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The immune system is an efficiently toned machinery that discriminates between friends
and foes for achieving both host defense and homeostasis. Deviation of immune
recognition from foreign to self and/or long-lasting inflammatory responses results in
the breakdown of tolerance. Meanwhile, educating the immune system and developing
immunological memory are crucial for mounting defensive immune responses while
protecting against autoimmunity. Still to elucidate is how diverse environmental factors
could shape autoimmunity. The emergence of a world pandemic such as SARS-CoV-2
(COVID-19) not only threatens the more vulnerable individuals including those with
autoimmune conditions but also promotes an unprecedented shift in people’s dietary
approaches while urging for extraordinary hygiene measures that likely contribute to the
development or exacerbation of autoimmunity. Thus, there is an urgent need to
understand how environmental factors modulate systemic autoimmunity to better
mitigate the incidence and or severity of COVID-19 among the more vulnerable
populations. Here, we discuss the effects of diet (macronutrients and micronutrients)
and hygiene (the use of disinfectants) on autoimmunity with a focus on systemic
lupus erythematosus.
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INTRODUCTION

The immune system is highly toned and efficiently dedicated to maintaining health by protecting
against a tremendous array of invaders (1). Our body faces continuous challenges that might be
represented in biological threats (such as, but not limited to, microbial pathogens) and physical
threats (such as radiation and chemicals). The immune system is equipped with both innate and
adaptive arms to fight against these threats (1). The ultimate goal of our immune system is to induce
an effective and balanced inflammatory response that enables the efficient elimination of possible
threats without causing excessive collateral tissue damage (2). Therefore, an optimal immune
response includes recognition, mounting an overarching reaction, then returning to normal
homeostasis without skewing to either immunodeficiency or autoimmunity (3, 4).

It is fascinating how this system discriminates between friends and foes to maintain
homeostasis (5).
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Innate defenses are inborn abilities of the immune system to
detect, attack, and eliminate (or at least restrain) pathogenic
invaders. Part of the body’s defense system that includes
physical barriers (6), antimicrobial peptides (7), and
complement proteins (8), innate immune cells are equipped
with germline-encoded sensors called pattern recognition
receptors (PRRs), which are predestined to recognize highly
conserved molecular patterns including both pathogen- and
damage-associated molecular patterns (PAMPS and DAMPs,
respectively) (9, 10). Recognition of these molecular patterns
allows for rapid host defense while “mostly” maintaining
nonreactivity to self (thorough recognizing only PAMPs and
DAMPs) (9, 10). This also paves the way for adaptive immune
recognition that provides long-lasting immunity (11). Indeed,
cellular components of the innate system, namely antigen-
presenting cells (APCs) such as macrophages and dendritic cells
(DCs) (12–14), as well as neutrophils (15), bridge the interface
between innate and adaptive responses. APCs, in particular, play
pivotal roles in informing their adaptive counterpart (T and B
lymphocytes) (16) for mounting antigen-specific responses with
long-term memories that could also protect against future threats.
The adaptive immune cells are highly antigen-specific (17, 18) and
in a way to maintain self-tolerance, these cells cannot be activated
solely by the initial recognition of antigen peptides through their
somatically rearranged receptors (T cell receptor and B cell
receptor, or TCRs and BCRs, respectively); instead, their
activation also requires costimulatory and cytokine signals in
addition to antigen recognition (19–21). The co-stimulation
signals ensure nonreactivity when encountering self-antigens, in
which case peripheral tolerance (through deletion or anergy)
would be induced (22–24). However, it is complicated how
deviations would occur and specifically, how the breach of self-
tolerance and autoimmunity would develop.

According to the National Stem Cell Foundation, nearly 4%
of the world’s population are affected by one or more
autoimmune disorders; and as of 2019, the National Institute
of Health estimated that around 7% of adults in the United States
had been diagnosed with autoimmune conditions. Based on
organ specificity and possible etiology, autoimmune disorders
can be tissue-specific, such as type 1 diabetes (T1D), multiple
sclerosis (MS), and autoimmune thyroid disease (AITD); or
affect multiple organs, such as systemic lupus erythematosus
(SLE), Sjogren syndrome, and rheumatoid arthritis (RA) (25).

Different theories have postulated various mechanisms for
autoimmune inflammation including the breakdown of central
and/or peripheral tolerance (reviewed elsewhere) (26, 27). Here,
we summarize several possible mechanisms of immune
dysregulation that could lead to systemic autoimmunity
(Figure 1). These mechanisms include (1) defective apoptotic cell
clearance (28), (2) defective apoptosis (29), and (3) loss of
suppressive regulatory controls leading to hyperactivation of
autoreactive T and B cells. We choose SLE to illustrate how these
interrelated mechanisms of immune dysregulation drive
autoimmune pathogenesis leading to tissue damage. SLE is a
systemic autoimmune disease with a mortality rate nearly 3 times
of that in the general population (30). There is no known cure so far.
Frontiers in Immunology | www.frontiersin.org 2
Autoimmune disorders arise as a result of the interplay
among diverse factors including genetic, epigenetic, and
environmental triggers (31).

The link between genetic susceptibilities (or inherited anomalies)
and the skewness from homeostasis to autoimmunity has been
extensively reviewed (32–37). Notably, genetic susceptibilities are
far more complex than a single genetic mutation and commonly
manifested as multiple genetic susceptibilities.

Environmental factors can either potentiate or mitigate the
effects of susceptibility genes, thereby having direct and indirect
impacts on the development of immune tolerance and
subsequent disease.

The association between environmental exposure and the
development of human autoimmune disorders (38) supports the
widely accepted notion that environmental triggers can program
immune responses. For instance, early-life exposure to infections,
vaccines (39), and dietary components (40) mold the
immunological memory, consequently shaping how the immune
system responds to exogenous stimuli later in life (41, 42). During
the recent decades, the tremendous increase in the prevalence of
autoimmune conditions coincides with evolving dietary and
hygiene styles in Westernized societies (43), indicating a strong
influence of environmental factors on autoimmunity (44–49). This
is particularly important during pandemic eras since the emergence
of unprecedented infections such as COVID-19 is thought to
predominate among immunocompromised individuals such as
those with preexisting autoimmune conditions who are also at an
increased risk of COVID-19 related hospitalization (50). Indeed,
autoantibodies against self-proteins such as type 1 interferons
(IFNs) were found in cases of severe COVID infection and may
account for COVID-19 deaths (51, 52). Interestingly, a recent
report has found an increased pre-existing prevalence of anti-IFNa
autoantibodies in SLE patients with COVID-19 infection
compared to SLE patients without COVID-19 (53), suggesting
that these autoantibodies might predispose SLE patients to contract
COVID-19. Additionally, a recent study has shown that the
activities of different exoproteome-directed autoantibodies (i.e.,
autoantibodies against immunomodulatory proteins such as
cytokines, chemokines, complement components, and cell surface
proteins) are dramatically increased in COVID-19 patients
compared to uninfected controls (54). In parallel, murine
surrogates of these autoantibodies have been shown to exacerbate
disease severity in a mouse model of SARS-CoV-2 infection (54),
suggesting autoimmunity as a driving factor for severe COVID-19.
Together, these studies indicate that pre-existing autoimmunity put
autoimmune patients at a higher risk for more severe COVID-19
infection and subsequent mortalities.

Conversely, it is believed that autoimmunity could be the
comet tail following COVID-19 infection (54–56) especially in
genetically predisposed individuals (57). Therefore, it is crucial to
understand the influence of environmental factors on
autoimmune regulation to better protect the more vulnerable
populations during the COVID-19 pandemic. Specifically, this
pandemic has witnessed some unprecedented shifts in human
dietary habits both positively (e.g., increased consumption of
domestically cooked foods, increased shares of plant-based diets)
January 2022 | Volume 12 | Article 749774
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and negatively (e.g., increased consumption of comfort food)
(58). At the same time, people are advised to practice stricter
hygiene measures (59, 60). Together these shifts in dietary and
hygienic practices could on their own modulate our immune
responses and/or autoimmune development or progression. In
this review, we propose diet and hygiene as environmental
regulators of immunity and discuss their influence on
autoimmune development as depicted in Figure 1.

Diet as an Environmental Factor
Dietary practices can influence immune tolerance and disease.
Indeed, dietary components, including micronutrients and
macronutrients, can affect both innate physical defenses such as
epithelial barrier integrity (61–64), antimicrobial peptides (65), and
pro/anti-inflammatory cytokines (66–68), as well as adaptive
Frontiers in Immunology | www.frontiersin.org 3
immune cell functionality (69–72). The high incidence of
immune-mediated diseases such as autoimmune and allergic
disorders in the Western world, where common themes of dietary
behaviors exist including increased caloric (fat and carbohydrate)
intake with much less fibers and imbalanced dietary fatty acid
consumption, pinpoint the immunomodulatory capacities of these
macronutrients and their potential causal implications on
autoimmune development (47). In contrast, dietary patterns that
are mostly plant-based such as Mediterranean or DASH diets have
been shown to contain anti-inflammatory and antioxidant
components (73, 74) that could impose protective effects against
autoimmunity (75). Among these, plant-derived phytochemicals
including polyphenols (76) such as flavonoids (77–79) and
isoflavones (80, 81) have been extensively investigated for
healthful modulation of autoimmunity.
FIGURE 1 | The interplay between environmental factors and genetic susceptibilities in shaping immune dysregulation. Genetic susceptibilities could lead to immune
dysregulation via different mechanisms including (1) defective apoptotic cell clearance, (2) defective apoptosis, and (3) loss of suppressive regulatory controls.
Collectively they lead to disrupted cytokine signals and hyperactivation of autoreactive T and B cells, invigorating a series of tissue damage in various manifestations.
In SLE, the manifestations could be presented as splenomegaly, lymphadenopathy, nephritis and arthritis. Environmental triggers either augment or mitigate these
mechanisms to shape the autoimmunity.
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To this end, the upside of the COVID-19 pandemic is its
impact on the unprecedented dietary shifts to less processed and
more plant-based dietary sources (82). Interestingly, plant-based
diets are associated with lower odds of moderate-to-severe
COVID-19 and may provide protective support against severe
COVID-19 infection (83). Indeed, such dietary trends
with COVID-19 emergence can not only benefit to restrain
COVID-19 infection in normal people but also be supportive
strategies for the vulnerable populations with autoimmune
conditions. For example, quercetin is a natural flavonoid
derived from different plant sources that has various anti-
inflammatory and antioxidant immunomodulatory capacities
(84, 85). Based on pharmacology and molecular docking,
quercetin has been proposed as a potential protective
treatment against acute renal injury, one of the most serious
complications reported in hospitalized patients with COVID-19
infection (86–88). At the same time, quercetin has been shown to
attenuate various autoimmune pathologies in human and
murine rheumatoid arthrit is (RA) (89–92), and in
experimental models of inflammatory bowel diseases (IBD)
(93, 94) and SLE (95). In the following section, we review how
different micronutrients and macronutrients modulate immune
health and autoimmune outcomes and discuss the potential
advantageous roles of dietary manipulation in mitigating the
risks of COVID-19 infection in autoimmune patients.
MICRONUTRIENTS AND AUTOIMMUNITY

Micronutrients including vitamins (such as vitamins E, A, and
D) and minerals (such as selenium, copper, and zinc) are long
known to possess capabilities to modulate immune responses.
Micronutrients can tone every aspect of both innate and adaptive
responses (96). In the following section, we will discuss the role
of vitamins and minerals in maintaining health and how their
deficiencies contribute to autoimmune diseases.

Vitamins
Vitamins have important functions in maintaining immune
health through their antioxidant capacities (97). There is a
huge body of literature supporting the notion that oxidative
stress plays a crucial role in autoimmune pathogenesis (98–100).
For instance, oxidative degradation of lipids that occur in the
cellular membrane in a process known as lipid peroxidation is
mediated by free radicals (101, 102), which could impair the
integrity of the cell membrane (103), induce cellular death (101)
and accumulate apoptotic products, subsequently initiating
autoimmunity (104–106). In addition, intracellular oxidative
signaling could increase the responsiveness of autoreactive
immune cells such as T lymphocytes and drive their
autoimmune pathogenicity (107). Moreover, the extracellular
release of oxidative products including reactive oxygen species
(ROS) and proteases by innate immune cells such as neutrophils
could initiate autoreactivity and lead to collateral tissue damage
(108). Interestingly, oxidative stress has also been proposed to be
associated with COVID-19 pathogenesis (109–111). Therefore,
Frontiers in Immunology | www.frontiersin.org 4
antioxidant vitamins could provide potentially beneficial
supportive care for autoimmune patients with COVID-19.
Here, we review the immunomodulatory functions of vitamins
E, A, and D in autoimmunity and discuss their potential
implications in COVID-19.

Vitamin E (VE) as an antioxidant can diminish the secretion
of ROS (e.g., by monocytes) (112), thereby protecting against
oxidative cell stress and indirectly maintaining immune cell
functionality. Therefore, it has been suggested that the relative
deficiency of VE could initiate autoimmunity (113). Although
data from human studies are not conclusive—where some
reports showed that VE levels were increased in patients with
systemic autoimmunity of primary Sjögren’s syndrome (114),
while others correlated VE deficiency with the development of
neurological complications of celiac disease (115) or showed no
difference in VE levels in patients with IBD (116)—murine
studies more decisively support the potential beneficial effect of
VE in the treatment of autoimmune conditions such as RA (117,
118). Importantly, based on data from murine lupus, VE is
proposed as a safe treatment option for SLE (119, 120) where the
supplementation reduces hallmarks of SLE such as the levels of
anti-double-stranded DNA (anti-dsDNA) IgG antibodies (121)
and counteracts oxidative stress (and lipid peroxidation) that
would otherwise contribute to more debilitating SLE
mani fes ta t ions (122 , 123) . In human studies , VE
supplementation as part of a treatment regime improved the
oxidative and nitrosative biomarkers and disease activity in SLE
patients (124).

Vitamins A and D (VA and VD, respectively) are known to
modulate the differentiation of immune cells, their tissue homing,
and effector functions. On the innate arm, VD and VA have
context/tissue-dependent functions that may antagonize each
other. VD has been shown to mitigate the maturation of DCs,
inhibiting their expression of maturation markers MHCII and
CD80/86 (125), as well as reducing their production of the pro-
inflammatory cytokine IL-12 (126), collectively inducing the
tolerogenic phenotype of DCs (127, 128). In contrast, VA has
context-dependent effects on DCs. Although VA is a key player in
the induction of mucosal tolerance (129), it can also enhance DC
maturation and their antigen-presenting capacities in the presence
of pro-inflammatory stimuli (130). In addition, VA can increase
the expression of matrix metalloproteinase-9 (MMP9) to enhance
the migration of inflammatory DCs to lymph nodes (131).
Together, these immunomodulatory capacities of VD and VA
could represent a tango for in-vivo tuning of DC functions.
Importantly, since DCs could modulate self-tolerance and the
development of autoimmune disease such as SLE as we previously
reviewed (132), VD (133)-, and VA (134, 135)-mediated
regulation of DC function could indirectly impact the
development of tolerance and disease. On the adaptive arm,
both VD and VA can affect the differentiation of T cell subsets,
including T helper (Th)1 (proinflammatory) vs. Th2 (anti-
inflammatory), and T regulatory (Treg; immunosuppressive) vs.
Th17 (proinflammatory) as depicted in Figure 2. For example,
VD (67, 125, 136–138) and VA (139–141) have been shown to
inhibit Th1 differentiation and responses while supporting the
January 2022 | Volume 12 | Article 749774
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development and responses of Th2 lymphocytes. In addition, both
VD (142, 143) and VA (144–146) potentiate the development of
Treg over Th17. Importantly, the imbalance between these
different T cell subsets is a driving force for autoimmune
development (147, 148).

Ecological associations between low VD levels and the
incidence of different autoimmune conditions such as IBD,
MS, T1D, and RA have been reported in areas with limited
sun exposure (149–151). It is widely hypothesized that deficiency
of VD is associated with the development of different
autoimmune conditions where polymorphism in VD receptors
(VDR) are implicated among the causal risks for autoimmune
conditions including AITD (152, 153), T1D (154), MS (155), RA
(156) and SLE (157). In addition, VD deficiency is associated
with more aggravated autoimmune flares in SLE (158–161) by
promoting memory B cells responses (162) and subsequent
autoantibody production (163). These observations strengthen
the potential use of VD supplementation to control autoimmune
disease (164). Importantly, plasma (165) and serum (166) levels
of VD have been shown to be depleted in COVID-19 patients.
Additionally, low levels of VD are also correlated with the
severity of COVID-19 progression in those patients (166).
Meanwhile, VD supplementation during or just before
COVID-19 contraction can mitigate disease progression and
enhance the survival rate in infected patients (167). Together
these reports support the potential healthful effect of VD in
autoimmune patients to combat COVID-19 severity and fatality.

In contrast, it remains to be determined if VA deficiency or
polymorphisms in VA receptors are causally associated with
autoimmune development. Although serum retinol levels have
Frontiers in Immunology | www.frontiersin.org 5
been negatively correlated with MS activity (168), and
hypovitaminosis A has been detected proceeding the clinical
diagnosis of SLE (169, 170), it is still to be elucidated whether
VA deficiency is a driving factor for autoimmunity. Due to their
immunomodulatory capacities, retinoids have been proposed as
potentially beneficial adjuvants controlling autoimmune disorders
(171). The most active metabolite of VA, all-trans-retinoic acid
(tRA), has been shown to control pathogenic T cell subsets such as
IL-17 secreting gd T cells and sufficiently ameliorate experimental
autoimmune encephalitis (EAE), a murine model of MS.
Similarly, we and others have shown the protective effects of
VA onmurine SLE especially during the active stage of the disease
(172–174). In future investigations, we propose to (1) investigate
the potentially detrimental effects of VA deficiency on the
progression of renal inflammation in genetically-prone SLE, and
(2) delineate the molecular and transcriptional mechanisms by
which hypovitaminosis A promotes systemic autoimmunity.
Importantly, a recent study conducted in hospitalized COVID-
19 patients with respiratory failure showed that serum retinol
levels were significantly lower compared to healthy controls (175).
This report’s findings support the idea that COVID-19 infection is
associated with retinoic acid depletion syndrome (176) and that
VA supplementation might be a beneficial approach especially in
areas of limited medical resources (177). Therefore, considering
its complex roles in modulating autoimmunity, VA might be a
crucial element to be considered for monitoring and
supplementation as needed for autoimmune patients with
COVID-19 infection.

It is important to note that for clinical applications, optimal
levels of these vitamins as combinations may be crucial for
FIGURE 2 | The immunomodulatory effects of vitamins D and A on T cells. Following their binding to DNA responsive elements of target genes, both vitamins
differentially modulate key transcription factors and stimulatory cytokine signals to shape the commitment and functional responses of multiple T-cell subsets
including Th1, Th2, Th17, and Treg.
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achieving the harmony of their action. Future investigations on
the vitamins’ modulation of autoimmunity as an overlapping
circuit rather than solo-induced effects will shed more light on
their therapeutic potential in clinical settings.

Minerals
Minerals, or specifically trace elements such as selenium, copper,
and zinc, modulate immune functions in various indirect ways.
Generally, minerals can have antioxidant capacities and
consequently maintain the structural integrity of essential
biological molecules (e.g., maintaining cell membrane stability)
(178), participate in enzymatic activities (179), and potentiate
energy production and use during cellular metabolism (180).
Importantly, some trace elements are needed to facilitate cell
signaling (181, 182), where their binding to target ligands/
receptors regulates essential processes including gene
expression and protein synthesis (183, 184). Selenium, for
example, acts as an antioxidant, eliminating free radicals and
subsequently maintaining immune system functions (185). It
also has catalytic activities and is essential for the enzymatic
activity of glutathione peroxidase to inhibit lipid peroxidation
(186). This is particularly important for protecting cell
membrane phospholipids, consequently maintaining cell
membrane structure and preventing oxidative mitochondrial
damage in immune cells such as macrophages (187–189).
Therefore, selenium deficiency is associated with increased
inflammation (190, 191) and autoimmunity as in celiac disease
and AITD (192). Similarly, meta-analysis of genome-wide
association studies (GWAS) have predicted high selenium
levels to be associated with a decreased risk for SLE (193).
Indeed, selenium supplementation in murine models of SLE
has been shown to improve survival (194) and mitigate various
hallmarks of the disease including splenomegaly and
autoantibody production (195). In addition, a recent cohort
study has shown that severe COVID-19 patients exhibit a
pronounced deficit in total serum selenium and selenoprotein
levels, and that selenium status is significantly higher in COVID
survivors compared to non-survivors, suggesting the therapeutic
potential of selenium supplementation in severely diseased and/
or selenium-deficient COVID-19 patients (196).

Aside from these non-specific immunomodulatory capacities,
minerals can directly modulate both innate and adaptive
immune cell activities and be involved in the activation of key
signaling molecules such as NF-kB. Zinc, for example, can be
both pro- and anti-inflammatory and plays an essential role in
maintaining both innate and adaptive cellular responses (197).
Zinc promotes NF-kB signaling and subsequently the
production of pro-inflammatory cytokines from macrophages
(198, 199). The utilization of zinc by macrophages enhances their
phagocytic activities (200, 201). Therefore, lower circulatory
levels of zinc could be linked to macrophage-related
autoimmune diseases such as RA (202). Meanwhile, zinc can
also induce tolerogenic DCs in both in-vivo and in-vitro settings
(203). Thus, zinc deficiency could compromise the interface
between innate and adaptive immunity leading to skewing of
Th cell balance (203). Zinc is essential for T lymphocyte
proliferation (204) and activation (205) through promoting
Frontiers in Immunology | www.frontiersin.org 6
IL-2 signaling. It also promotes the upregulation of IL-12
signaling and Th1 transcription regulator T-bet (206).
Consistently, zinc deficiency reduces the levels of Th1-
polarizing cytokines (e.g., IFNg) (207). Therefore, a shift of
Th1/Th2 balance to Th2 has been linked to zinc deficiency.
However, zinc can enhance the differentiation of Treg cells
through upregulating FOXP3, where it increases the
phosphorylation of Smad proteins, allowing for its binding to
the Foxp3 promoter (208). Furthermore, zinc can suppress Th17
differentiation through inhibiting signal transducer and activator
of transcription 3 (STAT3) signaling (209) as well as memory
Th17 responses via inhibition of the IL-1b/IL‐1 receptor‐
associated kinase 4 (IRAK4) phosphorylation (210). Thus, zinc
can benefit by tuning T cell-driven autoimmunity as shown in
EAE (211, 212). In human studies, lower systemic zinc levels
have been reported in different autoimmune conditions (213)
including MS (214) and SLE (215, 216). Interestingly, COVID-19
patients also have lower zinc levels that are correlated with
disease complications and prolonged hospital stays (217).
Together, these studies warrant further investigation on the
immunomodulatory capacities of zinc in autoimmune and/or
other high-risk patients for COVID-19.

In summary, micronutrients are essential for fine-tuning the
development and function of immune cells. Altered homeostasis of
micronutrients as seen in various autoimmune diseases could critically
influence immunity and promote autoimmune dysregulations.

It is noteworthy that although evidence-based findings are
still being uncovered on the causal relationship between
micronutrient deficiencies and more severe COVID-19, as well
as the potential healthful effects of micronutrients on COVID
convalescence, the immunomodulatory functions of
micronutrients may support their roles in combating COVID-
19 infection (218–220). Therefore, for autoimmune patients in
the COVID-19 pandemic, the potential benefits of
micronutrients as discussed above urge for regular monitoring
of their levels and if deemed necessary, supplementations in
individuals with specific micronutrient deficiencies.
MACRONUTRIENTS AND AUTOIMMUNITY

Macronutrients have diverse immunomodulatory functions that
dynamically modulate immune cell responses to shape
autoimmune outcomes. Data exploring the implication of
specific macronutrients in COVID-19 are lacking. However, it is
well established that overconsumption of energy-yielding
macronutrients could lead to obesity (221), a condition
considered as one of the major risk factors of severe COVID-19
infection (222–225). Here, we review current knowledge on the
modulation of autoimmunity by different macronutrients and
discuss points to be considered with regards to COVID-19
infection in autoimmune patients.

Carbohydrate, Fat, Protein
Dietary carbohydrates are usually in the form of polysaccharides,
oligosaccharides (e.g., fructo-oligosaccharides), disaccharides
January 2022 | Volume 12 | Article 749774
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(e.g., lactose), and monosaccharides (e.g., glucose and fructose)
(226). Carbohydrates, especially non-digestible polysaccharides
and oligosaccharides (e.g., in prebiotics), exert both direct and
indirect immunomodulatory capacities. Indirectly, they act as a
source of energy for gut microbiota which, in turn, couldmodulate
immune responses via different mechanisms as previously
reviewed (227, 228). Directly, they could modulate both innate
and adaptive effector immune functions involving epithelial tight
junctions, cytokine/chemokines, and antibody production as
reviewed elsewhere (229). Indeed, dietary polysaccharides are
sensed by different immune cell receptors including complement
receptor 3 (CR3), Toll-like receptor (TLR) as well as dectins
(carbohydrate-binding proteins) (230); subsequently, they act as
immunogens to stimulate immune responses. Notably, plant
polysaccharides can be the interface linking innate and adaptive
immune cell activation. They primarily stimulate the proliferation
and activation of innate cellular components such as natural killer
(NK) cells (enhancing their cytotoxic activities) and macrophages
(augmenting their production of TNFa and IL-6 as well as their
lysosomal activities and nitric oxide production) (231). In turn,
these innate components activate their adaptive counterparts,
inducing Th cell differentiation and antibody production from B
cells as previously detailed (231).

The effector functions of immune cells rely primarily on
glucose (232). Therefore, it is not surprising that high
carbohydrate intake could exacerbate the hyperactivation of
immune cells in chronic inflammatory and autoimmune
conditions. Indeed, modern diets containing high levels of
processed fructose-rich carbohydrates increase the incidence of
chronic inflammation (233, 234). High glucose intake augments
ROS-dependent activation of TGFb and consequently the
induction of Th17, thereby exacerbating autoimmune
conditions as reported in murine models of MS (i.e., EAE) and
colitis (235). In addition, excessive carbohydrate intake increases
the levels of circulatory inflammatory markers such as IL-6 and
C-reactive proteins (CRP) in SLE patients (236). In contrast,
natural glucose derived from plant-based carbohydrates such as
cell wall-based cellulose (which is an insoluble fiber and
composed of unbranched b-1,4-linked glucose monomers) has
been shown to reduce the frequency and number of pro-
inflammatory T cells and promote autoimmune suppressive
Th2 responses in EAE (237). These findings illustrate the
pivotal effects of dietary carbohydrates on immune cell
functions and warrant further investigations towards more
mechanis t i c ins ights with a spec ific emphas i s on
autoimmune modulation.

It is also crucial to maintain a balance between carbohydrates
and other macronutrients including dietary fats and proteins.
Although plant-based lipids (e.g., phytosterol from vegetable
oils) could beneficially modulate autoimmune inflammation as
reported in EAE (238, 239), it is controversial how fat-modulated
diets precisely shift immune responses and subsequently
autoimmune progression. If only the level of fat consumption
is changed, reduced dietary fat levels increase the proliferation of
human peripheral blood mononuclear cells (PBMCs) following
both mitogens and inflammatory cytokine stimuli (240),
Frontiers in Immunology | www.frontiersin.org 7
suggesting better responses to pathogenic invaders (241).
However, recent studies propose that ketogenic diets of low
carbohydrate and high fat intake potentiate more protective gd T
cell responses against infectious triggers (242). This emphasizes
the importance of considering the levels of all macronutrients
together when assessing immune modulation under steady-
state conditions.

Under autoimmune conditions, on the other hand, a large
pool of evidence proposes that a high-fat diet (HFD) adversely
impacts the immunopathogenesis of different autoimmune
diseases as widely investigated in SLE (243). For example, high
fat intake resulted in defective phagocytic and cytotoxic activities
of macrophages and NK cells, respectively, and this was
associated with earlier onset and exacerbated autoimmunity in
lupus-prone NZB/W F1 mice (244). In addition, HFD further
increased TLR7 expression and signaling in TLR8 knockout
mice (a spontaneous murine lupus model characterized by
increased TLR7 signaling) leading to exacerbated kidney
inflammation due to increased production and renal
deposition of autoantibodies (245). Furthermore, HFD-induced
obesity increased the T follicular helper (Tfh) cell activity in
MRL/lpr mice and consequently the activation of B cells,
exacerbating SLE-associated splenomegaly and potentiating
IgG production and their glomerular deposition (246). In
contrast, a low-fat, isoenergetic diet designed to provide no
more than 20% energy from fat a day, together with
supplementation of 1 g of fish oil, effectively attenuated disease
activity in SLE patients (247). Although it is yet to be tested
whether high fat/low carbohydrate ketogenic diets are beneficial
in SLE patients, a potential positive effect of ketogenic diets has
been reported for some autoimmune patients with MS (248) or
T1D (249). Interestingly, a ketogenic diet may also provide
supportive care for COVID-19 patients (250), reducing their
need for the intensive care unit (251). This again emphasizes the
importance of considering the levels of all macronutrients
together on immune modulation under autoimmune status
and highlights the importance of personalized care plans for
autoimmune individuals with COVID-19 infection.

Not only the quantity but also the type of consumed fat could
differentially affect the immunopathogenesis of autoimmunity.
Dietary fats could be in the form of saturated fat, trans-fat and
unsaturated fat. Increased intake of saturated fat accelerates the
disease relapse in children with MS (252). Increased
consumption of trans-fat increases the levels of free radicals
that damage the integrity of immune cell membranes and
contribute to autoimmunity (243). In contrast, the
incorporation of Mediterranean diets that significantly
increases the ratio of unsaturated to saturated fats has been
linked to improved autoimmune pathologies (e.g., alleviating RA
symptoms) (253). Notably, a diet rich in polyunsaturated fatty
acids (PUFA) can improve the overall clinical scores and elicit
anti-inflammatory effects in SLE (254). Similarly, a recent report
has shown a negative correlation between adherence to
Mediterranean diets and COVID-19 cases in Spain and other
countries (255), supporting a potential protective role of PUFA-
rich Mediterranean diets against COVID-19 (256, 257).
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Indeed, supplementation of PUFA such as omega-3 (w−3)
augment the activities of antioxidant enzymes and diminish
autoimmunity (243). Several studies have shown that w−3
enriched diets dramatica l ly reduce SLE-associated
inflammatory markers, lupus progression (mitigating
glomerulonephritis) and improve survival in different mouse
models of SLE (258–262). This is achieved mostly through
potentiating the effects of antioxidant enzymes (such as
superoxide dismutase and glutathione peroxidase) which, in
turn, potentiate the ability of renal cells to eliminate harmful
free radicals (e.g., reactive oxygen intermediates) (259, 261).
Moreover, a diet rich in w−3 (e.g., with fish oil) reduces the
level of anti-dsDNA antibodies (258, 261), circulating immune
complexes, and their renal deposition (258). Furthermore, fish
oil can reduce the expression of renal pro-inflammatory
cytokines including IFNg, IL-12, TNFa (259, 261), and renal
profibrotic molecules such as TGFb and fibronectin-1 (261). By
downregulating these molecules, fish oil diminishes the age-
associated activation of NF-kB signaling in lupus mice, thereby
mitigating lupus nephritis (259). Indeed, fish oil is a dietary
source for w−3 PUFA that exerts anti-inflammatory capacities
through dampening immune cell responsiveness to IFNg (263).
Recent findings have shown that w−3 PUFA could also
downregulate biomarkers associated with T and B cell
activation and/or differentiation and leukocyte recruitment
such as CD80, CTLA-4, IL-18, CCL5, CXCR3, IL-6, TNFa
(264). Similarly, they mitigate inflammatory markers associated
with intestinal inflammation/colitis such as IL-6, inducible nitric
oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and
leukotriene B4 (LTB4) (265). Collectively, these beneficial
actions of w-3 PUFA on autoimmune development (especially
SLE) could be targeted in future human intervention studies.
Interestingly, for their immunomodulatory capacities, w−3
PUFA have been recently proposed as part of the supportive
care for COVID-19 patients (266, 267), as recent pilot data
suggest that a higher w-3 index may lower the risk of COVID-19
fatality (268). Therefore, diets rich in PUFA might confer
benefits for autoimmune patients with SARS-CoV-2 infection.

Dietary proteins are the third component of macronutrients
in a balanced diet and are hydrolyzed in the gut to generate
amino acids and peptides. Proteins can, directly and indirectly,
modulate immune functions. Directly, dietary proteins-derived
amino acids can serve as major energy sources for leukocytes,
enhance the development of immune cells from hematopoietic
progenitors, and modulate their effector functions as previously
reviewed (269). Indirectly, proteins are utilized through gut
microbiota which in turn mediates the interplay between
protein metabolites and the host immune system as detailed
elsewhere (270). Indeed, exposure to dietary protein antigens is
necessary for the maturation of the immune system (271, 272).
Feeding of weanling mice a protein-deficient diet that had only
free amino acids resulted in a poorly developed immunological
profile that resembled that of newborn or germ-free (GF) mice
(271, 273), which is characterized by reduced secretory IgA and
systemic Ig levels as well as less-developed gut-associated
lymphoid tissues (271, 273). Moreover, in addition to playing
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an integral role in the development of oral tolerance (273, 274),
early-life intake of protein antigens is crucial for Th1
differentiation (271), B cell responses, and class switching
(275), thereby helping to augment the immunity against
infectious invaders later in life (272). Together, these studies
suggest that dietary protein malnutrition (PM) could adversely
impact immunity. Interestingly, both PM and excessively high
protein intake could exacerbate inflammation. PM could
potentiate intestinal mucosal damage following inflammatory
stimulation (e.g., zymosan-induced systemic inflammation),
allowing bacterial translocation and gut-induced septicemia
(276). In parallel, in contrast to proteins from plant origins
that could mitigate inflammation (277), a high-protein diet,
especially from animal origin, aggravates both acute and
chronic dextran sulfate sodium (DSS)-induced colitis via
promoting the pro-inflammatory responses of macrophages
(278). Furthermore, high protein intake has been associated
with deterioration of renal disease involving glomerular
hyperfiltration (279). Meanwhile, a low-protein diet could help
the management of chronic kidney diseases (280). As kidney
inflammation, namely lupus nephritis is the most life-
threatening manifestation of SLE, modulation of protein intake
could be of great importance. Indeed, moderate dietary protein
intake of 0.6 g/kg daily improves renal functions in SLE patients
(281). Restriction of protein intake in NZB/W F1 mice improved
the disease outcome, inhibited splenomegaly, and maintained
immune cell responsiveness to mitogenic stimulation (282).

Together, these observations suggest that dietary protein
modulation can influence immune components in the
pathogenesis of autoimmune disorders such as SLE, therefore
warranting further studies to elucidate the underlying cellular
and molecular mechanisms.

Energy Intake
Epidemiological association between obesity and autoinflammatory
disorders (283) suggests that excessive caloric/energy intake could
lead to the breakdown of immunological tolerance. Excess caloric
intake in early life increases the incidence of IBD (284) and
autoimmune thyroiditis (285) in adulthood. In contrast, caloric/
energy intake restriction (EIR) can improve the autoimmune/
inflammatory outcomes as have been reported in experimental
models of SLE (286–291), EAE (292–295), and Sjogren’s
syndrome (296).

Immune responses are high energy-dependent to fuel the
biosynthetic needs of activated immune cells. The bioenergetic
demand of immune cells is achieved via three interconnected
metabolic pathways including oxidative phosphorylation (which
occurs in the mitochondria of naïve cells), glycolysis (which
occurs in the cytoplasm of activated and proliferating cells), and
tricarboxylic acid (TCA) cycle (which occurs in the
mitochondria of activated and proliferating cells) (232). The
immune system is dynamically active with continuous changes in
cellular activities such as those between resting naïve cells and
proliferating effector cells, and those of memory/long-lived cell
populations that might be quiescent but ready to undergo rapid
proliferation upon stimulation. Therefore, the cellular energy
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demand is variable based on the phases and activities of immune
cells (297–299). For instance, for a cell in a resting state (e.g.,
naïve T or B cells), the need for energy will be towards
maintaining its minimal metabolic and biosynthetic
requirements that are directed for building cellular
components. Therefore, the cellular energy expenditure is met
through oxidative phosphorylation and targets preserving
cellular integrity. In contrast, effector immune cells undergo
rapid proliferation and have a wide range of effector functions
as represented in the production of effector molecules such as
cytokines, chemokines, inflammatory mediators, and
immunoglobulins. This will require upregulation of fuel uptake
and aerobic glycolysis to satisfy higher metabolic configurations
needed for both bioenergetic and biosynthetic pathways (297–
299). Importantly, these shifts of cellular energy phases could be
largely dependent on nutrient and energy supplies in the
microenvironment. Moreover, energy/caloric intake can
influence cellular metabolism as well as phenotypic and
functional capacities of immune cells (300–302). For instance,
due to chronic metabolic stress leading to ATP depletion,
chronically activated T cells in SLE patients fulfill their need
for ATP through oxidative phosphorylation rather than
upregulating the aerobic glycolysis (303). In parallel,
continuous low-grade inflammation due to excess energy
intake (as in obesity) exacerbates the proinflammatory
phenotype of different immune cel ls , favoring the
differentiation of Th1 and Th17 subsets while diminishing the
frequency of Treg cells (304), thereby predisposing individuals to
autoimmunity (283).

Furthermore, energy intake can shape the fate of immune
cells (e.g., differentiation and effector functions) through
modulating key signaling pathways and transcription factors
which in turn contribute to autoimmune pathogenesis. For
instance, activation of T cells through TCR signaling and
CD28 co - s t imu l a t i on l e ad s to ac t i v a t i on o f th e
phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt
pathway (305–307), which subsequently turns on the
mammalian target of rapamycin (mTOR) pathway, where
mTOR is of two functional complexes, mTORC1 and
mTORC2 (308). mTOR is a central regulator for T cell
differentiation and homeostasis (309, 310). Under normal
nutrient and energy conditions, mTOR (especially mTORC1)
senses the microenvironment and upregulates the expression of
glycolytic genes (311), allowing for biosynthetic anabolic
processes needed for cell proliferation (309). However,
excess ive funct ions of mTOR can disrupt cel lular
differentiation and predispose individuals to autoimmune
conditions such as RA (312) and SLE (313). Augmented
mTOR activities under autoimmune conditions are not limited
to T cells, where mTORC1 expands pathogenic T cell
populations including Th17 and the CD4-CD8- double-
negative T (DN-T cells) while suppressing Treg cells (313); but
also B cells (314–316), DCs and macrophages (317, 318).
Activation of mTORC1 precedes the onset of SLE as a result of
chronic metabolic stress with long-term ATP depletion and
mitochondrial hyperpolarization (319, 320). In contrast, during
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energy restriction, rapid inhibition of mTOR occurs, allowing the
shift to catabolic processes to maintain the energy required for
cell survival (321, 322); at the same time, Treg cells become
responsive to TCR stimulation, thus enhancing their
proliferation (323). Therefore, optimizing the cellular
metabolic shifts could open new therapeutic avenues for the
treatment of autoimmunity (324, 325).

Consistent with this notion, EIR can suppress the
immunopathogenic responses associated with autoimmunity
and chronic inflammation including hyperactivation of cellular
and humoral responses (326). For instance, EIR reduces antigen
processing by macrophages as well as the T cell-dependent
activation of B cells (326). Similarly, EIR diminishes the
inflammatory activities of circulating monocytes and their
mobilization from the bone marrow without compromising
their emergency egression during acute infection and tissue
repair (327). Through these mechanisms, EIR has been shown
to modify the autoimmune/inflammatory pathogenesis of
various disorders (286–296). For example, EIR can dampen the
SLE progression. Early dietary modulation through caloric
restriction by the time of weaning reduces SLE-associated
lymphadenopathy in mice (328). Caloric restriction
significantly reduces B cell frequencies and their activation
(291), reduces circulatory anti-dsDNA antibodies, and prevents
the increase of possibly pathogenic T cell subsets such as DN-T
cells (329), while maintaining a higher percentage of naïve T cell
subsets (291) as well as the responsiveness of lymphocytes to
mitogenic stimulation (329). In addition, lupus-prone NZB mice
with chronic energy/calorie intake restriction (CEIR; fed a 40%
caloric reduction diet that was relatively low in fat and high in
carbohydrates) prolongs the survival and delays the disease
initiation (286). In NZB mice as well as other lupus-prone
murine models including MRL/lpr and BXSB, CEIR diminishes
proliferation of lymphoid cells in the spleen, thymus, and
mesenteric lymph node (MLN) (287), downregulates the
transcript levels of proinflammatory cytokines such as IFNg
and IL-12, reduces IgA and IgG2a autoantibodies (288), and
decreases molecules associated with fibrinogenesis such as
platelet-derived growth factor (PDGF) (289), subsequently
ameliorates lupus-associated kidney inflammation or
glomerulonephritis. These observations emphasize the
potential use of EIR in the treatment of SLE.

In summary, calorie restriction (e.g., intermittent fasting) and
fat/carbohydrate modulation (e.g., ketogenic diets) may provide
novel opportunities against autoimmunity by regulating both
adaptive and innate immune activation pathways (242, 330).
However, further studies are warranted to establish the safety
and clinical efficacy of immunometabolic treatment strategies in
autoimmunity. In parallel, it is essential to ensure that the
modulated diets do not lead to malnutrition that promotes
immune dysfunction and increases the risk and severity of
infections (331). Notably, malnutrition predisposes COVID-19
patients to more severe disease in an age-dependent manner
(332) and increases the odds of their fatality (333). Indeed,
COVID-19 patients may require higher energy intake and
increased protein consumption (334), and it is a necessity to
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consider the immunomodulatory influence of macronutrients
for proper supportive managements of autoimmune patients
with COVID-19 infection.

In Table 1, we present a short list of several nutrients that
have shown beneficial effects in murine models of SLE where
human studies are warranted.
HYGIENE AS AN ENVIRONMENT FACTOR

According to the hygiene hypothesis, microbial stimulation
might be particularly crucial for immune education during
early life, leading to less self-reactivity, thereby mitigating the
development of autoimmunity later in life. This might be
conceivable since both neonatal innate and adaptive defenses
are biased towards maintaining tolerance developed in utero (as
reviewed elsewhere) (341, 342). For instance, neonatal APCs
have reduced antigen-presenting and costimulatory capacities
(343, 344). Similarly, neonatal T cells have a default
programming toward a Treg phenotype (345) and exhibit
more bias toward Th2 cell responses (346). Together, these
evidences could explain the increased susceptibility to
infections and higher disease morbidity in neonates (347).
Interestingly, challenging the neonatal defenses with infections
reshapes their immune responses (348) and could modulate
responses during inflammatory and autoimmune processes
later in life (349). Indeed, besides the interaction with dietary
antigens (as we discussed above), early-life maturation of the
immune system and the development of immunological
tolerance are achieved through immense pressure from
microbial stimulation in our surroundings (349, 350), where
microbial influences create a balance between protection and
tolerance (351). For instance, commensal microbial colonization
limits the expansion of pathogenic/disease-causing pathobionts
(352, 353), and more importantly, colonization of commensal
microbes early in life can induce Treg cells on mucosal sites (such
as the lungs) and subsequently promote homeostasis and
tolerance later in life (354, 355). In contrast, microbial
depletion or reduced microbiota diversity [e.g., through
antibiotic treatment early in life (356)] can have long-term
immunological consequences (357, 358), where the lack of
microbial diversity during the neonatal stage could lead to a
higher incidence of chronic inflammatory and topical disorders
later in life (359).

Cases of hyperinflammatory responses that could fit within
the criteria for autoimmune disorders have been reported
following COVID-19 infections (360–366). This leads us to the
question of whether the viral infection itself could contribute to
the breakdown of self-tolerance. It is widely accepted that
infections could trigger autoimmunity (367–372). Mechanisms
of such include (1) bystander activation of innate cells enhancing
the presentation of self-antigens and thereby the expansion of
autoreactive adaptive counterparts, (2) release of autoantigens,
neoantigen formation, and epitope spreading following excessive
tissue damage, thus promoting autoimmunity, and (3) induction
of molecular mimicry or cross-reactivity when both infectious/
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exogenous antigens and self-antigens share sequence or
structural similarities leading to autoreactivity against self (367,
373). In this regard, although data are still needed on the ability
of SARS-CoV-2 to induce bystander activation and neoantigen
formation, the non-specific activation of innate immune cells
generating a wide array of pro-inflammatory cytokines (e.g.,
cytokine storms) following COVID-19 infection (374) may lead
to tissue damage and generation of neoantigens or epitope
spreading, thus initiating autoimmunity. Consistent with this
notion, it was previously reported that in severe acute respiratory
syndrome-associated coronavirus (SARS-CoV) infection, the
presence of cross-reactive epitopes on SARS-CoV spike protein
domain 2 could generate antibodies that also cross-reacted with
epitopes on lung epithelial cells (375). Similarly, recent reports
have shown that based on transcriptomic analysis, SARS-CoV-2
shares molecular similarities with diverse human central nervous
system (CNS) protein epitopes that could trigger CNS
autoimmunity (376).

On the other hand, infections could be a double-edged sword
where different hypotheses exist on how infections could
modulate autoimmunity. As postulated by the hygiene
hypothesis, infections could counteract autoimmune
development and represent a therapeutic intervention against
autoimmunity. Notably, there are compelling evidences that
specific pathogens suppress different autoimmune conditions
in murine models of SLE (377), CNS autoimmunity (378) and
T1D (379). Generally, the potential mechanisms that might
explain the protective influence of infections on autoimmunity
[as reviewed by others (44)] include (1) antigenic competition
where a strong immune response is induced by a stronger
antigenic stimulus from an infectious agent competes on
signals of inflammation (e.g., pro-inflammatory cytokines) with
a weaker signal from autoantigens leading to dampened
responses towards the weaker st imulus (380) , (2)
desensitization of antigen recognition receptors such as TLRs
due to repeated low-dose antigenic stimulation leading to anergic
responses to autoantigens (381–384), and (3) induction of
immunosuppressive phenotype or bystander suppression where
infectious agents enhance the signaling that rebalances the
regulatory to pro-inflammatory T-cell subsets by increasing the
Treg cells and limiting Th17 expansion (385).

Furthermore, based on the hygiene hypothesis, or the
microbiome deple t ion theory , there i s a pos i t ive
epidemiological association between the increase of
countermeasures to limit infections (e.g., antibiotics,
vaccinations, and sanitation strategies) and the incidence of
autoimmune and allergic conditions (45). During the COVID-
19 pandemic, the worldwide increase of sanitation strategies and
the use of numerous types of disinfectants and household
products raise concerns around their implications on immune
health, especially with the concomitant emergence of allergic and
autoimmune conditions (386). Could hygiene measures and
specifically the use of disinfectants affect the microbial and
immunological modulation of autoimmunity? Although studies
investigating the immunopathogenic potential of disinfectants
are limited, here we briefly propose three possible mechanisms of
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how disinfectants could modulate immunity and contribute to
autoimmune conditions such as SLE. These include their effects
on (1) microbiota diversity, (2) immune cell phenotype and fate,
and (3) epigenetic modifications.
Frontiers in Immunology | www.frontiersin.org 11
Hygiene can disrupt microbiota diversity (387–389), and a
positive correlation has been found between microbiota dysbiosis
and the increase of autoimmune conditions such as IBD (390–
392) and SLE (393–397). This concern is escalating due to the
TABLE 1 | The positive influence of specific dietary nutrients on SLE.

Dietary
Factors

Data on murine studies of SLE Human studies that warrant further
investigation

Proposed research directions

VE • VE supplementation to NZBWF1 diminished anti-dsDNA
autoantibodies and counteracted oxidative stress (121).

• Supplementation of VE with prednisolone
reduced anti-dsDNA antibodies
independently of its antioxidant activity
(335).

• Supplementation of VE with Nigella sativa
improved oxidative and nitrosative
biomarkers and SLE disease activity
favoring antioxidant therapy in SLE (124).

• Delineating the effects of VE
independently of other components
of treatment regimes.
• Exploring the possible disease-
stage-dependent or tissue-specific
outcomes of VE supplementation.

VD • Low levels of VD promoted memory B cells in Act1-/- mouse
(162).

• VD deficiency increased type 1 IFN gene expression in MRL/lpr
mice (336).

• Treatment of MRL/lpr mice with VDR agonist paricalcitol mitigated
lupus nephritis via modulating the NF-kB/NLRP3/caspase-1/IL-
1b/IL-18 axis and suppressing NF-kB nuclear translocation (337).

• A significant negative association
between serum VD and memory B cells
was confirmed in a cohort of SLE patients
(162).

• SLE patients with high anti-dsDNA
autoantibodies (338) or renal involvement
(339) are at higher risk for developing
hypovitaminosis D; and low levels of VD
are correlated with high disease activity
(161).

• Polymorphism in VDR genes has been
reported in SLE patients (170).

• Investigating whether VD
deficiency is a cause or a sequelae
to autoimmune progression.
• Reforming genetic association
data linking certain genetic
susceptibilities and possibilities of
VD deficiency for better personalized
therapeutic approaches.
• Establishing the desired doses
for prophylactic and/or therapeutic
supplementation of VD for SLE
patients.
• Testing the potential efficacy and
safety of VD supplementation on
SLE-associated inflammatory and
hemostatic markers in long-term
studies.

VA • Supplementation of all-trans-retinoic acid (tRA) to murine lupus
models drove disease-stage dependent effects on the
development of lupus nephritis. During the active disease stages
in MRL/lpr and pristane-induced lupus mouse models, tRA oral
dosing showed beneficial effects on renal inflammation (172–174).

• Hypovitaminosis A has been detected
preceding the clinical diagnosis of SLE
(169).

• Investigating whether VA
deficiency is a driving factor for SLE
progression.
• Genome-wide association
studies to establish whether
polymorphisms in VA receptors are
causally associated with SLE
development.
• Determining the desired doses of
prophylactic and/or therapeutic
supplementation of VA.
• Testing the safety and efficacy of
VA supplementation in SLE patients
with different disease manifestations.

Se • Se supplementation improved the survival in NZB/NZW F1 mice
(194).

• SE treatment attenuated SLE-associated splenomegaly in
B6.Sle1b mice (195).

• SE supplementation in B6.Sle1b mice significantly reduced total
and germinal center B cell numbers, and anti-dsDNA and anti-
SmRNP autoantibodies (195).

• Meta-analysis of genome-wide association
studies predicted high Se levels to
associate with a decreased risk for SLE
(193).

• Circulatory Se levels are lower in patients
with SLE compared to age- and sex-
matched healthy controls (216).

• Exploring the potential
therapeutic effect of Se
supplementation for SLE patients in
large-scale studies.
• Elucidating the underlying
mechanisms of the potential protective
role of Se on the risk for SLE.

w−3
PUFA

• w−3 enriched diets dramatically reduced lupus progression,
mitigating glomerulonephritis and improving survival in different
mouse models of SLE (258–261).

• w−3 diminished anti-dsDNA antibodies (258, 261), and circulating
immune complexes and their renal deposition (258).

• w−3 potentiated the effects of antioxidant enzymes, enhancing
the ability of renal cells to eliminate harmful free radicals (259,
261).

• w−3 reduced the expression of renal pro-inflammatory cytokines
including IFNg, IL-12, TNFa (259, 261), and renal profibrotic
molecules such as TGFb and fibronectin-1 (261).

• Fish oil (the marine source of w−3) together
with a low-fat diet significantly modified
SLE activity (247).

• A population-based study suggested that
a higher dietary intake of w−3 fatty acids
and lower w−6: w−3 ratios were positively
associated with patient-reported favorable
outcomes of SLE activity index (340).

• Conducting longer-term trials
with larger patient sample sizes to
establish the long-term outcomes of
w−3 PUFA supplementation on the
SLE activity index.
• Determining the therapeutic
efficacy and safety of w−3 PUFA as
part of the therapeutic regimes that
include other immunosuppressive
agents.
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current COVID-19 pandemic that witnessed a dramatic increase
in hygiene practices including the use of detergents and
disinfectants (398–400). In fact, these control measures may
have long-term consequences on the human microbiome (401,
402). Importantly, a recent report suggests that a disturbed gut
microbiota might lead to more severe inflammation in COVID-
19, where they found positive correlations between microbial
dysbiosis and disease severity as well as inflammatory mediators
in COVID-19 patients (403).

The use of disinfectants is well established to alter microbiota
diversity and microbial load. Chlorine, which is widely used as a
water disinfectant, produces byproducts called trihalomethanes
(THMs) that are intestinally absorbed and known to perturb the
gut microbiota leading to the elevated relative abundance of
Bacteroidetes and a dose-dependent decrease in the ratio
of Firmicutes to Bacteroidetes (404). Similarly, a reduced
Firmicutes/Bacteroidetes ratio is also evident in different
autoimmune diseases (405, 406) including SLE (407). The
active chemicals in commercial disinfectants and hand sanitizers
(e.g., Triclosan, 5-chloro-2-(2,4-dichloro phenoxy) phenyl)
could have a profound impact on the gut microbiome (408,
409), reducing microbiota diversity (410, 411) and increasing
the abundance of Lachnospiraceae (412). As mentioned
earlier, there is a strong correlation between disrupted
microbial communities and systemic autoimmune disease
pathogenesis. For instance, in MRL/lpr mice, reduced
Lactobacillaceae and increased Lachnospiraceae are associated
with lupus onset and progression (413). Thus, COVID-19
related hygiene practices, such as the overuse of disinfectants,
could indirectly contribute to autoimmunity through inducing
microbiota dysbiosis.

Secondly, the use of disinfectants could also tone the function
and fate of immune cells and subsequently shape the outcome of
autoimmune disease. We have shown that quaternary
ammonium compounds (QACs) in widely used antiseptics and
surface disinfectants (414) can impair innate immune cell
functions (415). QACs increase the production of pro-
inflammatory cytokines from murine macrophages in vitro and
paradoxically impair their phagocytic potential (415). Since
prompt macrophage responses are crucial for efferocytosis
(phagocytosis of dying cells in an inflammatory milieu) as well
as effective clearance of autoantigens, these disinfectants could
contribute to autoimmunity via impairing macrophages
responses (416, 417). Using MRL/lpr mice, we found that
ambient exposure to QACs hindered the migration of bone
marrow-derived neutrophils towards inflammatory stimuli and
decreased their infiltration into the lymph nodes. In parallel,
QACs upregulated splenic neutrophil expression of checkpoint
protein programmed death-ligand 1 (PD-L1). Moreover, QAC
exposure dampened the activation of splenic T cells and
increased apoptosis of effector T-cell populations, thereby
mitigating SLE-associated lymphadenopathy in this mouse
model (418). Furthermore, while the phenotype of reduced
splenomegaly and lymphadenopathy is an indication of
protection against a mouse model of SLE, our findings also
indicate that even ambient exposure to QACs could alter
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neutrophil and T-cell phenotypes, functions, and their fate,
raising concerns about the immunotoxicity of these chemicals.

Thirdly, disinfectants may reprogram immune cell functions
through epigenetic alteration, thus leading to autoimmunity. For
instance, long-term exposure to the chlorine byproducts THMs
in drinking water results in global DNA hypomethylation as well
as c-Jun gene-specific hypomethylation (419). Inhibition of DNA
methylation in differentiating Th cells deviates their cytokine
responses towards a pro-inflammatory IFNg+ phenotype (420).
In addition, a low DNAmethylation level in mature T cells could
result in T-cell autoreactivity associated with idiopathic SLE
(421). These findings on disinfectants and epigenetics warrant
further investigations to elaborate their roles in breaking
immune homeostasis to promote autoimmunity.

Importantly, while authorities worldwide are more interested
in mitigating the spread of COVID-19 infection, the long-term
consequences of hygiene strategies on immune modulation need
to be addressed. The Centers for Disease Control and Prevention
(CDC) recommends to the use of the United States
Environmental Protection Agency (EPA) list N-approved
disinfectants to combat COVID-19 infection; if the
disinfectants on the list are not available, then the bleach
solution (Chlorine) is recommended. Notably, QAC-based
disinfectants are on the top of the EPA list N. Again, the CDC
recommendations raise the concern of whether the overuse of
these chemicals by the public could pave the way to
autoimmunity as the comet tail of the current pandemic. As
we have discussed, QACs and chlorine byproducts have the
potential to modulate immune cell fate and induce epigenetic
modification, respectively, to break self-tolerance, thus leading
to autoimmunity.
SUMMARY

During the recent decades, improved socio-economic levels have
led to modernized dietary and hygiene approaches that are
concomitant with an increased prevalence of autoimmune
conditions. This suggests the strong influence of environmental
factors on immune modulation. Throughout this review, we
discussed how dietary components and hygiene could have
diverse implications on immune health and importantly, their
implication on immune tolerance and autoimmunity. This
includes both direct and indirect effects on immune cell
programming. Direct effects are those on cell signaling, cell
metabolism and energy intake, and epigenetic modification; and
indirect effects include those modulating antioxidant capacities
and gut microbiota. The emergence of the COVID-19 pandemic
has greatly impacted our dietary and hygiene behaviors. It is thus
important to consider the immunomodulatory capacities of
environmental factors especially for patients suffering from both
COVID-19 and autoimmune disease. Future studies will unravel
much-needed mechanistic insights on the immune modulation
induced by diet and hygiene and lead to more effective
management strategies for autoimmune diseases during
emerging threats such as COVID-19.
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