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Abstract: In this article we report on a 3 × 3 mm tactile interaction sensor that is able to simultane-
ously detect pressure level, pressure distribution, and shear force direction. The sensor consists of
multiple mechanical switches under a conducting diaphragm. An external stimulus is measured by
the deflection of the diaphragm and the arrangement of mechanical switches, resulting in low noise,
high reliability, and high uniformity. Our sensor is able to detect tactile forces as small as ~50 mgf
along with the direction of the shear force. It also distinguishes whether there is a normal pressure
during slip motion. We also succeed in detecting the contact shape and the contact motion, demon-
strating potential applications in robotics and remote input interfaces. Since our sensor has a simple
structure and its function depends only on sensor dimensions, not on an active sensing material, in
comparison with previous tactile sensors, our sensor shows high uniformity and reliability for an
array-type integration.

Keywords: digitized output; tactile sensor; pressure sensor; shear sensor

1. Introduction

The tactile sense of human fingers plays an essential role in object manipulation and
interaction with a contacting object. When we make contact with an object, we can recog-
nize its texture and shape through the mechanoreceptors distributed under the skin [1].
We can also grip and manipulate objects using appropriate grip forces from monitoring
the slip motion of the object [2]. Various tactile sensors have been developed for robotics
and biomedical applications that have the ability to detect pressure magnitude, pressure
distribution, and slip, similar to the human tactile senses [3–5]. The previously reported
tactile sensors mainly focus on pressure detection, and they have demonstrated extremely
high pressure sensitivity, enough to detect insects landing [6–8] or to recognize object
shapes using a sensor array [9–11]. However, for robotics and biomedical applications,
shear detection is required as well as the detection of pressure and its distribution for object
identification or object manipulation without slip [12]. Many sensors developed so far have
simultaneous sensing abilities on vertical and shear forces, but they do not discriminate
them [13–15]. To resolve this issue, integrated sensor systems have been developed to
distinguish the pressure and shear stress, utilizing mechanisms such as differential capaci-
tance depending on force directions [16–18], a bump structure discriminating torsional or
non-torsional strain [19–21], or piezo-resistive response difference determined by cantilever
or beam deflection direction [22,23].

The tactile sensors with high sensitivity are based on nanomaterials, for example,
carbon nanotubes or graphene as active sensing materials [24–26]. These nanomaterials
showed high resistance change ratios on external stimulus; however, they lack applicability
due to issues of non-uniformity and non-reproducibility [27]. In addition, in the case of
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capacitor type sensors, there were cross-talk and noise issues for measuring low magnitude
stimulus at high spatial resolution [28]. They are prone to environmental charge and have
structural complexity. Thus, reliability against noise and structural simplicity are required.

In this report, we introduce a tactile interaction sensor (TIS) that can simultaneously
detect contact pressure, contact shape, and shear direction. The TIS sensor consists of pres-
sure sensors and shear sensors based on mechanical switches under diaphragm deflection.
Under the diaphragm, there are multiple switches so that a larger stimulus results in a
larger contact area between the diaphragm and the bottom substrate and a larger number
of shorted switches, producing larger output current levels. Mechanical switches have
intrinsically large signal-to-noise ratio and high reliability, so are thus less susceptible to
environment issues. We integrated multiple pressure sensor and shear sensor units on the
TIS within a 3 × 3 mm area. The TIS is also effective in the recognition of a contacting
material’s shape and its movement in real time.

2. Device Design and Operating Mechanism

This TIS was designed based on our previous reports utilizing mechanical switches
under diaphragm deflection [29,30]. To simultaneously detect shear direction and pressure
distribution at millimeter scales, we integrated four pressure sensor units and three shear
sensor units on TIS within a 3 × 3 mm area. Figure 1a shows a schematic diagram of the unit
structure of the pressure sensor based on a mechanical switch under diaphragm deflection.
The top layer is a PDMS diaphragm, and graphene is at the bottom surface of the diaphragm
as a flexible electrode. The bottom structure consists of a spacer pit, a ground electrode, and
spatially digitized contact electrodes (CEs) with individually associated resistors. As seen in
Figure 1a, when vertical pressure is applied to the sensor, the PDMS diaphragm is deflected
into the pit. Depending on the pressure, the number of CEs shorted with the ground
electrode is determined, and a proportional current level is generated. In comparison to
our previous sensor [29], the base sensor structure having a conducting diaphragm and
CEs is similar. However, in this study we utilized graphene, not metallic thin-film, as the
electrode under the diaphragm to improve the operating mechanical reliability on repetitive
diaphragm deflection. If a metal electrode is used instead of graphene, the repetitive
deflection of the diaphragm can generate cracks, reducing sensor reliability.
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Our pressure sensor function depends only on the number of the conducting paths,
not on the active sensing material. Therefore, our sensor has a large signal-to-noise ratio, is
reliable, and is less susceptible to environmental changes. Our sensor can also be tailored
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in terms of sensing range and sensitivity. According to diaphragm deflection theory [31],
diaphragm deflection magnitude depends on the pit diameter, diaphragm thickness, and
diaphragm modulus. The diaphragm deflection magnitude and the gaps between the
ground electrode and the CEs determine threshold pressures for generating conducting
paths. Therefore, the sensitivity and the sensing range can be tailored by controlling the
diaphragm parameters and the CEs arrangement.

The shear sensor has a similar structure to the pressure sensor; however, a central
spacer and a ridge structure are added (Figure 1b). Shear forces applied to the ridge
structure generate a torque around the central spacer, which acts as the axis of rotation, and
the torque is converted to a vertical pressure, creating diaphragm deflection. Two opposing
sensing elements that are separated by the central spacer are connected with their associate
resistors with different resistances. Thus, the shear direction can be detected from different
current levels. In this study, to increase shear transfer characteristics, we used a PDMS
layer with low modulus and an SU-8 ridge structure with high modulus [32].

3. Device Fabrication
Fabrication Process

The fabrication processes of the TIS can be divided into two parts: one for the top
structure (Figure 2a–h) and the other for the bottom structure (Figure 2i–k). First, the
graphene grown on Cu foil (Graphene Square Inc., Seoul, Korea) was attached on a PET film,
and Au align marks for the subsequent lithography process were formed on graphene/Cu
foil using thermal evaporation with a stencil mask. The graphene on Cu foil was patterned
by an O2 plasma etching process. Then, the PDMS base with mixed cross-linker was poured
on the patterned graphene and cured. The volume of the poured PDMS was controlled to
form a 50-µm-thick PDMS. After etching the Cu foil using a copper etchant, the patterned
graphene was transferred to the PDMS layer [33,34]. Commonly, graphene is patterned after
the wet transfer method using PMMA; however, in this study graphene was transferred to
PDMS after patterning to prevent ripples and cracks in the graphene due to the chemical
swelling effect of the PDMS layer during the development in the lithography process [35].

The PDMS layer with patterned graphene was fixed to a glass supporting substrate
using water-soluble polyvinyl alcohol (PVA). PVA prevents the graphene from transferring
to the glass supporting substrate during subsequent baking and lithography processes
using SU-8 for fabricating the ridge and bump structures. PVA has high chemical resistance
to SU-8 and the SU-8 developer. The top surface of the PDMS layer was treated using
oxygen plasma for better adhesion with an SU-8 2002 thin (2 µm) film coating. This SU-8
2002 thin layer works as the adhesive layer between the PDMS and the following second
SU-8 2075 layer. The 75 µm of the second SU-8 2075 layer was spin-coated, and SU-8 ridges
and bumps were fabricated using optical lithography. Finally, the PVA sacrificial layer was
removed using deionized water and a 100 nm Pt film was deposited following the shape
of the patterned graphene. A Pt electrode was used for increasing the conductivity of the
flexible graphene electrode, similar to a previously reported hybrid layer [36,37].

The bottom structure fabrication process begins with the defining of tungsten oxide
(WOx) resistors on an Si substrate using optical lithography (Figure 2i). The WOx resistors
were fabricated by sputtering tungsten in oxygen atmosphere. After forming a 2-µm- thick
SU-8 spacer, Cr/Au (20 nm/100 nm) electrodes were evaporated as contact electrodes.
Finally, the fabricated top and bottom structures were combined.

Figure 3a shows an optical image of the fabricated bottom structure of TIS. The TIS is
composed of a center pressure sensor (Pcenter) with higher sensitivity than that of the three
outer pressure sensors (Ptop, Pleft, and Pright), and the three shear sensors (Sa, Sb, and Sc).
All of the pressure and shear sensors are located inside a 3 × 3 mm area on a single chip. As
seen in Figure 3b, the shear sensor consisted of two 120 × 900 µm pits and a 60-µm-wide
central spacer, which acts to divide the outward sensor and the inward sensor. The contact
electrodes (yellow) and the ground electrode (green) were designed as a comb structure for
detecting the shear in any region of the shear sensor.
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Figure 3. The image of the fabricated TIS: (a) an optical image of the bottom substrate with four pressure sensor units
(Pcenter, Ptop, Pleft, and Pright) and three shear sensor units (Sa, Sb, an Sc); the false color SEM image of (b) a shear sensor
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The pit diameter of the pressure sensor with higher sensitivity (Figure 3c) and lower
sensitivity (Figure 3d) were designed to be 300 and 200 µm, respectively. The gaps between
CEs are 15 µm. The CEs in the pressure sensor are arranged in a spiral to reduce the overall
size of the individual sensor within a 0.3 mm2 area. For the mechanical and chemical
stability of WOx resistors, the resistors are placed under the SU-8 spacer. The resistance of
the resistors are 39 kΩ (red) and a 2-µm-thick SU-8 spacer is used for all of the pressure
and shear sensors. In the case of the shear sensor, a 33 kΩ additional resistor is connected
with the outward sensor, and the inward sensor and the outward sensor are connected
in parallel, enabling discrimination between the outward and inward shear stresses by
measuring the output signals of the shear sensors.

Figure 3e shows the fabricated top structure of the TIS. The top structure is composed
of a 50-µm-thick PDMS, and the thicknesses of the SU-8 bump and the ridge structure
are 75 µm. The diameters of the bump structure in the center pressure sensor and the
outer pressure sensor were fabricated to be 400 and 300 µm, respectively. The bump
structure improves the pressure sensitivity by localizing the contact stimulus to the pit
area [38,39]. As seen in Figure 3f, the clearly patterned graphene with no ripple and
crack was transferred to the underside of the PDMS layer. The fabricated top and bottom
structures were aligned and attached (Figure 3g). Finally, the fabricated TIS was loaded on
a chip mount for operation, as shown in Figure 3h.

4. Operating Characteristics

Figure 4 shows the responses of the four pressure sensors under 1 V bias and uniform
pressure application over the entire device area using a 1 × 1 cm pressure tool and a
motorized stage with a pressure sensor. The pressure sensors showed fully digitized
output characteristics with five current steps of 25 µA depending on the applied pressure.
Pcenter produced an earlier response due to its lower pressure threshold by the larger pit
diameter, and the rest of pressure sensors (Ptop, Pleft, and Pright) showed higher thresholds,
as designed. The Pcenter had a 4 kPa threshold pressure, which corresponds to ~0.5 mN
or ~50 mgf. When 100 kPa of pressure, which is above the sensing range of the pressure
sensor, was applied to a graphene layer, the resistance change was estimated to be about
0.59% [40]. Therefore, we assumed that the measured results were not affected by any
fluctuation in the graphene resistance. In the pressure sensors (Ptop, Pleft, and Pright),
only 3% current variation was observed, which may be due to misalignment during the
lithography processes. This variation can be compensated by using a lithography process
with high resolution or a software-based calibration technique.
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In our previous work, our sensor structure showed high stability in the output current
magnitude due to the reliable contact switching between the top electrode and CEs [29].
Thus, the pressure sensors possess output reliability and uniformity in the designed
pressure sensing range.
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In this study, our pressure sensor units showed a non-linear relationship between
pressure and current. This non-linear relationship was caused by the non-linearly deflecting
diaphragm, depending on linearly applied pressure, making contact with uniformly spaced
CEs. Each pressure level showing stepped output could be tailored by controlling the
distance between CE and the pit center. Therefore, by designing the CEs to have a smaller
gap, the farther they are from the pit center, a linear output characteristic is produced; by
designing a larger number of CEs and smaller gaps between CEs overall, a more continuous
output characteristic can be attained [29].

Next, we tested the shear detecting characteristics of the shear sensor. The shear
sensor was able to detect shear direction through the different current levels between
inward and outward output currents. Figure 5a shows the responses of the three shear
sensors when a paintbrush scanned, by hand, in both directions along the b-axis (from top
to bottom in Figure 3a) without vertical pressure. In the case of sensor Sb, 5 µA current was
produced when the brush passed in the inward direction, whereas 14 µA was produced
for the outward direction. Therefore, from the magnitudes of the current spikes, the shear
direction could be determined. As shown, there was no cross-talk between Sb with Sa and
Sc when the brush scanned along the b-axis directions.

Figure 5. The shear-dependent output characteristics of the shear sensor units: (a) the measurement outputs of shear sensor
units obtained from brush strokes shown in the inset; (b) the measurement output of shear sensor units obtained from PET
strip scanning with vertical pressure.

Figure 5b shows the shear response of Sb when a PET strip was scanned in both
directions along the b-axis with applied pressure and 1 mm/s scanning speed using a
motorized stage. Unlike Figure 5a, the shape of the output signal shows three clearly
distinctive current levels (A, B, and C in Figure 5b). In the case of pressurized slip, because
the vertical pressure was dominant over the torque of the ridge, the inward shear sensor
produced a current signal first, although the shear occurred along the outward direction
(A phase). As the PET tip passed the ridge, the highest current level was observed due to
the simultaneous operation of inward and outward shear sensors (B phase), and finally,
only the outward sensor produced a current signal in the C phase. In the case of the inward
direction scan, C phase appears first, and B and A phases follow sequentially. Thus, we
concluded that our shear sensor can not only detect the direction of shear but also the
presence of vertical pressures.

5. Shape and Motion Detection

TIS, which integrates four pressure sensors and three shear sensors, can recognize the
shape and motion of contacting objects. For these measurements, we used the measurement
setup shown in Figure 6a. The contact object was fixed to the motorized stage, and each
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sensor was connected with a source meter unit. The measurement program showed the
measured current levels of pressure sensors as a color contour map, and the shear direction
as a red arrow. Figure 6b–d shows the responses of the TIS under three different contacting
objects: an aluminum box, a silicone sphere, and a 3D-printed hollow triangle smaller than
a centimeter. Comparing the results of the sphere and the box, the sphere showed a lower
current level of the outer pressure sensors than the box. This result verifies that our sensor
discriminates between spherical and flat contact surfaces. In the measurement result of
the hollow triangle, no current level in the center pressure sensor was observed to indicate
that the contact object had a hollow structure. The current contour maps confirm that
the distribution and magnitudes of the output signals provide information on the contact
object shape. In this study, we designed the sensor dimension for approximately detecting
contact shape with about 1 mm spatial resolution. Due to its structural advantage of having
no dependency on active sensing materials, high spatial resolution for detailed shape
detection can be easily attained while maintaining the uniform operating characteristics
just by scaling sensor dimensions using a lithography process with higher resolution.
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Figure 7 shows the output signals of the TIS when the sphere in Figure 6c slid on the
TIS from left to right with a 0.167 mm/s scanning speed. As shown in Figure 7a, the se-
quential pressure sensor output signals precisely corresponds to the position of the sphere.
Figure 7b shows the output current of the three shear sensors measured simultaneously
with the pressure sensors. We observed step-wise outputs from Sa and Sc, similar to that
shown in Figure 5b, and a single current step from Sb. These results confirm that there was
a pressurized slip along the right direction. The variations in each shear sensor produce
temporal profiles of signals, hinting at the shape of the contacting object at each moment.
For example, at the moment designated by the vertical dashed green line in Figure 7b, we
can estimate the location and the elliptical shape (red circle) of the contacting object. During
the sliding, we can assume that the elliptical contact shape is caused by the compressive
deformation of the silicone sphere due to the surface friction. The shear direction can be
detected from the current level change of many pressure sensors, as shown in Figure 7a;
however, it is difficult to detect non-pressurized shear using only pressure sensors. For
robotics and biomedical applications that require identification and manipulation of objects,
shear sensors and pressure sensors must be integrated together. Video S1 and Figure S1
in the Supplementary Data includes the real-time output of the TIS during the measure-
ments shown in Figure 7a,b. We also tested the detection characteristics on pressurized
clockwise and counter-clockwise circular motions. We found that the TIS sensor can detect
pressurized circular motion with fast response characteristics (Videos S2 and S3).
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Figure 7. The output characteristic of the TIS depending on the sliding motion of a silicone sphere: (a) the measurement
output of pressure sensor units, where the inset shows the variation in the current contour maps; (b) the measurement
output of shear sensor units, where the inset shows the predicted contact shape at ~23 s (green dash line). These real-time
measurement results are also shown in video S1.

6. Discussion

The TIS has several advantages over previous tactile sensors in power consumption,
reliability, and simplicity. TIS has low power consumption due to its structural feature
composed on mechanical switches. In the absence of an external stimulus, the diaphragm
does not make contact with the CE, and hence, there is no standby power loss at the sensor.
In this study, our sensor showed ~33 dB of high signal-to-noise ratio (estimated from
current measurements under constant stimulus). Therefore, it would be possible to further
decrease the operating power consumption of the TIS by decreasing the supply voltage
and increasing the resistance of the resistors connected with the CEs to a value where the
resulting measurement noise does not exceed the step current distinguishing each detected
pressure level.

The operating uniformity and reliability of a tactile sensor are essential factors required
for forming a sensor array. In the cases of piezoresistive and capacitive tactile sensors,
the operating uniformity and reliability of these types heavily depend on the electro-
mechanical uniformity and reliability of the active sensing material. In particular, where
novel nanomaterials with high sensitivity are used as the active sensing material, it is
difficult to secure uniform electrical properties over a large area to form arrays of sensors.
In comparison, the operating characteristics of our sensor using no active sensing material
depend only on the designed sensor dimension. Therefore, the operating uniformity and
reliability can be easily secured even if it is configured as an array. The TIS has a simple
structure, fabrication process, and read-out circuit compared to MEMS-type tactile sensors.
MEMS tactile sensors have been widely used in robotics and electronics owing to their
high reliability; however, their fabrication process is complex and expensive. Especially,
capacitive MEMS tactile sensors need complex readout circuits to prevent operational and
environmental noise. However, our sensor’s simple structure allows it to be fabricated
by a simple process at low cost, and our sensor’s high signal-to-noise ratio only needs a
relatively simple readout circuit.

In our sensor structure, the number of sensing levels is determined by the number
of arranged CEs, so it may be a limitation on applications that require readout of the
timely display of numerical tactile pressure values. This limitation may be overcome by
increasing the number of arranged CEs with closer spacing and reduced width. However,
the ability to directly distinguish small spatial differences in tactile stimuli levels and the
high reliability with high signal-to-noise ratio may allow the TIS to function as a stimuli
magnitude level indicator for systems that utilize predesignated stimuli as highly reliable
triggers for a desired action command.



Sensors 2021, 21, 4274 9 of 11

The TIS is designed for detecting light touches in a 50~200 mgf range of contact
pressure. This sensing range can be easily tailored by controlling the diaphragm dimension,
the position of the CEs, and the number of the CEs for a particular application. The shear
sensor of the TIS shows the ability to detect minimum pressure shear and its direction.
In a typical biomedical application, recognition of shear stresses arising from contacting
object slip would be desired rather than knowing the absolute magnitude of shear stress for
material identification, thus triggering a motor response to increase grasp strength [12]. If
necessary, the shear force magnitude can be detected through a simple process of increasing
the number of CEs [30]. Since the TIS with a small active sensing area detects pressure
level, pressure distribution, and shear forces direction, it may be possible to integrate it on
a minimally invasive surgery robot [41], a prosthetic hand [42], and even a remote input
interface that can be worn on the thumb.

7. Conclusions

We developed a tactile interaction sensor with four pressure sensor units and three
shear sensor units integrated within a 3 × 3 mm area on a single chip. The sensing
range and sensitivity of the sensor may be controlled by adjustment of the component
dimensions and the arrangement of spatially digitized contact electrodes, resulting in
an integrated sensor with low noise, high reliability, and high uniformity. Our pressure
sensors possess high sensitivity, enough to detect an ~50 mgf light touch. Our shear sensors
show the ability to discriminate shear direction and detect whether there is additional
pressure. We demonstrated that the TIS can detect various contact shape and motion.
With further developments, the TIS may be applicable to future robotic fingers and remote
input interfaces.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s21134274/s1, Figure S1: Explanatory diagram of the screen composition of video clip, Video S1:
Slip detection, Video S2: Clockwise motion detection, Video S3: counter-clockwise motion detection.
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