrich), 1 mM N-Acetyl-Cystein, 4 mM L-Glutamine, 1x
non-essential amino acids and 10 mM HEPES (GE Healthcare,
UK). All primary cell cultures were tested for mycoplasma
contamination on a regular basis.

Gene Expression Analysis by Bulk
3’RNA Seq
RNA from seven ccRCC tissues and established primary cell
cultures was extracted using the Universal RNA purification kit
(Roboklon, Germany) according to the manufacturer’s instructions.
TABLE 1 | Clinicopathological parameters of the included patient specimens.

N [%]

Sex male 4 50%
female 4 50%

Age (years) range 50-87
median 68

pT stage pT1 4 50%
pT2 0 0%
pT3 4 50%

ISUP grade 1 1 12.5%
2 4 50%
3 3 37.5%
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Extracted RNA was further processed by the Next Generation
Sequencing Core Facility of the University Hospital Bonn,
Germany and analyzed using a HiSeq 2500 v4 sequencer
(Illumina). Raw single-read sequencing results were mapped to
the human genome (GRCh38) using the alignment program hisat2-
2.1.0 (17).

The mapped reads were then processed using samtools (18)
and quantified with featureCounts (19). Next, the statistical
significance was calculated using the Bioconductor software
package DESeq (20). Wald test was applied for p-values of the
differentially expressed genes. To correct for multiple testing, the
false discovery rate (FDR) was calculated with the Bonferroni
method and an FDR cutoff of 0.05 was accepted as significant.
Log2 fold shrinkage was performed by applying the apeglm
method (21). The principal component analysis (PCA),
volcano plot and heatmap were generated using ggplot2 and
Enhanced Volcano (22, 23). Subsequent analysis of the
differently expressed genes was performed using the Hallmark
gene set collection (Molecular Signature Database, Broad
Institute). For that, a pre-ranked list with differently expressed
genes was called into the Gene Set Enrichment Analysis (GSEA)
software with default settings for enriched hallmark gene sets
(24). In addition, a pre-selected list -FDR <0.05 and log2FC>2 or
log2FC<-2 was called into the database Enrichr (25) to dissect
different genetic and functional cellular pathways. The dataset
used for this analysis can be found in the online repository
Sequence Read Archive under the following accession
number: PRJNA803031.

Quantification of mRNA Expression of
Selected Genes
RNA was extracted from primary cell cultures and corresponding
tumor tissue using the Universal RNA purification kit (Roboklon,
Germany) according to the manufacturer’s instructions. 500 ng
RNA were transcribed to cDNA using SuperScript™ II Reverse
Transcriptase. Quantitative Real-Time PCR was performed on
Viia 7 Real-Time PCR System using iTaq™ Universal SYBR
Green Supermix (Bio-Rad Laboratories, USA). Peptidylprolyl
isomerase A (PPIA) was used as reference gene. The mRNA
expression levels were quantified for: VHL, HIF1A, CA9, VEGFA,
VEGFC and CD274/PD-L1. The primers for all selected genes were
designed using the primer design tool of National Center of
Biotechnology Information (26) and tested for efficiency using a
1:2 dilution series of cDNA of benign renal tissue as well as ccRCC
samples obtained from the Department of Urology at Bonn
University Hospital. Levels of mRNA expression were quantified
and compared between the tissue of origin and the derived
primary cell culture using DDCT method (27). Conditions and
qPCR primer sequences are provided in Supplementary Table 1.

Immunohistochemical (IHC)
Staining of Tissues of Origin and
Derived Primary Cell Cultures
For immunohistochemical staining, primary cells were detached
with trypsin-EDTA, washed and centrifuged. The cell pellet was
resuspended in 300 µL Richard-Allan Scientific HistoGel
Frontiers in Oncology | www.frontiersin.org 3
according to the manufacturer’s instructions, fixed in 4% PFA
and embedded in paraffin according to routine protocols at the
Institute of Pathology, University Hospital Bonn. IHC stainings
were performed on a Medac 480 S Autostainer (Medac,
Germany) and on a Ventana BenchMark Ultra Autostainer
(Roche Diagnostics, Switzerland). Immunohistochemical
staining was assessed using Olympus BX50 microscope
(Olympus, Japan). Detailed antibody information is provided
in Supplementary Table 2.

Sequencing of Von Hippel-Lindau
Gene in Primary Cell Cultures and
Tumor Tissue of Origin
As reported before, we performed Sanger sequencing for
mutations of the three exons of the Von Hippel-Lindau gene
(VHL) in primary cell cultures of eight ccRCC as well as the
tumor tissue they derived from (16). Shortly summarized, DNA
was extracted using the QIAmp DNA Minikit (Qiagen)
according to the manufacturer ’s instructions. After
amplification of the VHL exons (1, 2a, 2b, 3) with a GeneAmp
PCR System 9700 (primer sequences: supplementary data),
f ragment s izes were checked with an agarose ge l
electrophoresis and the amplicons were purified using the
NucleoSpin Gel and PCR Clean-up kit (Macherey-Nagel,
Germany). Sanger sequencing was performed by GATC
sequencing service (Eurofins Genomics, Germany). To identify
VHL mutations, ApE Plasmid Editor (Jorgensen Laboratory,
USA) and FinchTV (Geospiza Inc., USA) were used. The
mutations were checked using The Catalogue of Somatic
Mutations in Cancer (COSMIC) (28).
RESULTS

3’mRNA Seq Analysis of ccRCC Primary
Cell Cultures and the Tissue of Origin
RNA sequencing analysis was performed for seven primary cell
cultures and seven tumor tissue specimens of ccRCC. A close
genetic relationship between primary cell cultures and the tumor
tissue of origin was noticed (Figure 1A). A total of 24.350 genes
in total were dysregulated in primary cell cultures compared to
the tissue of origin (Figure 1B).

Within these genes, 444 genes were significantly (adjusted p-
value < 0.05, Benjamini-Hochberg correction) upregulated (Log2
fold change > 2), 888 genes were downregulated (Log2 fold
change < 2). 7.275 genes were expressed with a Log2 fold change
between -2 and 2 and were interpreted as equal or similar
expression in primary cell cultures and tumor tissue (adjusted
p-value < 0.05, Benjamini-Hochberg correction). A list of all
genes is available in the Supplementary Material.

The top 50 significantly alternated genes included genes
involved in the regulation of cell metabolism (ALDOB, PDK4,
ACSM2A, ACSM2B) and SLC5A12, coding for a lactate-
reabsorbing transport protein in the proximal tubule
(Figure 2). Other differently expressed genes code for cell
adhesion molecules as well as interaction with the extracellular
May 2022 | Volume 12 | Article 883195
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matrix (EMCN, CDH5, PECAM1, SPARCL1, PCDH17, CDHR5).
NAT8 is specifically expressed in renal tissue and was
dysregulated in ccRCC tissue. Two genes involved in
angiogenesis (ESM1) and immune signaling (TYROBP) were
also among the 50 most dysregulated genes in ccRCC cell
cultures and tissue.

Gene Set Enrichment Analysis (GSEA) and
Enrichr Analysis of ccRCC Primary Cell
Cultures Versus Tumor Tissue
To compare biological pathways in ccRCC primary cell cultures and
the tissue of origin, a gene set enrichment analysis (GSEA) was
performed.Compared to the tissue of origin, theprimary cell cultures
displayed a total of 28 of 50 gene sets being upregulated. 10 gene sets
were significantly enriched at FDR < 25%, 8 gene sets at nominal p-
value<1%and9gene sets significantly enrichedatnominal p-value<
5%(Table2andFigure3). In cell culturesDNArepairprocesses,E2F
targets, G2/M checkpoints and mitotic spindle formation were
enriched, indicating an increased cell cycle progression.
Additionally, MTORC1 signaling, TNF-alpha signaling and MYC-
targets were overexpressed compared to the tumor tissue in vivo.

An Enrichr analysis using the KEGG 2021 Human database
for pathway assignment of the 444 upregulated genes (log fold
change > 2, p adjusted < 0.0.5) confirmed the upregulation of the
cell cycle progression as well as TNF signaling (Figure 4A, B).
Frontiers in Oncology | www.frontiersin.org 4
Additionally, pathways regulating cellular senescence, IL17-
signaling as well as ECM-receptor interaction were increased in
vitro. Interestingly, the upregulated genes, according to the KEGG
2021 Human assignment, also hold functions in several immune-
mediated diseases like rheumatoid arthritis (CXCL6, IL6, CXCL8,
IL23A, CCL2, CXCL1, CXCL3, CXCL2, TNF, CXCL5) as well as
parasitic infections like amoebiasis (IL6, CXCL8, CXCL1, PRDX1,
FN1, TNF and other). A list of the Enrichr assignments of the genes
is available in the Supplementary Table 4. The GSEA enrichment
analysis revealed 22 of 50 gene sets being downregulated in primary
cell cultures, with no gene set being significantly enriched at FDR <
25% and the nominal p-value <1%, respectively. However, the
Enrichr analysis (KEGG 2021 Human database) displayed an
assignment of the 888 downregulated genes to pathways involved
mainly in cGMP-PKG signaling, calcium signaling, haematopoetic
cell lineage pathways, protein digestion and cell adhesion
(Figures 4C, D; gene assignment Supplementary Table 4).

Enrichr Analysis of Pathways Expressed
Equally or Similarly in Primary Cell
Cultures and the Tissue of Origin
7.275 genes were identified which were expressed on equal or
similar levels in cell culture conditions to the tissue of origin (see
above, p adjusted < 0.05). An Enrichr analysis using KEGG 2021
Human andWikiPathway 2021 Human databases assigned these
A B

FIGURE 1 | RNA-sequencing: alternated pathways in ccRCC primary cell cultures compared to the tissue of origin. (A) PCA plot of mRNA expression profiles in
seven ccRCC primary cell cultures compared to the tumor tissue (tissue of origin). Primary cell cultures as well as the tissue of origin clustered, revealing a close
genetic similarity within their group, with the exception of ccRCC1 (outlier). This renal cell carcinoma displayed no histological abnormalities, but harbored a VHL gene
mutation (c.491 A>T, missense substitution, Supplementary Table 5). It also displayed slight differences in the top 50 dysregulated genes which a highly aberrant
expression of ALDOB and FBG (see Figure 2). (B) Volcano plot of the dysregulated genes in primary cell cultures compared to the tissue of origin. A total of 23450
genes displayed genetic alterations. The -Log10 p-value on the y axis displays the statistical significance, Log2 fold change on the x axis reveals over- or reduced
expression of the gene. The blue dots represent genes with significant gene alterations within a Log2 fold change of -1 and 1, respectively. The green dots represent
gene alterations with p > 0.05 (dashed line). NS = gene alterations, neither significant (p > 0.05) nor with Log2 fold change < -1 or > 1.
May 2022 | Volume 12 | Article 883195
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genes to several central pathways in renal cell carcinoma,
proteasome regulation, glyoxylate and decarboxylate
metabolism (KEGG 2021 Human) (Figure 5A). An alignment
with WikiHuman 2021 pathways database revealed that primary
cell cultures expressed similar or equal levels of genes involved in
EGFR tyrosine kinase inhibitor (TKI) resistance, PD-1-
associated therapeutic pathways as well as regulatory pathways
of purine metabolism, cellular proteostasis and hedgehog
signaling (Figure 5B). Several of these genes encoded growth
factors, including PDGFA, PDGFC and PDGFD as well as
VEGFA. Among the genes associated with PD-1-based
Frontiers in Oncology | www.frontiersin.org 5
immunotherapy were CD273 (coding for PD-L1), IFNG, HLA-
DRB1 and PTPN11 (full list see Supplementary Table 4). In
conclusion, primary cells expressed similar or equal levels of
pathways crucial for current therapeutic approaches in the
management of advanced ccRCC or metastasis.

Expression of Hypoxia-Associated
Genes and Neo-Angiogenesis in
Primary Cell Cultures
Inactivating VHL mutations are characteristic for ccRCC and
induce an upregulation and stabilization of hypoxia-associated
FIGURE 2 | Top 50 dysregulated genes in ccRCC tissue and primary cell cultures. The heatmap displays the top 50 significantly dysregulated genes in seven ccRCC tissue
specimens as well as in 7 ccRCC primary cell cultures. Among these genes, there are genes involved in hypoxia signaling and metabolic regulation (PDK4, RGS5, ALDOB,
SLC5A12, ACSM2A, ACSM2B), in cell adhesion and extracellular matrix (CDH5, PECAM1, SPARCL1), angiogenesis (ESM1) and immune signaling (TYROBP).
May 2022 | Volume 12 | Article 883195
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gene products and a shift towards aerobic glycolysis, also known
as theWarburg effect (29). To quantify the gene expression of few
selected genes, qRT-PCR was performed for VHL, HIF1A and
CA9. Since EGFR/TKI- resistance pathways as well as genes
involved in PD-1 blockade were equally expressed in cell cultures
compared to the tissue of origin, we performed additional
analyses for the mRNA expression of VEGFA, VEGFC, EGFR
and PD-L1. Immunohistochemistry was performed to verify the
protein expression in vivo as well as in vitro.

The ccRCC primary cell cultures showed similar mRNA
expression levels of VHL and slightly higher levels of HIF1A and
CA9 than the tissue of origin (Figure 6A). A strong protein
expression of CA9 was detected in ccRCC primary cell cultures as
well as in the tissue of origin (Figure 6B). As Enrichr analysis of the
equally expressed pathways indicated (see above), the mRNA
expression of the neo-angiogenetic proteins VEGFA and VEGFC
as well as EGFR remained stable under in vitro conditions. As
reported before (16), the tumor cells shared the same VHL
mutations as the tumor tissue they derived from (Supplementary
Table 5). Five of the eight ccRCC tumors included in this study
harbored VHL mutations. Two of these five mutations (ccRCC 3:
heterozygous frameshift deletion; ccRCC4: heterozygous in frame
deletion) were not described in COSMIC database, but in our
previous publication (see above). TheHIF1A expression compared
to the benign renal tissue was partially elevated, but not linked to
specific VHL mutations (data not shown). Furthermore, the VHL
mutation status was not linked to increased expression levels of
HIF1A compared to the tissue of origin.

When compared directly with the corresponding tissue of
origin, a slight upregulation of PD-L1 was noticed in vitro
compared to the tumor tissue (fold change median 3.6,
Figure 6A). However, primary cells as well as tumor tissue of
origin only partially expressed PD-L1 protein in small, isolated
cell nests. A difference between tumor tissue and derived cell
cultures was not observed.

To verify the tumor origin of the primary cell cultures, we
regularly inspected the cells in vitro: They displayed the typical
growth behavior of epithelial nest formation, consisting of
polygonal, large tumor cells with prominent nucleoli and
plentiful cytoplasm (Figure 6C).

Besides CA9, the tumor cells additionally expressed CD10,
another marker of ccRCC, and PAX8, proving their renal
Frontiers in Oncology | www.frontiersin.org 6
epithelial origin. The protein expression matched the tumor
tissue of origin (Figure 6D).
DISCUSSION

Many commercial tumor cell lines of renal cancer used all over
the world have been proven to be problematic: For many of
them, the histologic tumor entity has been obscured due to a lack
of classification at the time of generation and accumulated
genetic changes over many passages (30–32).

Primary cell cultures, 2-dimensional as well as 3-dimensional
organoid approaches, allegedly remain closer to the tissue of
origin and therefore are an important, more representative tool
for in vitro experiments. Current studies revealed a closer genetic
relationship with the tissue they derived from, with only a few
genetic alterations on the genomic level, and an expression of
characteristic marker proteins matching the tumor tissue (10, 12,
13, 16). However, the information about mRNA expression and
adaptation to the cell culture conditions is still very limited.

We therefore established and characterized primary cell lines
from ccRCC and matched non-neoplastic tissue as reported
before (16). The following 3’mRNA sequencing analysis of
primary cell cultures compared to the tumor tissue of origin
revealed over 20.000 genes being differentially expressed. Among
the top 50 dysregulated genes were important regulators of cell
metabolism such as PDK4, ALDOB and others. Aldolases A, B
and C all are involved in glycolysis and gluconeogenesis and are
often dysregulated in tumor cells: In renal cancer, aldolase B is
usually downregulated, in contrast to benign renal tissue, in
which it is additionally expressed (33). However, a recent study
revealed that the overexpression of aldolase A in RCC is
associated with metastasis and a downregulation, although
performed on commercial cell lines, suppressed invasion, and
proliferation (34). Aldolase B was shown to be also overexpressed
in other tumors like colorectal adenocarcinoma, promoting
progression (35). Other genes among the top 50 dysregulated
genes were involved in cell adhesion, angiogenesis, immune
signaling and interaction with the extracellular matrix.

Since a detailed analysis of each of these genes would go
beyond the scope of our objectives and to narrow down the
genetic alterations on pathways, we performed a gene set
enrichment analysis (GSEA) as well as Enrichr analyses for the
enriched as well as up- and downregulated pathways.

According to the GSEA, primary cell cultures displayed an
upregulation of cell cycle, DNA repair, MTORC1 signaling, but
also metabolic pathways like glycolysis. A reversion from
oxidative metabolism and gluconeogenesis to high rates of
glycolysis has already been described for non-neoplastic renal
cell cultures and might be explained by limited oxygen diffusion
in cell culture medium (36, 37). The Enrichr pathway assignment
analysis (KEGG 2021 Human database) additionally revealed
enrichment of chemokine encoding genes (CXCL1, CXCL2,
CXCL3, CXCL6, CXCL5, CXCL8, CCL2) which were aligned to
several pathways like amoebiasis and rheumatoid arthritis. This
pathway alignment, however, obscured the broader function of
TABLE 2 | Significantly upregulated gene pathways in ccRCC primary cell
cultures in gene set enrichment analysis (GSEA).

Pathway Genes alternated n p-value

DNA repair 39 p=0.0048
E2F targets 95 p < 0.001
G2/M checkpoint 86 p < 0.001
Mitotic spindle 51 p < 0.001
Glycolysis 47 p < 0.001
MTORC1 signaling 76 p < 0.001
MYC-targets 103 p < 0.001
TNF-alpha signaling 42 p=0.01
unfolded protein response 29 p=0.004
Gene set enrichment analysis (GSEA) revealed 9 gene sets significantly upregulated in
ccRCC primary cell cultures compared to the tissue of origin.
May 2022 | Volume 12 | Article 883195
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these genes, which are key regulators of angiogenesis, tumor
growth and proliferation and tumor inflammation (38).

Among the upregulated pathways was also the IL-17 pathway,
which, besides inflammation and immune regulation, also
involves the MAP kinase signaling and the chemokines
mentioned above (39). To summarize our findings, we
observed an upregulation of key pathways involved in
angiogenesis, cell proliferation signaling, chemokine signaling
as well as metabolic changes in vitro.

The Enrichr analyses revealed a downregulation of genes
regulating cell adhesion and immune differentiation of T helper
cells, which could be explained by the absence of the immune cell
compartment of the tissue of origin as well as the process of cell
separation during cultivation. Additionally, pathways of the
hematopoietic cell lineage were downregulated, which can also be
explained by the absence of blood cells.

When using primary cell cultures as an in vitro model for the
development of targeted therapies, it is crucial to recognize their
potential as well as their limitations. We therefore additionally
Frontiers in Oncology | www.frontiersin.org 8
analyzed the pathways, which were similarly or equally expressed
in tumor tissue and cell cultures: Interestingly, the analysis
revealed an equal expression of genes crucial in the development
and progression of renal cancer, such asHIF1A and VEGFA. RCC,
especially the clear cell subtype, highly relies on aerobic glycolysis
despite the presence of oxygen, and therefore promotes a pseudo-
hypoxic gene expression: This circumstance is known as the
Warburg-effect and has been investigated over decades (40). The
aerobic glycolysis could be a potential therapeutic target and has
been investigated before by our group as well as other researchers
(16, 41, 42). The pseudo-hypoxic metabolism of clear cell renal
cancer is based on a loss of VHL function, which induces
stabilization and upregulation of hypoxia-associated gene
products like HIF1A and VEGF (29). Interestingly, when
compared to their individual tumor of origin and not as a
cohort, primary cell cultures displayed an even slightly higher
mRNA expression of CA9 and HIF1A, while the expression of
VHL, VEGFA and VEGFC remained constant. This indicates an
even stronger shift towards aerobic glycolysis and pseudo-hypoxia
A

B

C

D

FIGURE 4 | Enrichr analysis of KEGG 2021 Human pathways in ccRCC primary cell cultures: up- and downregulated genes compared to tumor tissue. (A, B)
Compared to the tissue of origin, ccRCC primary cell cultures displayed an upregulation in cell cycle regulation, IL-17 pathway regulation, other immune response
pathways and genes as well as TNF signaling pathways. (C, D) The primary cell cultures expressed lower mRNA levels of genes involved in calcium signaling, cell
adhesion molecules as well as cGMP-PKG signaling pathways. * p- value, adjusted.
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under cell culture conditions. Additionally, real hypoxia might as
well explain this increase partially: Surprisingly, studies observed
signs of hypoxia in renal epithelial cell cultures even when the pO2

levels, temperature (37°C) and saturation of 95% O2/5% CO2

corresponded to the physiologic blood conditions in vivo (36, 43).
Additionally, a loss of cell differentiation in favor of proliferation
was described. This dedifferentiation includes loss of
mitochondria, an increase of enzyme expression of anaerobic
glycolysis as well as loss of microvilli and ruffled membrane
structure, a process observed for tumor cells and renal epithelial
cells (7, 43, 44). We can therefore assume that the increased
expression of hypoxia-associated genes is a reaction to the change
of the microenvironment.

These changes were also observed in another study,
generating primary cell cultures of benign hepatocytes: Cassim
et al. described severe metabolic changes in mitochondrial
respiratory capacity during cell isolation and cultivation as well
as a reduction of antioxidative-related metabolites (45). The
latter observation reveals another interesting aspect: Not only
basic cellular pathways like metabolism and respiratory chain
regulation may be alternated in vitro, but also organ-specific,
Frontiers in Oncology | www.frontiersin.org 9
cancer-specific or even tumor-subtype-specific cellular
characteristics. The importance of taking these changes into
consideration when performing experimental research cannot
be overemphasized.

Two other pathways were similarly expressed in primary cell
cultures and in tumor tissue of origin, and these hold crucial
implications: The EGFR tyrosine kinase resistance pathway as
well as well as the PD-1 pathway.

Because of its resistance to conventional chemotherapy and
radiation, RCC remains an insidious and challenging disease.
20% to 30% of patients present with metastatic disease at first
diagnosis, additional 30% develop metastases later (46).
Although progress has been made in recent years with the
constant and ongoing search for optimized immunotherapies,
many patients do not respond to these new therapeutics at all or
still succumb to their disease later (47, 48). Our WikiPathway
2021 Human analysis displayed that the gene pathways targeted
by tyrosine kinase inhibitors such as axitinib, cabozantinib and
pazopanib as well as immune checkpoint inhibitors do not
change under in vitro conditions. This implicates, that primary
cell cultures are a feasible model for further investigations of the
A

B

FIGURE 5 | Pathways equally expressed in ccRCC primary cell cultures and the tissue of origin. (A) Enrichr analysis revealed that primary cell cultures shared the
same mRNA expression levels of pathways involved in proteasome, renal cell carcinoma, several other diseases and glyoxylate and dicarboxylate metabolism (KEGG
2021 Human pathways). (B) The primary cell cultures furthermore displayed a very similar expression of genes regulating purine metabolism, resistance mechanisms
against EGFR tyrosine kinsase inhibtors and cancer immunotherapy.
May 2022 | Volume 12 | Article 883195

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Simon et al. Molecular Aspects: ccRCC Primary Cultures
pathological mechanisms of resistance development or absent
response to the still limited arsenal of therapeutics.

As reported before, we already demonstrated that primary cell
cultures can be used to investigate therapeutic approaches in
vitro, using a glycolysis inhibitor in combination with commonly
used tyrosine kinase inhibitors on several RCC entities (16). We
also tested immune checkpoint inhibitors and the targeted
therapy agent cabozantinib on three-dimensional organoids in
vitro (49). In this study, we once more emphasize not only the
close relationship to the tumor tissue regarding cell metabolism
and (pseudo)hypoxia, but also demonstrated the molecular
similarity in relation to the expression of pathways holding
therapeutic relevance.
Frontiers in Oncology | www.frontiersin.org 10
However, since several studies reported that also HIF1A and
HIF2A can induce upregulation of PD-L1 (50, 51), the
interaction between (pseudo)hypoxic signaling and expression
of certain immune pathways must be further elucidated.
CONCLUSION

In this study, we extensively characterized and explored mRNA
expression changes in primary cell cultures compared to the tissue
they derived from and assigned the differences as well as similarly
expressed genes to central pathways in tumor cell biology. We
furthermore validated the results of several genes involved in
A

B C

D

FIGURE 6 | Gene expression of hypoxia- and angiogenesis related genes in primary cell cultures. (A) Primary cell cultures of ccRCC had slightly increased mRNA
expression levels of HIF-1A and CA9, compared to the tissue of origin. The mRNA expression of VHL, VEGFA, VEGFC and EGFR remained stable, while in vitro a
slightly increased expression of PD-L1 was observed. (B) Primary cell cultures expressed CA9, EGFR and PD-L1 in accordance to the tissue they derived from.
Especially PD-L1 protein was only partially expressed in small, isolated cell nests in tumor tissue and only in some of the primary cells (magnification 400 x). (C) The
cell cultures grew in characteristic epithelial nests and sheets of large polygonal tumor cells (magnification 400 x). (D) The primary cell cultures as well as the tumor
tissue they derived from expressed CD10, another characteristic marker of ccRCC, as well as PAX8, proving their renal-epithelial origin (magnification 400x).
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adaptation tohypoxia, growth factor expressionand immuneevasion
pathways. Our data demonstrated and confirmed already described
changes in themetabolic pathways under cell culture conditions, but
also explored several up- or downregulated pathways, which are
commonly neglected when using primary cells in experimental
research. Interestingly, primary cells express many genes involved
in immune evasion and growth factor signaling very similarly or
equally to the tumor tissue they derived from,making thema feasible
and very important tool for specified translational and experimental
research. Our results also illustrate the complex and numerous
interactions between the adaptive pathways and allow new
translational approaches in the treatment of renal cancer. The
differences, as well as the common features between the primary
cell cultures and the tissue they derived from, must be considered in
every research project using them as in vitromodel.
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