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Abstract: This paper revisits the stationary attitude initialization problem, i.e., the stationary align-
ment, of Attitude and Heading Reference Systems (AHRSs). A detailed and comprehensive error
analysis is proposed for four of the most representative accelerometer- and magnetometer-based sta-
tionary attitude determination methods, namely, the Three-Axis Attitude Determination (TRIAD), the
QUaternion ESTimator (QUEST), the Factored Quaternion Algorithm (FQA), and the Arc-TANgent
(ATAN). For the purpose of the error analysis, constant biases in the accelerometer and magnetometer
measurements are considered (encompassing, hence, the effect of hard-iron magnetism), in addition
to systematic errors in the local gravity and Earth magnetic field models (flux density magnitude,
declination angle, and inclination angle). The contributions of this paper are novel closed-form
formulae for the residual errors (normality, orthogonality, and alignment errors) developed in the
computed Direction Cosine Matrices (DCM). As a consequence, analytical insight is provided into
the problem, allowing us to properly compare the performance of the investigated alignment formu-
lations (in terms of ultimate accuracy), as well as to remove some misleading conclusions reported in
previous works. The adequacy of the proposed error analysis is validated through simulation and
experimental results.

Keywords: navigation; AHRS; accelerometer; magnetometer; stationary alignment; error analysis

1. Introduction

Inertial Navigation Systems (INSs) are specialized dead-reckoning systems which
provide a standalone navigation solution for attitude, velocity, and position [1]. Like any
dead-reckoning system, INSs need to comply with a generally stationary initialization
procedure, which, in the specific case of the attitude, is called alignment [2,3]. The very
purpose of the alignment is to roughly estimate the attitude of the vehicle (or body) frame
relative to the navigation frame, so that it can be used, and posteriorly corrected, by
any filtering-based navigation/guidance stage deployed afterwards [4]. As explained by
Thompson, Farrell, and Knight [5], the alignment requires the observation of, at least, two
noncollinear vectors, whose components should be known in both body and navigation
frames. Traditionally, the local gravity and Earth rate vectors, measured by stationary
accelerometers and gyros, respectively, provided by an Inertial Measurement Unit (IMU),
have been chosen for INS alignment purposes [6].

Despite the recognized efficiency of the aforementioned approach, it requires high
quality (navigation-grade) gyros to be employed, which are expensive and contrast with
the current expansion trend toward commercial low-cost navigation applications [7]. When
low-cost IMUs are sought, a good candidate for replacing the Earth rate vector (for sta-
tionary alignment purposes) is the Earth magnetic flux density vector, which can be
adequately observed by calibrated magnetometers [8]. When three-axial magnetometers
are incorporated into an IMU, the resulting sensor set is often referred to as Attitude and
Heading Reference System (AHRS) [9,10], or yet, Magnetic, Angular Rate, and Gravity
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(MARG) sensor array [11,12]. AHRSs have been successfully employed in a vast range
of applications, including, but not limited to, Unmanned Aerial Vehicle (UAV) attitude
control/stabilization [13], human body tracking [14,15], joint angle estimation [16], and
mobile communications [17].

As in other INS-based integration approaches [1], AHRSs also resort to filtering
schemes in order to have their inertial and magnetic sensor measurements optimally
combined. The Extended Kalman filter (EKF) is probably the most employed integration
architecture, wherein the attitude can be recursively propagated/updated based either on
a linearized error model [1,18] or a nonlinear quaternion model [19,20]. Regardless of the
adopted model, augmenting the states in order to estimate additional systematic/correlated
noise contributions present in the sensor outputs is a recommended procedure [21]. An-
other modification that already proved to be effective consists in splitting the EKF in two
separate filters, one devoted to tilt (pitch and roll) estimation and the other to that of
heading [20,22]. Amongst the filtering-based AHRS integration architectures that do not
employ EKFs (or its variants), stands out the Complementary Filter (CF), characterized
by its efficient (although nonoptimal) operation and simplicity [23]. While much research
effort has been dedicated to the investigation of these filtering-based AHRS integration ar-
chitectures, only few works have studied the attitude initialization step, i.e., the alignment,
that precedes any of them (either as a requirement for initializing the nonlinear attitude
quaternion model or to guarantee the adequacy of using a small angle approximation for
the attitude error states). As previously mentioned, the alignment is generally conducted in
stationary conditions and is based on the observation of, at least, two noncollinear vectors.
This paper, hence, is not aimed at investigating filtering-based attitude determination
methods for AHRSs, but instead, it focuses on the particular problem of stationary AHRS
alignment.

As recently analyzed by Fan, Li, and Liu [24], several attitude determination methods
can be used to solve the AHRS stationary alignment problem. Among them, stands out
the Three-Axis Attitude Determination (TRIAD)-based method, originally proposed by
Black [25]. Despite being a straightforward analytical method, TRIAD has the drawback
of only accommodating two vector observations per attitude computation. To solve this
issue, the QUaternion ESTimator (QUEST) has been proposed by Shuster [26]. Based on
Davenport’s work [27], QUEST optimally solved Wahba’s problem [28], becoming one
of the most referred attitude determination methods so far [29]. When applied to the
particular case of AHRS stationary alignment, however, QUEST proved to be unable to
dissociate magnetometer errors from the estimation of pitch and roll [24,30,31]. A thorough
investigation of the problem has not appeared in the literature afterwards. To overcome
QUEST’s deficiency, Yun, Bachmann, and McGhee [32] proposed the Factored Quaternion
Algorithm (FQA). Despite not being an optimal method, FQA demonstrated to be superior
in accuracy (for roll and pitch), as well as 25% faster than QUEST. More recent, but still
nonoptimal, alternatives to FQA are the Algebraic QUaternion Algorithm (AQUA) [11],
the Super-fast Attitude of Accelerometer and Magnetometer (SAAM) [33], and the Simple-
Structured Quaternion Estimator (SSQE) [34]. All of the latter claimed to reach the same
accuracy as that of FQA but at an even lower computational cost.

Another attitude determination method, widely employed for AHRS stationary align-
ment purposes, is the Arc-TANgent (ATAN) solution [35]. Differently from TRIAD, QUEST,
and FQA, which provide their attitude estimates in terms of Direction Cosine Matrices
(DCM) and quaternions, respectively, ATAN calculates Euler angles directly, being hence
susceptible to singularity problems [36]. Due to its simplicity, however, ATAN has been
vastly used in the literature, both for the purpose of the AHRS stationary alignment [37–40],
as for the attitude determination thereafter (i.e., in the navigation stage). In the latter case,
ATAN’s attitude solution has been combined with solutions from different sensors/systems,
both in a Complementary Filtering (CF) fashion [7,12,41,42] and Kalman Filtering (KF)
fashion [19,43–45].
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Even though the aforementioned AHRS stationary alignment approaches have been
tested and validated in previous works, very little knowledge is available in the current
literature about the analytic description of the residual errors remaining after the alignment
or the benefits/drawbacks of each approach (from the analytical standpoint). In [46],
for instance, a simplified overview of the main error sources affecting ATAN’s heading
determination has been provided, but no mathematical background corroborated it. In [47],
the analytical description of ATAN’s heading error has been proposed, as a function of
the magnetometer (bias, scale factor, and cross-coupling) errors and the Earth magnetic
model (declination angle) error. The drawbacks of the analysis, however, are: (a) it was
only valid for two-axial (levelled) stationary AHRSs, and (b) the heading error equation
was derived w.r.t. the magnetic heading, not to the true heading. Liu et al. [48] improved
the aforementioned error analysis, by deriving a closed-form formula for ATAN’s heading
error in a three-axial (nonlevelled) stationary AHRS application. Again, the analysis was
confined to the magnetic heading error, which was equated as a function of the true
pitch, roll and heading angles and not as a function of the magnetometer and Earth model
parameter errors (which would have been more relevant). Even more simplified (or generic)
analytical descriptions of ATAN’s (and QUEST’s) errors can be found in [1,29,44,49–53],
which, however, do not provide much insight into the problem.

Apart from the above-mentioned works, most of the AHRS stationary alignment
error analyses reported in the literature are solely based on numerical (simulated and/or
experimental) results [54,55]. As an example, we may cite the work of Hu et al. [56],
which numerically evaluated the impact of sensor cross-coupling and tilt errors in ATAN’s
computed heading. Včelák et al. [57,58] improved Hu’s work, by also considering the
detrimental effects of temperature variation. In [24,59–62], the authors numerically inves-
tigated the azimuth errors caused by changes in the magnetic field direction (i.e., in the
declination and inclination angles), as well as variations (in the magnetic field magnitude)
caused by common objects (i.e., hard-iron and soft-iron magnetisms). Sotak [38], Kuga and
Carrara [30], and Del Rosario, Lovell and Redmond [42], in turn, evaluated the detrimental
impact of accelerometer and magnetometer biases, as well as, scale factor errors, in ATAN,
QUEST, and TRIAD, respectively. Bistrov [39], lastly, numerically analyzed the effect of
sensor measurement noise in ATAN’s estimates. Even if the preceding numerical analyses
are relevant, they are incomplete if not accompanied by a solid theoretical (analytical or
stochastic) background. As a consequence, they can lead to misleading conclusions, as will
be discussed throughout this paper.

To address the aforementioned issues, this paper presents an innovative and compre-
hensive analytical error description of four of the most employed attitude determination
approaches for AHRS stationary alignment purposes, namely, TRIAD, QUEST, FQA, and
ATAN. The main contribution of this paper is the derivation of novel closed-form formulae
for the residual alignment errors developed in the corresponding DCM attitude solutions.
For the purpose of the error analysis, errors in the accelerometers (constant biases), mag-
netometers (combined effect of constant biases and hard-iron magnetism), local gravity
model, and Earth magnetic field model (flux density magnitude, declination angle, and
inclination angle) are considered. Following the development of the closed-form formulae,
a clarifying insight is provided into the AHRS stationary alignment problem, allowing us
to compare the performance (in terms of ultimate accuracy) of the investigated algorithms
properly, as well as to remove some misconceptions reported in previous works.

The remainder of this paper is organized as follows: Section 2 reviews TRIAD, QUEST,
FQA, and ATAN algorithms. Section 3, in sequence, presents the procedures used to derive
the novel closed-form formulae for the DCM residual errors, as well as the error analysis
itself. Sections 4 and 5 provide results from simulated and experimental tests, respectively,
whilst Section 6 concludes the paper.
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2. AHRS Alignment Formulations

This section reviews the most representative attitude determination methods em-
ployed for AHRS stationary alignment purposes. The discussion initiates with the Three-
Axis Attitude Determination (TRIAD)-based method.

2.1. TRIAD Method

As briefly mentioned in Section 1, TRIAD is able to generate an estimate of the DCM
relating body and navigation frames, from the observation of two arbitrary noncollinear
vectors [25]. A suitable set of vectors for AHRS alignment purposes is the gP local plumb-
bob gravity and the mE Earth magnetic flux density vectors. The analytical descriptions
of each is straightforward in the navigation frame (In this paper, the navigation frame is
represented by the superscript l and is defined with its xl , yl and zl axes pointing to the
North, East and Down (NED) directions, respectively.) [1],

gl
P =

[
0 0 gP

]T (1)

ml
E = B

[
cαcγ sαcγ sγ

]T (2)

where gP is the magnitude of the local plumb-bob gravity vector; B is the magnitude of the
local Earth magnetic flux density vector; α and γ are the corresponding declination and
inclination (dip) angles, respectively; and s and c stand for sine and cosine, respectively.

From (1) and (2), a third vector can be generated using the cross-product operator,

(gP ×mE)
l =

[
−gPBsαcγ gPBcαcγ 0

]T (3)

Temporarily assuming that the AHRS is perfectly stationary and the accelerometers
and magnetometers are uncorrupted, gP, mE and gP ×mE can be resolved in the body
frame (In this paper, the body frame is represented by the superscript b and is defined
with its xb, yb and zb axes pointing forward, to the right-hand side and downward, all with
respect to the vehicle on which the AHRS is mounted.) through the outputs of the sensors,

gb
P ≈ −ab

SF =
[
−ax −ay −az

]T (4)

mb
E ≈ mb

m =
[

mx my mz
]T (5)

(gP×mE)
b ≈ −(aSF×mm)

b =

 azmy−aymz
axmz−azmx
aymx−axmy

 (6)

where aSF is the specific force acceleration vector measured by the accelerometers; and mm
is the total magnetic flux density vector measured by the magnetometers.

The Cb
l DCM, relating body and navigation frames, can be equated as,

B = Cb
l L (7)

with,
B =

[
gb

P mb
E (gP×mE)

b ] (8)

L =
[

gl
P ml

E (gP×mE)
l ] (9)

From (7), it is obvious that,
Cl

b = (L−1)TBT (10)

As (10) indicates, TRIAD’s attitude solution is directly given in terms of DCM and
only requires elementary inverse/transpose operations over the B and L triads of vector
observations.
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2.2. QUEST Method

QUEST has been proposed by Shuster [26] aiming at solving Wahba’s problem [28].
As originally derived by Davenport [27], Wahba’s optimal solution (parametrized as a
quaternion) consists of finding the normalized eigenvector corresponding to the largest
eigenvalue of the following matrix,

K =

[
S−σI Z

ZT σ

]
(11)

with,
S = R+RT (12)

σ = tr(R) (13)

Z =
[

R23−R32 R31−R13 R12−R21
]T (14)

R = ∑ wa(ub
a ·ul

a) (15)

where tr is the trace operator, Rij is the element of R in row i and column j, ua is an arbitrary
unit vector, and wa is its associated weighting factor, subject to ∑ wa = 1.

For AHRS stationary alignment purposes, suitable unit vectors are ug = gP/|gP|
and um = mE/|mE|, which transform the latter into an optimal two vector observation
attitude determination problem [63]. For this particular problem, Shuster [26] already has
demonstrated that the λmax maximum eigenvalue of (11) has a closed-form solution, which
is given by,

λmax =
√

w2
g+2wgwmc(θg−θm)+w2

g (16)

with,
c(θg−θm) = (ul

g ·ul
m)(u

b
g ·ub

m)+|ul
g×ul

m||ub
g×ub

m| (17)

Given λmax, the computation of QUEST’s optimal quaternion (relating l and b frames)
simplifies to [26],

qb
l =

1√
1+|p|2

[
1
p

]
(18)

with,
p = [(λmax+σ)I−S]−1Z (19)

When QUEST’s optimal attitude is required in terms of DCM, it suffices doing [26],

Cl
b = (q2

f−q·q)I+2qqT+2q f (q×) (20)

where q f is the first element of qb
l , and (q×) is the skew-symmetric matrix representation

of vector q, formed from the three last elements of qb
l .

2.3. FQA Method

The idea behind FQA is that a rigid body can be placed into any arbitrary attitude
by performing three sequential rotations. In this sense, the AHRS stationary alignment
problem can be broken into three pieces, each consisting on the computation of a rotation
quaternion.

Let us consider, initially, the qθ quaternion, which is relative to the pitch rotation. As
suggested by Yun, Bachmann, and McGuee [32], qθ can be computed as,

qθ = c(θ/2)
[

1 0 0 0
]
+s(θ/2)

[
0 0 1 0

]
(21)

with,

s(θ/2) = sign(sθ)
√
(1−cθ)/2 (22)
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c(θ/2) =
√
(1+cθ)/2 (23)

where sign() is the signum function that returns +1 for positive arguments and −1 for
negative arguments. To save computational effort, sθ and cθ do not need to be computed
(in (22) and (23), respectively) using trigonometric functions, but instead,

sθ = āx (24)

cθ =
√

1−s2θ (25)

where, [
āx āy āz

]T
= −ub

g (26)

Similar to the pitch quaternion, the qφ quaternion, relative to the roll rotation, can be
computed as [32],

qφ = c(φ/2)
[

1 0 0 0
]
+s(φ/2)

[
0 1 0 0

]
(27)

where s(φ/2) and c(φ/2) are calculated as in (22) and (23), respectively (obviously replac-
ing θ by φ), with,

sφ = −āy/cθ (28)

cφ = −āz/cθ (29)

The qψ heading quaternion, lastly, is computed as follows,

qψ = c(ψ/2)
[

1 0 0 0
]
+s(ψ/2)

[
0 0 0 1

]
(30)

Once again, s(ψ/2) and c(ψ/2) are calculated as in (22) and (23), respectively (replac-
ing θ by ψ), with, [

cψ
sψ

]
=

[
Mx My
−My Mx

][
Nx
Ny

]
(31)

where N = [Nx Ny]T is the normalized Earth magnetic flux density vector in the horizontal
plane, and M = [Mx My]T is the corresponding quantity measured by the magnetometers.
As suggested by Yun, Bachmann, and McGuee [32], N and M can be calculated as follows,

N =
1√

m2
N+m2

E

[
mN
mE

]
(32)

M =
1√

em2
x+

e m2
y

[ emx
emy

]
(33)

where mN and mE are the north and east components of (2), respectively (In the rest of
this paper, scalar variables accompanied by N, E and D subscripts indicate quantities in
the north, east and down directions, respectively.); and emx and emy are second and third
components of the emm intermediate Earth frame quaternion, computed as

emm = qθ⊗qφ⊗(bmm)⊗q−1
φ ⊗q−1

θ (34)

with,
bmm =

[
0 mx my mz

]
(35)

where ⊗ represents the quaternion multiplication operator.
Once qθ , qφ and qψ have been computed, the ql

b final attitude quaternion relating body
and navigation frames can be obtained by simply doing [32],

ql
b = qθ⊗qφ⊗qψ (36)
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When FQA’s attitude solution is required in terms of DCM, it suffices doing,

Cl
b =

 q2
1+q2

2−q2
3−q2

4 2(q2q3−q1q4) 2(q2q4+q1q3)
2(q2q3+q1q4) q2

1−q2
2+q2

3−q2
4 2(q3q4−q1q2)

2(q2q4−q1q3) 2(q3q4+q1q2) q2
1−q2

2−q2
3+q2

4

 (37)

where qi is the i-th element of ql
b.

2.4. ATAN Method

Differently from the preceding methods, ATAN directly provides an estimate of the
AHRS attitude through Euler angles. Basically, the rationale for the φ roll, θ pitch and ψ
heading computation comes from the solution of the following equalities,

gb
P = Cb

l gl
P (38)

mb
E = Cb

l ml
E (39)

with Cb
l defined as [64],

Cb
l =

 cθcψ cθsψ −sθ
−cφsψ+sφsθcψ cφcψ+sφsθsψ sφcθ
sφsψ+cφsθcψ −sφcψ+cφsθsψ cφcθ

 (40)

Substitution of (1), (4) and (40) in (38), yields,[
ax ay az

]T
=
[

sθ −sφcθ −cφcθ
]T gP (41)

whose solution, for φ and θ, is,

φ = arctan2(−ay/−az) (42)

θ = arcsin(ax/gP) (43)

For the determination of the heading angle, (2), (5) and (40) can be substituted in (39),
yielding, after rearrangement [1], mx

my
mz

 =

 cθ 0 −sθ
sφsθ −cφ sφcθ
cφsθ sφ cφcθ

 cψmcγ
sψmcγ

sγ

B (44)

with,
ψm = ψ−α (45)

where ψm is the magnetic heading, i.e., the heading w.r.t. the magnetic north. As derived
in [1], the solution of (44), for ψm, is,

ψm = arctan2
−mycφ+mzsφ

mxcθ+mysφsθ+mzcφsθ
(46)

If (42) and (43) are further substituted in (46), one has, after simplification [65],

ψm = arctan2
gP(azmy−aymz)

ay(aymx−axmy)−az(axmz−azmx)
(47)

Once ψm is obtained, and assuming α is known, ψ can be computed by direct sub-
stitution in (45). When ATAN’s DCM is required, it can be computed by substituting the
previously obtained φ, θ, and ψ in the transposed version of (40).
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3. Error Analysis

Regardless of the adopted approach, all AHRS stationary alignment algorithms pre-
sented in Section 2 rely on the same assumptions: vehicle perfectly stationary, sensors
uncorrupted, and external information (local gravity and Earth magnetic field models) ac-
curately known. Obviously, none of these assumptions is satisfied in real world conditions,
which means that only a corrupted estimate of the true initial attitude can be obtained.

For the analysis that follows, let us assume that the true attitude is provided in terms
of the Cl

b DCM. Without loss of generality, we can equate the corrupted Ĉl
b to Cl

b as [66],

Ĉl
b = Cl

b+δCl
b = (I+E)Cl

b (48)

where I is the identity matrix, and δCl
b and E are two representations of Ĉl

b errors.
As derived in [66–68], the following relations hold, to first order in E,

E = δCl
b(C

l
b)

T = Ĉl
b(C

l
b)

T− I = Es+Ess (49)

with,

Es =
E+ET

2
=

Ĉl
b(Ĉ

l
b)

T− I
2

=

 ηN oD oE
oD ηE oN
oE oN ηD

 (50)

Ess =
E−ET

2
=

 0 ϕD −ϕE
−ϕD 0 ϕN

ϕE −ϕN 0

 (51)

where ηl , ol , and ϕl are the DCM normality, orthogonality, and alignment error vectors,
respectively.

To develop an innovative and comprehensive error analysis for the AHRS stationary
alignment formulations presented in Section 2, we can expand their true Cl

b descriptions by
linear perturbation technique,

δCl
b =

∂Cl
b

∂ax
δax+

∂Cl
b

∂ay
δay+

∂Cl
b

∂az
δaz+

∂Cl
b

∂mx
δmx+

∂Cl
b

∂my
δmy

+
∂Cl

b
∂mz

δmz+
∂Cl

b
∂gP

δgP+
∂Cl

b
∂B

δB+
∂Cl

b
∂α

δα+
∂Cl

b
∂γ

δγ (52)

where δx represents the error (Throughout this paper, and for the purpose of the error
analysis herein presented, the errors in the investigated variables (sensor readings and
gravity/Earth magnetic field model parameters) are assumed to be constant, i.e., systematic
biases.) in the generic (scalar or matrix) variable x.

After analytically solving (52), for each alignment method, the result, substituted
in (49), and then in (50) and (51), can be used to produce novel closed-form formulae for
the DCM residual normality, orthogonality, and alignment errors. Unfortunately, for the
purpose of the error analysis herein proposed, an arbitrary orientation of the body frame
w.r.t. the navigation frame produces closed-form formulae which are overly complicated
and not readily amenable to physical interpretation. For simplification purposes hence,
hereinafter, we will assume that body and navigation frames are aligned. Figure 1 summa-
rizes the main steps involved in the process of deriving the closed-form formulae for the
residual DCM errors for each investigated AHRS stationary alignment method.
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Figure 1. Summary of the closed-form formulae derivation process.

3.1. TRIAD Method

Solving (52) for TRIAD’s Cl
b, and substituting the result (jointly with (10)) in (49) to

(51), yields the following closed-form formulae for the residual errors,

ηN =
cα tγ

gP
δax+

sα tγ
gP

δay−
s2α

gP
δaz+

cα

B cγ
δmx+

sα

Bcγ
δmy−

s2α

gP
δgP+tγ δγ− 1

B
δB (53)

ηE =
cα tγ

gP
δax+

sα tγ
gP

δay−
c2α

gP
δaz+

cα

B cγ
δmx+

sα

Bcγ
δmy−

c2α

gP
δgP+tγ δγ− 1

B
δB (54)

ηD = − 1
gP

δaz−
1

gP
δgP (55)

oN = − s(2α)

4gP
δax−

s2α

2gP
δay+

sα tγ
2gP

δaz+
sα

2B cγ
δmz+

sα tγ
2gP

δgP−
sα

2
δγ− sα tγ

2B
δB (56)

oE = − c2α

2gP
δax−

s(2α)

4gP
δay+

cα tγ
2gP

δaz+
cα

2B cγ
δmz+

cα tγ
2gP

δgP−
cα

2
δγ− cα tγ

2B
δB (57)

oD =
s(2α)

2gP
δaz+

s(2α)

2gP
δgP (58)

ϕN = − s(2α)

4gP
δax+

c2α+1
2gP

δay+
sα tγ
2gP

δaz+
sα

2B cγ
δmz+

sα tγ
2gP

δgP−
sα

2
δγ− sα tγ

2B
δB (59)

ϕE = − s2α+1
2gP

δax+
s(2α)

4gP
δay−

cα tγ
2gP

δaz−
cα

2B cγ
δmz−

cα tγ
2gP

δgP+
cα

2
δγ+

cα tγ
2B

δB (60)
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ϕD = − sα tγ
gP

δax+
cα tγ

gP
δay−

sα

B cγ
δmx+

cα

B cγ
δmy−δα (61)

where t stands for tangent.
As (53) to (58) indicate, residual normality and orthogonality errors are developed in

TRIAD’s DCM. According to Choukroun et al. [69], these errors are highly undesirable, as
they collaborate to propagate errors in the vector transformation operations conducted
at high computational rates (as it is the case in AHRSs). As (50) indicates, however, the
normality and orthogonality errors can be estimated, to first order, uniquely from the
computed Ĉl

b, and hence, they are easily compensated in practical implementations [70,71].
Alternatively, a more interesting application for the normality and orthogonality errors
consists in using their first order estimates to produce coarse (or pseudo) estimates for
some of the sensor biases. As (53) to (58) clearly indicate, there is a linear relationship
between the residual η normality and o orthogonality errors, and the underlying δa ac-
celerometer and δm magnetometer biases corrupting the alignment. By using the former
(normality/orthogonality errors) as a set of “pseudo"-measurements clearly casts the set of
equations (53) to (58) into a least-squares framework, for which solutions can be estimated
in terms of some of the sensor biases. A similar idea has been successfully used in [72]
for estimating accelerometer and gyro biases, in [73] for accelerometer and magnetometer
biases and in [74] for accelerometer and dual-antennae Global Navigation Satellite System
(GNSS) baseline biases.

Unlike the normality and orthogonality errors, which can be estimated and compen-
sated, the alignment errors cannot, and hence, are of greater concern. As suggested in [75],
this is due to an observability deficiency of the AHRS stationary alignment, which prevents
the latter from being properly estimated (and compensated), even in posterior Kalman-
filter-based integration schemes. As (59) to (61) indicate, almost all of the investigated error
sources contribute to the development of alignment errors in TRIAD’s Ĉl

b. It is worth noting,
however, that the error terms weighed by sα tends to be less detrimental, since, as analyzed
by Chulliat et al. [76], the value of α rarely exceeds ±20 deg in terrestrial applications. De-
spite this, caution is advised when analyzing the provided equations. In (59), for instance,
even though δmz is weighted by sα, its effect on ϕN can be very significant, especially in the
presence of hard-iron magnetism. As explained by Zhang and Yang [77], this magnetism is
created by nearby man-made objects (including the navigational equipment itself) and is
indistinguishable from the magnetometer bias. In the error analysis presented in this paper,
hence, δm represents the cumulative effect of constant magnetometer biases and hard-iron
magnetism.

When the related literature is consulted, it is found that (59) to (61) also bring relevant
clarifications about TRIAD’s accuracy (for AHRS stationary alignment purposes). Equa-
tions (59) and (60), for instance, clearly demonstrate that the north and east alignment
errors are corrupted not only by accelerometer errors, as claimed in [24,32] but also by
magnetometer, gravity, and Earth magnetic field model errors. Equation (61), in sequence,
demonstrates that the down alignment error is corrupted by both accelerometer and mag-
netometer errors, although the former are generally negligible, compared to the latter (i.e.,
δa/gP � δm/B). None of these relations had been addressed in previous works [47,48].
Additionally, (61) provides conclusive evidence for the heading error behavior numerically
reported in [59,60], according to which ϕD seemed to vary, in magnitude, equal to the
amount of the magnetic field deviation in the horizontal plane (δα).

Lastly, it is worth noting that the error terms weighted by tγ in the preceding formulae
tend to be negligible at low latitudes. As the latitude increases, however, also does the
value of γ, causing the residual alignment errors to be dramatically magnified (this is
the main reason why the alignment is not practical near the Earth poles). Geometrically
speaking, at the poles, the gravity and Earth magnetic flux density vectors become collinear,
invalidating the fundamental assumption behind TRIAD.
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3.2. QUEST Method

If an error analysis, similar to the one conducted for TRIAD, is developed for QUEST,
i.e., if we apply (52) in (20) and substitute the result in (49) to (51), the following closed-form
formulae arise for the DCM residual errors,

ηN = ηE = ηD = oN = oE = oD = 0 (62)

ϕN =
wg

gP
δay−wm

[
s(2α)

2gP
δax−

c2α

gP
δay

+
s(2α)sγ

2B
δmx+

s2αsγ

B
δmy−

sαcγ

B
δmz+sαδγ

]
(63)

ϕE = −
wg

gP
δax+wm

[
− s2α

gP
δax+

s(2α)

2gP
δay

+
c2αsγ

B
δmx+

s(2α)sγ

2B
δmy−

cαcγ

B
δmz+cαδγ

]
(64)

ϕD = − sα tγ
gP

δax+
cα tγ

gP
δay−

sα

B cγ
δmx+

cα

B cγ
δmy−δα (65)

As (62) indicates, no normality and orthogonality errors are developed in QUEST’s
DCM. This corroborates [67], which already had demonstrated that any quaternion
parametrization of attitude, when converted to DCM, does not propagate normality and
orthogonality errors (as long as the quaternion unit norm constraint is conserved). As pre-
viously mentioned, these errors are easily removed from the computed DCM, so, QUEST’s
ability of not generating them is only significant from the computational efficiency stand-
point. Equations (63) to (65), in turn, are more relevant, as they provide analytical proof
to a behavior that, hitherto, had been only numerically demonstrated [32]. As (63) and
(64) indicate (in comparison to (59) and (60)), QUEST’s north and east alignment errors
are no longer corrupted by δaz, δgP and δB error terms, but instead, by δmx and δmy. As
already explained, this may be very detrimental to be accuracy of ϕN and ϕE, especially in
the presence of hard-iron magnetism.

Another interesting evidence from (63) and (64) is: the detrimental impact of the
magnetometer biases in ϕN and ϕE is basically dictated by wm, which, as already defined,
is the weight QUEST attributes to the magnetometer vector observations. As a general
rule, the larger wm, the worse (more biased) ϕN and ϕE will be. While this tells us that
less biased estimates could be obtained by decreasing wm, at the limit, where wm → 0,
the attitude solution would become indeterminate, as only one vector (ug) would remain
being observed. These verifications are innovative and very enlightening, especially when
compared to the results of other error analyses presented so far, whose results lack physical
interpretation [29,53]. QUEST’s down alignment error, lastly, is expected to reach the same
accuracy as that of TRIAD (see (61) and (65)), which corroborates the numerical results
given in [32].

3.3. FQA/ATAN Methods

Closed-form formulae for the residual errors developed in FQA’s DCM can also be
formulated. For this, it suffices applying (52) in (37), and substituting the result in (49) to
(51). The outcomes are,

ηN = ηE = ηD = oN = oE = oD = 0 (66)

ϕN =
1

gP
δay (67)
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ϕE = − 1
gP

δax (68)

ϕD = − sαtγ
gP

δax+
cαtγ
gP

δay−
sα

Bcγ
δmx+

cα

Bcγ
δmy−δα (69)

As (66) indicates, no normality and orthogonality errors are developed in FQA’s
DCM. Again, this corroborates theory [67], as FQA’s attitude solution is primarily given
in terms of a quaternion. Equations (67) and (68), in turn, contrast to the conclusions of
Yun, Bachmann, and McGuee [32], according to which FQA and TRIAD were said to have
similar accuracies. As (67) to (69), in comparison to (59) and (61), clearly indicate, this is
only true for ϕD, as FQA’s ϕN and ϕE are not corrupted by magnetometer errors, neither
by variations in the Earth magnetic field model. Another interesting verification is that
FAQ’s ϕN and ϕE accuracies are similar to those of QUEST, for the particular scenario of
wm = 0. As this would result in an indeterminate solution for QUEST, is it straightforward
to conclude therefore that FQA’s accuracy is globally superior to that of QUEST (and ergo,
of TRIAD).

Finally, closed-form formulae for ATAN’s DCM residual errors can be also derived. In
this case, (42), (43), (45), and (47) are substituted in (40) and the result, used for solving (52).
After substitution in (49) and (51), the conclusions are: ATAN’s error equations are exactly
the same as those derived for FQA (for brevity, therefore, they are not repeated here).
This verification confirms the results numerically obtained in [42], according to which
ATAN’s north and east alignment errors proved not to be corrupted by magnetometer
errors, neither by variations in the Earth magnetic field model. Since ATAN provides the
same accuracy as FQA, which is, by inspection, better than TRIAD and QUEST, also ATAN
is superior to the latter. From the computational efficiency standpoint, however, FQA
can still be considered superior to ATAN, since, as suggested in [32], it avoids the explicit
computation of trigonometric functions.

4. Simulation Results

To evaluate the innovative error analysis presented in Section 3, as well as the outlined
verifications, a simulated test was carried out. For the purpose of the test, accelerometer
and magnetometer data were generated at 100 Hz, considering the ideal scenario of body
and navigation frames perfectly aligned. The accelerometers and magnetometers were pur-
posely corrupted by 5 mg and 5 mG of constant biases, as well as by white random noises
with root Power Spectral Densities (PSDs) of 0.1 mg/

√
Hz and 0.2 mG/

√
Hz, respectively.

These values were chosen as they correspond to typical error parameters of automotive-
grade AHRSs found in manufacturer data-sheets (see Section 5) and textbooks [1]. The
sensors were simulated at latitude −23.2131 deg, longitude −45.8606 deg, and altitude 629
m. The local gravity acceleration and Earth magnetic field were calculated according to
the models described in [76,78], respectively. Corresponding errors (constant biases) of
0.005 mg, 0.1 mG, 0.1 deg, and 0.1 deg were purposely added in the values of gravity, Earth
magnetic flux density magnitude, declination angle, and inclination angle, respectively.

For the purpose of the test, we compared TRIAD, QUEST, FQA, and ATAN, in terms
of the achieved AHRS stationry alignment accuracies. For QUEST, particularly, values of
wg = 0.75 and wm = 0.25 were chosen, following the methodology suggested in [79,80].
Based on the simulated values for the sensor, gravity, and Earth magnetic field errors,
the closed-form formulae derived in Section 3 were used to generate predictions for the
DCM residual normality, orthogonality, and alignment errors (Table 1). Figure 2 depicts the
estimated errors as function of time, where a continuous averaging of the sensor outputs
has been adopted, in order to smooth the noise. Table 2 summarizes the errors estimated at
the completion of the simulated test, as well as the associated standard uncertainties (The
standard uncertainties represent the coverage intervals within which the true values of the
estimates are expected to lie (with a level of confidence of 95%, i.e., coverage factor of 2 [81]).
In this paper, the standard uncertainties have been computed by dividing the standard
deviations of the estimates (characterizing their dispersion about their mean values) by the



Sensors 2021, 21, 2040 13 of 21

square root of the number of observations. According to [81], this corresponds to the Type
A evaluation of standard uncertainty, i.e., standard uncertainties obtained experimentally,
by the statistical analysis of series of observations.).
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Figure 2. Estimated Direction Cosine Matrices (DCM) residual errors in simulated test.

Table 1. Predicted DCM normality, orthogonality, and alignment errors in simulated test.

Errors TRIAD QUEST FQA/ATAN

ηN [deg] 0.6163 0 0
ηE [deg] 0.4084 0 0
ηD [deg] −0.2874 0 0

oN [deg] −0.2091 0 0
oE [deg] 0.5224 0 0
oD [deg] −0.0992 0 0

ϕN [deg] 0.0779 0.1802 0.2871
ϕE [deg] −0.8095 −0.5542 −0.2871
ϕD [deg] 1.6754 1.6754 1.6754

As can be seen, the estimated errors nicely agree with the predicted ones (confidence
intervals experimentally obtained in Table 2 encompass the predicted values in Table 1),
which validates the proposed error analysis. Figure 2a–f, in particular, indicate that only
TRIAD develops normality and orthogonality errors in the computed DCM (as expected).
Figure 2g,h, in turn, demonstrate that, while FQA’s and ATAN’s north and east alignment
errors are only corrupted by accelerometer errors, those from TRIAD and QUEST also
depend on magnetometer biases, as well as on gravity and Earth magnetic field model
errors. In the specific case of QUEST, the north and east alignment errors are found to be
further dependent on wm. Lastly, Figure 2i evidences that, as predicted, no difference exists,
in terms of accuracy, between the down alignment error developed in TRIAD’s, QUEST’s,
FQA’s, and ATAN’s computed DCM.
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Table 2. Estimated DCM normality, orthogonality, and alignment errors at the completion of the
simulated test and associated standard uncertainties.

Errors TRIAD QUEST FQA ATAN

ηN [deg] 0.6451 0.0000 0.0000 0.0000
±0.0405 ±0.0000 ±0.0000 ±0.0000

ηE [deg] 0.4235 0.0000 0.0000 0.0000
±0.0401 ±0.0000 ±0.0000 ±0.0000

ηD [deg] −0.2873 0.0000 0.0000 0.0000
±0.0036 ±0.0000 ±0.0000 ±0.0000

oN [deg] −0.2070 0.0000 0.0000 0.0000
±0.0076 ±0.0000 ±0.0000 ±0.0000

oE [deg] 0.5197 0.0000 0.0000 0.0000
±0.0190 ±0.0000 ±0.0000 ±0.0000

oD [deg] −0.1049 0.0000 0.0000 0.0000
±0.0013 ±0.0000 ±0.0000 ±0.0000

ϕN [deg] 0.0782 0.1824 0.2862 0.2862
±0.0084 ±0.0045 ±0.0036 ±0.0036

ϕE [deg] −0.8140 −0.5630 −0.2911 −0.2896
±0.0191 ±0.0079 ±0.0037 ±0.0036

ϕD [deg] 1.6595 1.6471 1.6481 1.6484
±0.0391 ±0.0387 ±0.0387 ±0.0387

Regarding the standard uncertainties of the estimated DCM errors, Table 2 clearly
shows that larger (i.e., more uncertain) values are expected to exist for errors that depend
on magnetometer readings (see ϕN and ϕE for TRIAD and QUEST, for instance). A
statistical and more appropriate way of characterizing the dispersions (i.e., the standard
uncertainties) of the estimated DCM errors around their predicted values is using a Monte
Carlo simulation. To perform the latter, 10,000 statistically independent simulated runs
(of ten seconds each) were repeated (This number of Monte Carlo runs has been chosen
based on a trade-off between its ability of adequately recuperating the Probability Density
Function (PDF) of the simulated noise and the computational effort. It is in agreement
with previous works published in the area [19,43,50,82–84], as well as with [85].), whereas
the main input parameters for the simulation were allowed to vary (randomly) according
to the standard deviations summarized in Table 3. The predicted and estimated DCM
errors obtained at the completion of each run were saved and subtracted from one another.
The mean values and standard uncertainties of the formed differences (deviations) are
summarized in Table 4.

Table 3. Standard deviations of Monte Carlo simulated test main input parameters.

Parameter Standard Deviation

Latitude (δL) [deg] 30
Longitude (δλ) [deg] 60

Altitude (δh) [m] 1000
Accelerometer biases (δax, δay, δaz) [mg] 1

Magnetometer biases (δmx, δmy, δmz) [mG] 5
Gravity magnitude (δgP) [mg] 0.005

Earth’s magnetic flux density magnitude (δB) [mG] 0.1
Earth’s magnetic flux density inclination/declination angles (δα, δγ) [deg] 0.1
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Table 4. Mean values and standard uncertainties of DCM normality, orthogonality, and alignment
error deviations (estimated minus predicted values) in Monte Carlo simulated test.

Error Deviations TRIAD QUEST FQA ATAN

δηN [deg] 0.0607 0.0000 0.0000 0.0000
±0.0048 ±0.0000 ±0.0000 ±0.0000

δηE [deg] 0.0462 0.0000 0.0000 0.0000
±0.0048 ±0.0000 ±0.0000 ±0.0000

δηD [deg] 0.0001 0.0000 0.0000 0.0000
±0.0000 ±0.0000 ±0.0000 ±0.0000

δoN [deg] −0.0001 0.0000 0.0000 0.0000
±0.0001 ±0.0000 ±0.0000 ±0.0000

δoE [deg] −0.0001 0.0000 0.0000 0.0000
±0.0002 ±0.0000 ±0.0000 ±0.0000

δoD [deg] −0.0038 0.0000 0.0000 0.0000
±0.0007 ±0.0000 ±0.0000 ±0.0000

δϕN [deg] −0.0001 −0.0004 0.0000 0.0000
±0.0001 ±0.0001 ±0.0000 ±0.0001

δϕE [deg] 0.0001 −0.0006 0.0000 0.0000
±0.0002 ±0.0001 ±0.0000 ±0.0001

δϕD [deg] 0.0000 −0.0010 −0.0010 0.0018
±0.0004 ±0.0020 ±0.0020 ±0.0039

As can be seen, the mean values of all DCM error deviations (estimated minus pre-
dicted values) are close zero, indicating that the closed-form formulae derived in Section 3
are statically reliable (unbiased) estimators of the current DCM residual errors. The ob-
tained standard uncertainties, in turn, follow the same pattern evidenced for the standard
uncertainties of Table 2, i.e., closed-form formulae that are independent on magnetometer
errors are expected to be less uncertain.

5. Experimental Results

To verify the results achieved in the simulated tests, an experimental test was con-
ducted. The employed AHRS, namely, an automotive-grade M2 unit from Innalabs®, was
mounted aligned to the navigation frame on a semispherical three degrees of freedom
(3-DOF) air bearing [86], as depicted in Figure 3. The test was conducted at the Brazilian
National Institute for Space Research (INPE), in São José dos Campos, Brazil. The geo-
graphic coordinates of the site are: −23.2113 deg of latitude, −45.1408 of longitude, and
641 m of altitude.

Figure 3. Semispherical 3-DOF air bearing, available at INPE.
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To compensate the sensor data (magnetometers, in particular) for residual scale
factor/cross-coupling errors and soft-iron magnetism, which are not accounted for in
the error analysis presented in this paper, the latter were precalibrated using the algorithm
proposed in [87]. In sequence, a stationary sample of the precalibrated data was continu-
ously averaged over about ten seconds (producing āb

SF and m̄b
m), and estimates for the ĝl

P
local gravity and m̂l

E Earth magnetic flux density vectors were computed (using the models
described in [78,88], respectively). Since, in the concerned test, the AHRS was mounted
aligned to the navigation frame, the following relations held (The accuracy in these approx-
imations is basically limited to the accuracy of the semispherical 3-DOF air bearing rotating
mechanisms [86].): āb

SF ≈ −ĝl
P and m̄b

m ≈ m̂l
E. Thus, by numerically subtracting −ĝl

P and
m̂l

E from the calibrated āb
SF and m̄b

m, respectively, coarse estimates for the residual constant
biases corrupting the outputs of the accelerometers and magnetometers were obtained,
namely,

δâb
SF =

[
−0.4736 −1.5073 −1.8667

]Tmg (70)

δm̂b
m =

[
10.5987 2.5724 −4.1518

]TmG (71)

By substituting (70) and (71) into the closed-form formulae derived in Section 3 and
also (purposely) considering the existence of errors (constant biases) of 0.005 mg, 0.1 mG,
0.1 deg, and 0.1 deg, in the values of gravity, and Earth magnetic flux density magnitude,
declination angle, and inclination angle, respectively, predictions were obtained for the
DCM residual errors in the experimental test (Table 5). Figure 4 presents the estimated
errors as function of time, while Table 6 summarizes the errors at the completion of the
experimental test alongside their standard uncertainties.
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Figure 4. Estimated DCM residual errors in experimental test.
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Table 5. Predicted DCM normality, orthogonality, and alignment errors in experimental test.

Errors TRIAD QUEST FQA/ATAN

ηN [deg] 2.7353 0 0
ηE [deg] 2.8126 0 0
ηD [deg] 0.1069 0 0

oN [deg] 0.2463 0 0
oE [deg] −0.6151 0 0
oD [deg] 0.0369 0 0

ϕN [deg] 0.1597 −0.1290 −0.0865
ϕE [deg] 0.6423 −0.0790 0.0272
ϕD [deg] 1.9875 1.9875 1.9875

Table 6. Estimated DCM normality, orthogonality, and alignment errors at the completion of the
experimental test and associated standard uncertainties.

Errors TRIAD QUEST FQA ATAN

ηN [deg] 2.8309 0.0000 0.0000 0.0000
±0.0064 ±0.0000 ±0.0000 ±0.0000

ηE [deg] 2.9083 0.0000 0.0000 0.0000
±0.0094 ±0.0000 ±0.0000 ±0.0000

ηD [deg] 0.1097 0.0000 0.0000 0.0000
±0.0072 ±0.0000 ±0.0000 ±0.0000

oN [deg] 0.2387 0.0000 0.0000 0.0000
±0.0016 ±0.0000 ±0.0000 ±0.0000

oE [deg] −0.6095 0.0000 0.0000 0.0000
±0.0042 ±0.0000 ±0.0000 ±0.0000

oD [deg] 0.0358 0.0000 0.0000 0.0000
±0.0027 ±0.0000 ±0.0000 ±0.0000

ϕN [deg] 0.1661 −0.1065 −0.0704 −0.0704
±0.0065 ±0.0065 ±0.0068 ±0.0068

ϕE [deg] 0.6384 −0.0679 0.0292 0.0293
±0.0049 ±0.0050 ±0.0063 ±0.0063

ϕD [deg] 2.0622 1.9672 1.9672 1.9672
±0.0061 ±0.0059 ±0.0059 ±0.0059

As can be noticed, the estimated errors corroborate the predicted ones, following
the same pattern evidenced in the single-run simulated test. Differently from Section
4, we verify now that the confidence intervals fail to encompass all the predicted values
(in general, by a very small amount). This, however, is consistent, as the predicted DCM
errors were not computed based on the true (and in this case, unknown) values of the
sensor biases (as done in Section 4) but instead only on the coarse estimates of (70) and (71).
These results, hence, confirm the validity of the innovative error analysis proposed in this
paper, as well as the outlined verifications about TRIAD’s, QUEST’s, FQA’s, and ATAN’s
accuracies for AHRS stationary alignment purposes.

6. Conclusions

In this paper, four well established attitude determination algorithms for Attitude and
Heading Reference Systems (AHRSs) stationary alignment have been reviewed, namely,
the Three-Axis Attitude Determination (TRIAD)-based method, the QUaternion ESTimator
(QUEST), the Factored Quaternion Algorithm (FQA), and the Arc-TANgent (ATAN) solu-
tion. A detailed and innovative error analysis has been proposed, considering the ideal
assumption of body and navigation frames perfectly aligned. For the purpose of the latter,
we considered errors in the accelerometer/magnetometer readings (cumulative effect of
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constant biases and hard-iron magnetism) and in the gravity/Earth magnetic field models
(flux density magnitude, declination angle, and inclination angle). As the main contri-
bution of this study, novel closed-form formulae for the Direction Cosine Matrix (DCM)
residual errors (normality, orthogonality, and alignment errors) were analytically derived.
These formulae brought analytical insight into the problem, allowing us to compare the
performance of the investigated alignment formulations (in terms of ultimate accuracy) as
well as to remove some misconceptions reported in previous works.

As main conclusions of this investigation, we may summarize: (a) TRIAD is the
sole algorithm producing normality and orthogonality errors in the computed DCM;
(b) FQA’s and ATAN’s north and east alignment errors are uniquely caused by y- and
x-axis accelerometer biases, respectively; (c) larger north and east alignment errors are
expected to exist when using TRIAD and QUEST, as the latter are also function of the
magnetometer biases, the inclination angle error, and the error in the Earth magnetic flux
density magnitude; (d) in the specific case of QUEST, the detrimental effect of magnetometer
biases in the north and east alignment errors are weighted by wm; (e) the DCM down
alignment error is the same for all investigated approaches and is mainly caused by x- and
y-axis magnetometer biases, as well as the declination angle error.

As suggestions for future work, the authors plan to expand their error analysis for the
generic case of body and navigation frames arbitrarily oriented, which is more relevant for
practical implementations. In this sense, it is found that a procedure similar to the one pre-
sented in [72,89] can be adopted. Moreover, the consideration of scale factor/cross-coupling
errors (which would include misalignments and soft-iron effects for the magnetometers)
also seems a topic worthy of future investigation.
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