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Abstract: Proper postharvest storage preserves horticultural products, including tea, until they can
be processed. However, few studies have focused on the physiology of ripening and senescence
during postharvest storage, which affects the flavor and quality of tea. In this study, physiological
and biochemical indexes of the leaves of tea cultivar ‘Yinghong 9′ preserved at a low temperature
and high relative humidity (15–18 ◦C and 85–95%, PTL) were compared to those of leaves stored at
ambient conditions (24 ± 2 ◦C and relative humidity of 65% ± 5%, UTL). Water content, chromatism,
chlorophyll fluorescence, and key metabolites (caffeine, theanine, and catechins) were analyzed over
a period of 24 h, and volatilized compounds were determined after 24 h. In addition, the expression
of key biosynthesis genes for catechin, caffeine, theanine, and terpene were quantified. The results
showed that water content, chromatism, and chlorophyll fluorescence of preserved leaves were more
similar to fresh tea leaves than unpreserved tea leaves. After 24 h, the content of aroma volatiles
and caffeine significantly increased, while theanine decreased in both groups. Multiple catechin
monomers showed distinct changes within 24 h, and EGCG was significantly higher in preserved
tea. The expression levels of CsFAS and CsTSI were consistent with the content of farnesene and
theanine, respectively, but TCS1 and TCS2 expression did not correlate with caffeine content. Principal
component analysis considered results from multiple indexes and suggested that the freshness of
PTL was superior to that of UTL. Taken together, preservation conditions in postharvest storage
caused a series of physiological and metabolic variations of tea leaves, which were different from
those of unpreserved tea leaves. Comprehensive evaluation showed that the preservation conditions
used in this study were effective at maintaining the freshness of tea leaves for 2–6 h. This study
illustrates the metabolic changes that occur in postharvest tea leaves, which will provide a foundation
for improvements to postharvest practices for tea leaves.

Keywords: Camellia sinensis; preservation storage; postharvest metabolism; postharvest gene expression

1. Introduction

Tea from Camellia sinensis is among the world’s three most popular beverages. Tea is
rich in polyphenols, caffeine, theanine, and terpenoids, which collectively provide a wealth
of benefits to humans and contribute to its unique taste and aroma [1]. Anti-aging, cancer
prevention, and other health benefits continue to be uncovered, boosting tea consumption
and demand [2]. With the rapid growth of the global tea industry and the increasing
number of consumers, the world’s per capita tea consumption has increased by an average
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of 2.8% annually in the past decade (Food and Agriculture Organization of the United
Nations, https://www.fao.org/international-tea-day/en/, accessed on 5 December 2021).

Tea is a processed food produced from the tender leaves of Camellia sinensis. The
chemical components of fresh tea leaves are essential for their market value. Nonvolatile
components are generally responsible for taste, while volatile components affect aroma [3].
Similar to fruits, vegetables, and flowers, plucking tea leaves does not mean the end of life,
but the beginning of post-ripening and senescence. As with other agricultural products,
proper postharvest storage is critical for tea [4]. Oxidization reactions change the overall
phytochemical composition of tea leaves and alter the organoleptic profile of the final tea
product, decreasing its commercial value [5]. Practices adopted by enterprises typically
include chilled temperature storage to preserve sensory and quality components [5].

The environment, which includes temperature and relative humidity, affects leaf
metabolism during the postharvest period [6]. Many postharvest approaches have been
implemented to preserve the freshness of tea leaves, with low temperature storage being
the major approach to slow down metabolic activities [5]. Studies have found that tea leaves
have reduced aroma content after plucking, and immediate storage at low temperature
can enrich aromatic compounds [7,8]. However, compared to the extensive research on the
compositional changes during tea processing, few studies have focused on the complex
physiology of tea leaves during postharvest storage [9,10]. Physiological indexes and
changes in tea metabolites during storage would show the influence of postharvest storage
conditions on tea quality. Therefore, to improve the process of postharvest storage, it
is important to understand the physiology of ripening and senescing leaves, including
metabolite fluctuation and the expression of biosynthesis genes.

Although previous studies have investigated the metabolism of volatiles and other
constituents, including theanine, caffeine, and catechins in postharvest tea leaves [5,8,11],
few studies have integrated metabolic phenotypes and the gene expression analysis of
postharvest leaves of Camellia sinensis. Enlightened by the preservation measures of other
studies [8], fresh leaves were divided into two groups: preserved tea leaves (PTL) and
unpreserved tea leaves (UTL). Physiological and biochemical indexes were compared
among the two groups. In addition, genes associated with the biosynthesis of major
metabolites were quantified. This study is a step towards clarifying the physiology of
postharvest tea leaves and evaluating the effect of preservation on tea quality, which will
help producers achieve greater economic benefits.

2. Results
2.1. Changes in Water Content, Color, and Degree of Damage during Storage

Suitable storage conditions play an important role in preserving freshly plucked tea
leaves, and water content, color change, and degree of damage are important indexes to
evaluate preservation. To explore the time-dependent changes in PTL and UTL, water
content, color values (L*, a*, and b*), and chlorophyll fluorescence (Fv/Fm) were measured
at 0, 1, 2, 4, 6, 12, and 24 h (Figures 1 and S1).

Throughout the 24 h monitoring period, PTL maintained a water content level closer to
that of FTL than UTL, and the difference between UTL and PTL was significantly different
at 24 h (p < 0.05). The water content of FTL was 78.49% (Figure 1). After 24 h, the water
content of UTL decreased to 75.77%, and PTL fluctuated between 77.15% to 78.57% water.

During storage, UTL gradually lost their luster and their color changed relative to FTL,
as indicated by the color difference values (L*, a*, and b*, Supplementary Figure S1). At
2 h postharvest, the color of UTL and PTL had not changed relative to FTL (i.e., ∆E < 2);
however, significant color differences were observed in UTL after 4 h (∆E > 3.5). On the
other hand, PTL maintained an ∆E < 3 throughout the 24 h monitoring period, indicating
that the color difference would only be noticeable by an expert (Figure 1B).

https://www.fao.org/international-tea-day/en/
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Figure 1. The effects of storage conditions on tea leaves, as indicated by changes in water content, 
color (∆E), and leaf damage (Fv/Fm) within 24 h. (A) The water content of FTL, UTL, and PTL at 
different time points. (B) ∆E of UTL and PTL within 24 h, relative to FTL. (C) The Fv/Fm values of 
FTL, UTL, and PTL over 24 h. (D) Images of chlorophyll fluorescence in FTL, UTL, and PTL at dif-
ferent time points. Dunnett’s multiple comparisons and t-test were used to identify significant dif-
ferences (*, p < 0.05). Values are the mean ± SEM of all replicates. 

Throughout the 24 h monitoring period, PTL maintained a water content level closer 
to that of FTL than UTL, and the difference between UTL and PTL was significantly dif-
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other hand, PTL maintained an ∆E < 3 throughout the 24 h monitoring period, indicating 
that the color difference would only be noticeable by an expert (Figure 1B). 

Fv/Fm values (Figure 1C), calculated from chlorophyll fluorescence imaging (Figure 
1D), showed that the degree of damage to UTL was much higher than the damage ob-
served in PTL, as indicated by their lower Fv/Fm values. At 4 h, the Fv/Fm values signifi-
cantly decreased in UTL, while the value changed only slightly in PTL. After 24 h, the 
Fv/Fm value of UTL changed to 0.630, a 13.0% decrease relative to FTL, while that of PTL 
dropped to 0.683, or 5.6% less than FTL. 

2.2. Changes in Caffeine, Theanine, and Catechins Contents during Storage 
Among the numerous secondary metabolites in tea, caffeine, theanine, and catechins 

are highly related to tea’s pleasant flavors [12]. Thus, dynamic changes to their contents 
were measured, via HPLC-UV/Vis spectroscopy, to evaluate the potential effects of stor-

Figure 1. The effects of storage conditions on tea leaves, as indicated by changes in water content,
color (∆E), and leaf damage (Fv/Fm) within 24 h. (A) The water content of FTL, UTL, and PTL at
different time points. (B) ∆E of UTL and PTL within 24 h, relative to FTL. (C) The Fv/Fm values
of FTL, UTL, and PTL over 24 h. (D) Images of chlorophyll fluorescence in FTL, UTL, and PTL at
different time points. Dunnett’s multiple comparisons and t-test were used to identify significant
differences (*, p < 0.05). Values are the mean ± SEM of all replicates.

Fv/Fm values (Figure 1C), calculated from chlorophyll fluorescence imaging
(Figure 1D), showed that the degree of damage to UTL was much higher than the damage
observed in PTL, as indicated by their lower Fv/Fm values. At 4 h, the Fv/Fm values
significantly decreased in UTL, while the value changed only slightly in PTL. After 24 h,
the Fv/Fm value of UTL changed to 0.630, a 13.0% decrease relative to FTL, while that of
PTL dropped to 0.683, or 5.6% less than FTL.

2.2. Changes in Caffeine, Theanine, and Catechins Contents during Storage

Among the numerous secondary metabolites in tea, caffeine, theanine, and catechins
are highly related to tea’s pleasant flavors [12]. Thus, dynamic changes to their contents
were measured, via HPLC-UV/Vis spectroscopy, to evaluate the potential effects of storage
conditions on tea flavor (Figure 2). Over the course of 24 h storage, the levels of caffeine
in UTL changed greatly, while that in PTL changed relatively gradually (Figure 2A). As
shown in Figure 2B, theanine content in both groups decreased markedly relative to FTL,
and the contents were significantly different between the two groups (p < 0.05).

From the dynamic changes of catechins, we found that the contents of C and EC in PTL
were substantially higher than in UTL in the first 6 h, but lower after 12 h (Figure 2C,D).
In both groups, the contents of GC and EGC decreased after 24 h (Figure 2E,F), while the
content of GCG significantly increased after 24 h (Figure 2G). ECG and EGCG were the
major monomeric catechins in tea samples. By 24 h postharvest, ECG had reached 60 mg/g
(dw) in both PTL and UTL, while EGCG was 63.18 mg/g (dw) and 54.01 mg/g (dw),
respectively, in PTL and UTL (Figure 2H,I). The content of ECG significantly increased
within 24 h in both groups, while the content of EGCG was substantially higher in PTL
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than in UTL after 24 h. Overall, each metabolite displayed a different trend over the course
of the 24 h storage period that largely depended on whether they were preserved or not.
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Figure 2. Changes in caffeine (A), theanine (B), and catechin (C–I) contents in preserved (PTL)
and unpreserved (UTL) up to 24 h postharvest. C, catechin; EC, epicatechin; GC, gallocatechin;
EGC, epigallocatechin; ECG, epicatechin gallate; GCG, gallocatechin gallate; EGCG, epigallocatechin
gallate. Dunnett’s multiple comparisons and t-test identified significant differences (*, p < 0.05).
Values are the mean ± SEM of all replicates.

2.3. Comprehensive Analysis of Volatilized Compounds in UTL and PTL

HS-SPME/GC-MS analysis revealed a total of 52 volatile compounds in FTL, PTL,
and UTL (Table 1) that were composed of alcohols (10), aldehydes (5), ketones (5), alkenes
and terpenes (10), acids (1), alkanes (8), esters and lactones (10), and others (3). A total
of 52, 37, and 34 compounds were identified in FTL, UTL, and PTL, respectively. The
total content of volatilized compounds in UTL increased by 11.8%, while the total in PTL
increased by 28.4% (Supplementary Figure S2). As illustrated in Figure 3A, there were
apparent differences in individual volatiles between the two groups. Compared with UTL,
the aroma volatile content in PTL increased to a larger extent, including for 1-octen-3-ol,
cis-β-farnesene, and trans-β-ionone. In addition, compounds known for their sweet, fruity,
and floral odor, especially cis-β-farnesene, were more than 11.3 times higher in PTL than
in UTL.
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p < 0.05). Values are the mean ± SEM of all replicates. CD, cyclopentasiloxane, decamethyl-; PAIOE, 
phthalic acid, isobutyl octyl ester; CBP, cyclohexyl butyl phthalate; DTBODDD, 7,9-Di-tert-butyl-1-
oxaspiro (4,5) deca-6,9-diene-2,8-dione; MH, methyl hexadecanoate; DP, dibutyl phthalate. 

Figure 3. Changes in volatile compounds of tea leaves in UTL and PTL at 24 h, relative to FTL.
(A) Heatmap showing changes of 52 volatile compounds. Red and green represent a positive and
negative fold change, respectively, relative to FTL. (B) Changes of 16 key aroma compounds in UTL
and PTL. Dunnett’s multiple comparisons and t-test were used to identify significant differences
(*, p < 0.05). Values are the mean ± SEM of all replicates. CD, cyclopentasiloxane, decamethyl-;
PAIOE, phthalic acid, isobutyl octyl ester; CBP, cyclohexyl butyl phthalate; DTBODDD, 7,9-Di-tert-
butyl-1-oxaspiro (4,5) deca-6,9-diene-2,8-dione; MH, methyl hexadecanoate; DP, dibutyl phthalate.
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Because of the large number of volatiles, we focused on 16 major volatiles that play
key roles in tea fragrance [7,13–19] (Figure 3B). There was no significant change in the
contents of ten aroma volatiles, namely, β-myrcene, D-limonene, terpineol, geraniol, phy-
tol, neophytadiene, linalool oxide, methyl salicylate, methyl hexadecanoate, and dibutyl
phthalate, between PTL and UTL. In contrast, there were significant differences (p < 0.05) in
the contents of linalool and decanal between UTL and PTL, and the differences were even
greater for β-ocimene, α-farnesene, nerolidol, and cedrol. α-Farnesene and nerolidol were
not detected in PTL, while cedrol was 5 times higher in PTL than in UTL. The results indi-
cated that 1-octen-3-ol, β-ocimene, cis-β-farnesene, trans-β-ionone, and cedrol increased in
content under preserved storage conditions.

Table 1. Volatile compounds in PTL and UTL.

Relative Contents

No. Compound a RI b RT c Aroma Description d UTL PTL

1 2-Hexenal, (E)- e 854 Green, leafy, fruity 3.312 ± 0.507 2.423 ± 0.237
2 Benzaldehyde e 967 962 Almond, burnt sugar 2.957 ± 0.398 2.706 ± 0.764
3 1-Octen-3-ol e 981 982 Sweet, earthy, mushroom-like n.d. 1.535 ± 0.176
4 β-Myrcene e 994 993 Woody, resinous, musty 1.225 ± 0.024 1.269 ± 0.069

5 Cyclotetrasiloxane,
octamethyl- 1000 — n.d. n.d.

6 3-Hexen-1-ol, acetate, (Z)- e 1009 Grass n.d. n.d.

7 D-Limonene e 1031 1030 Citrus, lemon,
orange-like, green 1.639 ± 0.103 1.566 ±0.105

8 β-Ocimene e 1039 1044 Sweet, herb n.d. 2.092±0.159
9 Linalool oxide e 1083 Flower 1.155 ± 0.122 1.181 ± 0.180

10 Linalool e 1104 1100 Floral, sweet,
grape-like, woody 1.076 ± 0.035 1.238 ± 0.046

11 Neo-allo-ocimene e 1132 1131 Sweet, floral, nutty,
herbal, peppery 1.492 ± 0.054 1.606 ± 0.089

12 Cyclopentasiloxane,
decamethyl e 1157 — 1.226 ± 0.038 1.177 ± 0.051

13 Epoxylinalol e 1176 1183 Floral 1.055 ± 0.035 0.548 ± 0.028

14 (E)-Hex-3-enyl
butyrate e 1188 1185 Fruity, green, vanilla, cream n.d. 0.612 ± 0.095

15 Terpineol e 1194 1190 Pleasant, floral 1.173 ± 0.014 1.167 ± 0.143
16 Methyl salicylate e 1197 1191 Minty, fresh, sweet 1.102 ± 0.120 0.845 ± 0.110
17 Decanal e 1207 1200 Soap, orange peel, tallow 0.487 ± 0.079 0.768 ± 0.049
18 Geraniol e 1231 1250 Rose-like, sweet, honey-like 1.133 ± 0.072 1.453 ± 0.021
19 Tridecane e 1300 Alkane 0.666 ± 0.032 3.259 ± 0.312
20 Undecanal e 1308 1308 Rose, waxy, oily 0.865 ± 0.150 n.d.
21 Eicosane e 1326 Alkane n.d. n.d.

22 (Z)-3-hexenyl
hexanoate e 1383 Fruity, waxy, green,

fatty, winey n.d. n.d.

23 Tetradecane e 1400 Alkane 0.938 ± 0.072 6.995 ± 0.752
24 1,13-Tetradecadiene 1410 — n.d. n.d.
25 Di-epi-α-cedrene e 1419 — n.d. n.d.

26 α-Ionone e 1431 1433 Floral, violet-like, powdery,
berry-like 1.153 ± 0.110 n.d.

27 Geranylacetone e 1455 1454 Fresh floral, sweet-rosy 1.106 ± 0.042 n.d.
28 cis-β-Farnesene e 1458 1457 Citrus, green 0.984 ± 0.096 11.089 ± 0.956

29 2,6,10-
Trimethyltridecane 1462 1461 — 1.053 ± 0.097 18.202 ± 3.610

30 1-Dodecanol e 1475 1480 Sweet, fatty n.d. n.d.
31 trans-β-Ionone e 1490 1490 Violet-like, raspberry, floral 1.395 ± 0.137 2.891 ± 0.461
32 Pentadecane e 1500 Alkane n.d. n.d.
33 α-Farnesene e 1510 1508 Woody, green, floral, herbal 0.944 ± 0.228 n.d.
34 2,4-Di-tert-butylphenol 1515 1518 — 1.386 ± 0.123 1.579 ± 0.128
35 trans-Calamenene e 1529 1529 Herbal, spicy n.d. n.d.
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Table 1. Cont.

Relative Contents

No. Compound a RI b RT c Aroma Description d UTL PTL

36 Dihydroactinolide e 1537 1538 Musky, coumarin-like 0.941 ± 0.059 n.d.
37 Nerolidol e 1567 1567 Wood, flower, wax 0.797 ± 0.124 n.d.
38 Hexadecane e 1600 Alkane 0.704 ± 0.052 4.483 ± 0.112
39 Cedrol e 1610 1609 Sweet, fruity, cedar-like 1.147 ± 0.090 5.691 ± 1.452
40 .tau.-Muurolol e 1649 1648 Herb, weak spice n.d. n.d.
41 Methyl jasmonate e 1653 1655.4 Jasmine n.d. n.d.
42 Heptadecane e 1700 Alkane 0.764 ± 0.072 3.221 ± 0.309
43 Phytane 1809 1795 — 4.193 ± 0.358 3.035 ± 0.912
44 Neophytadiene e 1840 1837 Fresh 0.924 ± 0.132 1.031 ± 0.349
45 Fitone e 1847 1847 — n.d. 3.681 ± 1.311
46 Caffeine 1854 1842 — 0.801 ± 0.087 0.808 ± 0.142

47 Phthalic acid, isobutyl
octyl ester 1872 — 4.368 ± 0.364 2.104 ± 0.446

48 Cyclohexyl butyl phthalate e 1919 1892 Mild 5.801 ± 0.552 2.391 ± 0.837

49
7,9-Di-tert-butyl-1-oxaspiro

(4,5)
deca-6,9-diene-2,8-dione

1924 1916.8 — 1.005 ± 0.081 n.d.

50 Methyl hexadecanoate e 1928 1925 Oily, waxy, fatty 0.471 ± 0.052 0.508 ± 0.058
51 Dibutyl phthalate e 1967 1969 Slight, aromatic 1.173 ± 0.043 0.904 ± 0.110
52 Phytol e 2115 2116 Floral, balsam, powdery, waxy 0.844 ± 0.196 0.935 ± 0.295

a Identification method: retention index in agreement with the literature value; mass spectrum comparison using
the NIST 14 library. b Retention index was calculated based on the retention time of standard saturated C9-C29
n-alkanes under the same conditions. c The published retention index of compounds in NIST 14 library. d Aroma
description found in references [14,18], the Flavornet database (https://www.flavornet.org/flavornet.html, ac-
cessed on 5 December 2021), and PubChem (https://pubchem.ncbi.nlm.nih.gov/, accessed on 5 December 2021).
e Aroma volatile compounds identified from references [7,13,14,17–20], the Flavornet database (https://www.
flavornet.org/flavornet.html, accessed on 5 December 2021), PubChem (https://pubchem.ncbi.nlm.nih.gov/,
accessed on 5 December 2021), the Flavor Library (https://www.femaflavor.org/flavor-library, accessed on
5 December 2021), and Ichemistry (http://www.ichemistry.cn/, accessed on 5 December 2021). ‘—’, no aroma
description information was found in the literature. ‘n.d.’, the compound was not detected.

2.4. Expression Levels of Metabolite Biosynthesis Genes during Storage

To further explore the mechanisms behind observed metabolic changes, biosynthesis
genes of terpene aroma, caffeine, theanine, and catechins were analyzed by qRT-PCR
at different time points in UTL and PTL (Figure 4). The terpene aroma biosynthesis
gene, farnesene synthase (FAS) was significantly upregulated in PTL within 24 h, but
less so in UTL. In contrast, limonene synthase (LMS) was steadily downregulated during
storage in PTL. The expression levels of germacrene D synthase (GDS) and 4-hydroxy-
3-methylbutenlyl diphosphate reductase (HDR) had no apparent change. Mevalonate-5-
pyrophosphate decarboxylase (MVD), terpene synthase 78 (TPS78), and terpene synthase
77 (TPS77) had lower expression than FTL in both groups.

The expression levels of tea caffeine synthase 1 (TCS1) and tea caffeine synthase 2
(TCS2) were upregulated at 4 h in PTL, but finally, they decreased at 24 h in both groups.

Key genes involved in theanine biosynthesis, alanine decarboxylase (AlaDC), thea-
nine synthetase (TSI), and glutamine synthetase 2 (GS2), were analyzed. TSI was highly
expressed at 12 h in UTL and at 6 h in PTL. However, AlaDC had a higher expression level
in UTL than in PTL. GS2 was downregulated after 24 h and had a high expression level at
4 h in PTL.

Key catechin biosynthesis genes, flavonoid 3’,5’-hydroxylase (F3’5’H), flavonoid 3-
hydroxylase (F3H), leucoanthocyanidin reductase (LAR), anthocyanidin reductase (ANR),
and serine carboxypeptidase-like acyltransferase 7 (SCPL1A7) were consistently upregu-
lated in the early hours of PTL, but the expression level decreased after 12 h. The expression
level of F3’5’H and F3H fluctuated greatly in UTL within 24 h. LAR, ANR, and SCPL1A7
were significantly downregulated in UTL and had the lowest expression level at 24 h.

https://www.flavornet.org/flavornet.html
https://pubchem.ncbi.nlm.nih.gov/
https://www.flavornet.org/flavornet.html
https://www.flavornet.org/flavornet.html
https://pubchem.ncbi.nlm.nih.gov/
https://www.femaflavor.org/flavor-library
http://www.ichemistry.cn/
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The expression levels of tea caffeine synthase 1 (TCS1) and tea caffeine synthase 2 
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Key genes involved in theanine biosynthesis, alanine decarboxylase (AlaDC), 
theanine synthetase (TSI), and glutamine synthetase 2 (GS2), were analyzed. TSI was 
highly expressed at 12 h in UTL and at 6 h in PTL. However, AlaDC had a higher expres-
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sion level at 4 h in PTL. 

Figure 4. Heatmap for expression levels of biosynthetic genes in UTL and PTL relative to FTL. Red
represents upregulation; green represents downregulation. FAS, farnesene synthase; LMS, limonene
synthase; GDS, germacrene D synthase; MVD, mevalonate-5-pyrophosphate decarboxylase; HDR,
4-hydroxy-3-methylbutenlyl diphosphate reductase; TPS78, terpene synthase 78; TPS77, terpene
synthase 77; TCS1, tea caffeine synthase 1; TCS2, tea caffeine synthase 2; AlaDC, alanine decarboxy-
lase; TSI, theanine synthetase; GS2, glutamine synthetase 2; F3’5’H, flavonoid 3’,5’-hydroxylase;
F3H, flavonoid 3-hydroxylase; LAR, leucoanthocyanidin reductase; ANR, anthocyanidin reductase;
SCPL1A7, serine carboxypeptidase-like acyltransferase 7.

2.5. A Comprehensive Evaluation of Quality in UTL and PTL

PCA comprehensively evaluates sample differences based on multiple sets of index
data. Physiological and biochemical property indexes for water, caffeine, theanine, and
catechin content, which directly reflect the quality of tea leaves, were included in a PCA. The
PC scores of the first two PCs were plotted (Figure 5): the first principal component (PC1)
explained 35.3% of the total variation, and the second principal component (PC2) 21.7%.
The obtained PC scores indicated the difference between samples by variance: each circle
represented a sample, and the distance between circles indicated the difference between
and within groups. The closer the circles, the higher the similarity. When considering PTL
and UTL at the same time point, PTL was closer to FTL than UTL from 2 h to 6 h. The
distance between PTL and FTL was much shorter than that between UTL and FTL after 2 h,
whereas the distance difference was not apparent after 12 h, indicating that the quality of
PTL was most similar to FTL in the 2 h to 6 h period.
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3. Materials and Methods
3.1. Plant Materials and Sampling

The elite tea plant cultivar used in the present study, ‘Yinghong 9′, was planted in
Yingde, Guangdong province, China (24.20◦ N, 113.40◦ E). One bud and two leaves without
red stain or charred edges were plucked in August 2021. Eight kilograms of fresh tea leaves
were stored in a temperature and humidity control chamber (Yishi Technology Co., Ltd.,
Hangzhou, China) at 15–18 °C and 85–95% relative humidity (PTL), and another 8 kg of
fresh tea leaves were placed at ambient conditions, at 24 ± 2 ◦C with a relative humidity of
65 ± 5% (UTL). Each treatment (PTL and UTL) was sampled in triplicate at 0, 1, 2, 4, 6, 12,
and 24 h after plucking, and placed at −80 ◦C until the analysis of flavor compounds and
gene expression. Fresh tea leaves (FTL) served as the positive control.

3.2. Measurement of Water Content

The water content of FTL was detected using the suggested protocol from the Chinese
National Standard GB/T8304-2013 (General Administration of Quality Supervision, In-
spection, and Quarantine of the People’s Republic of China, 2013) [21] with minor changes.
Briefly, a clean aluminum box was dried at 103 ◦C± 2 ◦C with the cover slanted on the edge
of the box for 1 h, cooled in a desiccator to room temperature, and weighed (m1, accurate
to 0.0001 g). Then, approximately 4 g of FTL (m0) were placed in the pre-dried box and
put in the desiccator at 120 ◦C for 2 h with the cover slanted on the edge of the box. After
capping the box, samples were cooled in the desiccator to room temperature and weighed
(m2, accurate to 0.0001 g). Finally, the sample was baked for another hour and weighed
(m3, accurate to 0.0001 g) until the difference in weight between m2 and m3 did not exceed
0.0050 g. All samples were weighed on an electronic scale (BSA224S-CW, Sartorius). The
water content of the samples was calculated as: water content (%) = (m2−m1)/m0 × 100%.

3.3. Measurement of Color Difference

The color of the tea leaves was determined using a chromameter CR-400 (Konica
Minolta, Tokyo, Japan). The color was measured according to the international commission
on an illumination color solid scale (CIE: L*a*b*): L* indicates lightness, a* stands for red (+),
and green (−), and b* indicates yellow (+) and blue (−) [22,23]. The total color difference
(∆E) was calculated as follows:

∆E =

√
(Lss − Lts)

2 + (ass − ats)
2 + (bss − bts)

2
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where Lss, ass, and bss represent the standard sample (FLT), and Lts, ats, and bts represent the
test sample. Color difference was classified by the following scale: when ∆E < 1, the color
difference was not noticeable; when 1 < ∆E < 2, the color difference was only noticeable
by experienced observers; when 2 < ∆E < 3.5, the color difference was noticeable by
inexperienced observers; and when 3.5 < ∆E < 5, the color difference was pronounced [24].

3.4. Measurement of Chlorophyll Fluorescence (Fv/Fm)

The maximum photochemical efficiency of PSII (Fv/Fm) was measured with
an IMAGING-PAM chlorophyll fluorescence system (Heinz Walz GmbH, Effeltrich, Germany)
using default parameters according to Yu’s [25]. After tea leaves adapted to the dark for
20 min, Fo was measured. Then, a one-second saturation pulse occurred that completely
closed all PSII receptors, and Fm was measured. The maximum photosynthetic efficiency
(Fv/Fm) was calculated as:

maximum photosynthetic efficiency (Fv/Fm) = (Fm − Fo)/Fm

3.5. Quantification of Caffeine Contents

Caffeine standards were purchased from Beijing Weiye Research Institute of Metrology
and Technology (Beijing, China). Caffeine content was detected by HPLC-UV/Vis spec-
trometry according to the Chinese National Standard (GB/T 8312-2013) [26] with changes.
Freeze-dried tea powder (0.1 g) was extracted with 30 mL 1.5% magnesium oxide in ul-
trapure water (w/v) at 100 ◦C for 30 min. One mL of the liquid supernatant was filtered
through a 0.22 mm Millipore membrane, and 10 µL of the filtrate was injected into an
XSelect HSS C18 SB column (4.6 × 250 mm, 5 mm, Waters Technologies, Milford, MA, USA)
at a flow rate of 0.9 mL/min, with the column at 35± 1 ◦C. Caffeine was detected at 280 nm
on a Waters Alliance E2695 equipped with a 2489 UV/Vis detector (Waters Technologies,
Milford, MA, USA). The mobile phases consisted of 100% methanol (A) and 100% ultrapure
water (B). Compounds were eluted under isocratic conditions: 30% A and 70% B.

3.6. Quantification of Theanine Contents

Theanine standards were purchased from Shanghai Yuanye Bio-Technology Co., Ltd.
(Shanghai, China). Theanine content was detected by HPLC-UV/Vis spectroscopy accord-
ing to the Chinese National Standard (GB/T 23193-2017) [27] with a Waters Alliance E2695
equipped with a 2489 UV/Vis detector (Waters Technologies, Milford, MA, USA). Fine
freeze-dried tea powder (0.1 g) was extracted with 10 mL ultrapure water at 100 ◦C for
30 min. One mL of the liquid supernatant was filtered through a 0.22 mm Millipore mem-
brane, and 10 µL of each filtrate was injected onto an RP-C18 column (250 mm × 4.0 mm,
5 µm) maintained at 35 ± 1 ◦C. The mobile phases consisted of 100% ultrapure water (A)
and 100% acetonitrile (B). The flow rate was 0.5 mL/min, and the HPLC program was
as follows: 100% solvent B from 0–12 min, 100% B to 20% B from 12–14 min, 20% B from
14–19 min, 20% B to 100% B from 19–20 min, and 100% B from 20–25 min. Theanine was
detected at 210 nm.

3.7. Quantification of Catechin Contents

Catechin (C), epicatechin (EC), gallocatechin (GC), epigallocatechin (EGC), epicatechin
gallate (ECG), gallocatechin gallate (GCG), and epigallocatechin gallate (EGCG) standards
were purchased from Shanghai Yuanye Bio-Technology Co., Ltd. (Shanghai, China). C, EC,
GC, EGC, ECG, GCG, and EGCG contents were detected by HPLC-UV/Vis spectroscopy
based on GB/T 8313-2018 [28,29]. Briefly, 0.2 g fine freeze-dried tea powders were extracted
with 8 mL 70% methanol. One mL of the supernatant was filtered through a 0.22 mm
Millipore membrane, and the filtrate was injected into an XSelect HSS C18 SB column
(4.6 × 250 mm, 5 mm, Waters Technologies, Milford, MA, USA). Catechin monomers were
eluted with 0.1% aqueous formic acid (A) and 100% acetonitrile (B) as the mobile phases,
using a gradient elution program. For the first five minutes, the mobile phase was 8% B;
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then from 5 min to 14 min, B was increased from 8–25%; finally, B was decreased from
25–8% from 14–30 min. Catechins were detected at 280 nm.

3.8. Analysis of Microextraction Compounds

Head-space solid-phase micro extraction/gas chromatography–mass spectrometry
(HS-SPME/GC-MS) was used to analyze volatile compounds [17]. Briefly, 0.2 g FTL
powders spiked with 10 µL internal standard solution (8.64 µg/mL ethyl decanoate
in dichloromethane) was added to a 2 mL NaCl saturated solution in a 15 mL head-
space vial (Agilent, MA, USA). The head-space vials were sealed with seal caps, and
tin foil paper tied with adhesive tape was placed over the sealed cap. A divinylben-
zene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber (50/30 µm inner diam-
eter, 2 cm length) (Supelco, Darmstadt, Germany) was inserted into the head-space vial
containing the sample for 40 min at 80 ◦C. After microextraction, the fiber was kept
in the GC port for desorption for 3 min. An Agilent GC-MS 1890B-5977A (Agilent,
Santa Clara, CA, USA) was employed for volatiles analysis. The HP-5MS chromatographic
column (30 m × 0.25 mm × 0.25 µm) was loaded with high purity helium at a flow rate
of 1.0 mL/min. The inlet and interface temperatures were 250 ◦C; the oven temperature
was maintained at 50 ◦C for 1 min and then increased to 220 ◦C at a rate of 5 ◦C/min
for 5 min. Ion source electron energy and temperature were 70 ev and 230 ◦C, respec-
tively. Mass spectra were acquired in splitless mode within the mass range of 30–400 amu.
Volatile compounds were identified based on their retention indices (RI) and similarity to
spectra within the NIST 14 database. The retention times of standard saturated C9-C29
n-alkanes were analyzed under the same conditions to calculate RI. Volatile compounds
with mass spectral match factors over 75 and differences between RI and RIs less than
30 were deemed acceptable.

3.9. Analysis of Gene Expression

Total RNA was extracted using a HiPure Plant RNA Mini Kit B (Magen, Guangzhou,
China) according to the manufacturer’s instructions. cDNA synthesis was performed by
reverse transcription of screened RNA in accordance with the protocol for the HiScript®

III RT SuperMix for qPCR (+gDNA wiper) (Vazyme, Nanjing, China). qRT-PCR was
performed with a BioRad CFX384TM Real-Time System (Bio-Rad, Hercules, CA, USA)
under the following operating conditions: 95 ◦C for 5 min, 40 cycles of 95 ◦C for 10 s,
55 ◦C for 10 s, and 72 ◦C for 30 s. Actin was used as the internal reference, and the relative
expression levels were calculated using the 2−44CT method [30]. Primers used in this
study are listed in Supplementary Table S1.

3.10. Statistical Analysis

Excel 2019 (Microsoft, Washington, DC, USA) was used to process the data. Heat
maps and principal component analysis (PCA) were generated with GraphPad Prism 9.0
(GraphPad Software, San Diego, CA, USA). Dunnett’s multiple comparisons and t-test, also
calculated by GraphPad Prism 9.0, were used to analyze the statistics, and differences were
considered statistically significant when p < 0.05 (*).

4. Discussion

In green tea production, which does not include fermentation, the optimal choice is to
process fresh tea leaves immediately postharvest [31]. However, many fresh tea leaves are
picked simultaneously in spring, and it is not feasible to process them in time before quality
begins to deteriorate [32]. This poses a problem for producers: how to store postharvest
fresh leaves to maintain leaf quality? Therefore, it is necessary to determine best practices
for storing fresh leaves postharvest to ameliorate the effects of processing delay on tea
quality [5]. Low temperature and high relative humidity are key factors that affect the
quality of horticultural products. In this study, postharvest tea leaves were stored for 24 h
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under preserved or unpreserved conditions to compare the preservation effect, which was
assessed with physiological and biochemical indexes.

Fresh tea leaves adjust their physiological conditions to adapt to different storage
environments by absorbing and releasing water; thus, water content is one of the essential
factors affecting the postharvest preservation of tea leaves. In this study, we found that PTL
maintained a high level of water, which was close to the initial stage. The water contents
of UTL decreased more than PTL after 24 h (75.77% vs. 77.15%, respectively), and the
difference between the two groups was significant (p < 0.05). A previous study showed
that, after 6 h, the water content of tea leaves decreased to 63.8–68.1% [17]. The relatively
high water content in UTL from this study might have been caused by the storage method:
we kept fresh leaves in a basket without spreading, which probably slowed down water
loss. Furthermore, the atmospheric humidity during storage of the UTL was somewhat
high (60%~70%), which may have inhibited the transpiration rate of the tea leaves during
the 24 h storage period [33,34]. Even though the water content showed little overall change
in the two groups, low temperature (15–18 ◦C) and high humidity (85–95%) for PTL had
a substantially better preservation effect, as indicated by ∆E and Fv/Fm (Figure 1B,C).

Caffeine, theanine, catechins, and aroma volatiles are essential for tea quality and
market value; their contents determine the color, freshness, strength, and aroma of tea [35].
Caffeine, responsible for the refreshed feelings tea can bring, is the main tea alkaloid
accounting for 2–4% of tea dry weight [20]. Theanine contributes sweet and savory tastes,
while catechins are responsible for the color, bitterness, and astringency of tea [2]. In
a previous study, harvested tea leaves underwent a processing delay of 6, 12, 18, or 24 h
at temperatures of 0, 5, and 25 ◦C to investigate the effect of postharvest processing and
storage of Japanese-style green tea [5]. Analyzed green tea constituents included theanine,
caffeine, and catechins. These metabolites displayed a substantial decrease when tea was
stored at 25 ◦C postharvest. However, in this study, it seemed the decreased level of
these metabolites was less than that measured in previous studies. The disparity may be
attributed to the specific tea cultivar, or to conditions other than temperature that differed
(e.g., the relative humidity). Aromatic components, such as 1-octen-3-OL, β-ocimene, cis-
β-farnesene, and cedrol, significantly increased in PTL, consistent with previous studies
employing low temperature conditions [8,36]. The patterns of changes to caffeine, theanine,
and catechin content were distinctly different between PTL and UTL over the 24 h period.

To further understand the molecular mechanisms behind these metabolic differences,
qRT-PCR was used to detect changes in the expression of CBGs, FBGs, TBGs, and TPSGs
during storage. Interestingly, the expression levels of some genes were consistent with the
measured contents of metabolites, such as FAS, which was correlative to the β-farnesene
content, and TSI, which had the strongest correlation to theanine content. However, the
expression levels of TCS1 and TCS2 were inconsistent with the caffeine content. We
speculate that the high caffeine content was due to the transformation of other tea alkaloids
into caffeine instead of de novo biosynthesis during preservation, but this needs to be
further addressed.

The physiological and biochemical indexes of tea cultivar ‘Yinghong 9′ were used to
evaluate the ability of preservation under low temperatures and high humidity to maintain
the quality of tea leaves postharvest. Through a comprehensive assessment by PCA, we
found that the preservation effect of PTL took effect from 2 h to 6 h. However, future studies
using prolonged storage time and measuring a larger number of substances and genes are
necessary to further explore the induction mechanism of low-temperature preservation.

5. Conclusions

In summary, our study combined metabolic phenotypes and gene expression to
analyze physiological changes and evaluate the effects of postharvest tea leaf preservation.
The inhibition of water evaporation in PTL did not lead to a sudden drop in water content,
and ∆E and Fv/Fm data during the period of storage showed that the PTL had a lower
degree of damage than UTL. The contents of secondary metabolites varied significantly
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according to storage mode and time. Volatile aroma components 1-octen-3-ol, β-ocimene,
cis-β-farnesene, and trans-β-ionone were the main increased components in PTL, and it
was shown through comprehensive judgment that PTL maintained a preferable cedrol.
Moreover, the biosynthetic genes were linked to the synthesis of metabolites and terpenes,
so at the molecular level, we found that CsFAS in TPSGs and CsTSI in TBGs showed
the same trend as farnesene and theanine, indicating that the synthesis of farnesene and
theanine were regulated by the above genes, respectively. Prime freshness was found
during the period of 2 h to 6 h, which provides a storage time scheme for preserving fresh
tea leaves in short time for production.

Supplementary Materials: The following supporting information can be downloaded online. Ta-
ble S1: PCR primers used for gene expression analysis; Figure S1: Changes in the values of L* (A),
a* (B), and b* (C) in UTL and PTL at different time points and FTL at 0 h. Figure S2: Total volatile
compounds (A) and aroma compounds (B) contents in FTL, UTL, and PTL at 24 h postharvest.
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Abbreviations

PTL preserved tea leaves;
UTL unpreserved tea leaves;
FTL fresh tea leaves;
GB/T8304-2013 Tea-Determination of Moisture Content;
Fv/Fm maximum photosynthetic efficiency;
Fm maximum fluorescence;
Fo minimum fluorescence;
HPLC High Performance Liquid Chromatography;
GB/T 8312-2013 Tea-Determination of Caffeine Content;
GB/T 8313-2018 Determination of total polyphenols and catechins content in tea;
C catechin;
EC epicatechin;
GC gallocatechin;
EGC epigallocatechin;
ECG epicatechin gallate;
GCG gallocatechin gallate;
EGCG epigallocatechin gallate;

HS-SPME/GC-MS
Headspace Solid Phase Micro Extraction/ Gas
Chromatography-Mass Spectrometry;
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DVB/CAR/PDMS divinylbenzene/carboxen/polydimethylsiloxane;
RI retention indices;
RIs retention indices with the values provided by the NIST 14 database;
MS mass spectrum comparison using NIST 14 library;
qRT-PCR quantitative real-time PCR;
PCA principal component analysis;
CD Cyclopentasiloxane, decamethyl-;
PAIOE Phthalic acid, isobutyl octyl ester;
CBP Cyclohexyl butyl phthalate;
DTBODDD 7,9-Di-tert-butyl-1-oxaspiro (4,5) deca-6,9-diene-2,8-dione;
MH Methyl hexadecanoate;
DP Dibutyl phthalate;
CBGs catechin biosynthesis genes;
FBGs caffeine biosynthesis genes;
TBGs theanine biosynthesis genes;
TPSGs terpene synthesis genes;
FAS farnesene synthase;
LMS limonene synthase;
GDS germacrene D synthase;
MVD mevalonate-5-pyrophosphate decarboxylase;
HDR 4-hydroxy-3-methylbutenlyl diphosphate reductase;
TPS78 terpene synthase 78;
TPS77 terpene synthase 77;
TCS1 tea caffeine synthase 1;
TCS2 tea caffeine synthase 2;
AlaDC alanine decarboxylase;
TSI theanine synthetase;
GS2 glutamine synthetase 2;
F3’5’H flavonoid 3’,5’-hydroxylase;
F3H flavonoid 3-hydroxylase;
LAR leucoanthocyanidin reductase;
ANR anthocyanidin reductase;
SCPL1A7 serine carboxypeptidase-like acyltransferases 7;
PC1 the first Principal Component;
PC2 the second Principal Component.
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