
royalsocietypublishing.org/journal/rstb
Research
Cite this article: Preite V, Sailer C,

Syllwasschy L, Bray S, Ahmadi H, Krämer U,
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It is a plausible hypothesis that parallel adaptation events to the same

environmental challenge should result in genetic changes of similar or

identical effects, depending on the underlying fitness landscapes. However,

systematic testing of this is scarce. Here we examine this hypothesis in two

closely related plant species, Arabidopsis halleri and Arabidopsis arenosa, which

co-occur at two calamine metalliferous (M) sites harbouring toxic levels of

the heavy metals zinc and cadmium. We conduct individual genome rese-

quencing alongside soil elemental analysis for 64 plants from eight

populations on M and non-metalliferous (NM) soils, and identify genomic

footprints of selection and local adaptation. Selective sweep and environ-

mental association analyses indicate a modest degree of gene as well as

functional network convergence, whereby the proximal molecular factors

mediating this convergence mostly differ between site pairs and species.

Notably, we observe repeated selection on identical single nucleotide poly-

morphisms in several A. halleri genes at two independently colonized M

sites. Our data suggest that species-specific metal handling and other bio-

logical features could explain a low degree of convergence between

species. The parallel establishment of plant populations on calamine M

soils involves convergent evolution, which will probably be more pervasive

across sites purposely chosen for maximal similarity in soil composition.

This article is part of the theme issue ‘Convergent evolution in the

genomics era: new insights and directions’.
1. Introduction
Most plants cannot rapidly escape hostile environments. Thus, they present

powerful models for the study of adaptation. Remarkably, some plant species

contain multiple populations that have evolved the ability to thrive in the

harshest environments, for example extreme drought, solar radiation, heat, sal-

inity, low nutrient availability and toxic concentrations of heavy metal ions in

soil. Metalliferous (M) soils are defined as rich in at least one class B and border-

line trace metal element [1], are usually nutritionally imbalanced [2,3], and arise

either through geological (e.g. ancient outcrop) or human (e.g. mining, metal

smelter) activity. Such soils are generally toxic to plants and host a sparse,

species-poor characteristic vegetation of adapted, often endemic extremophiles,

so-called metallophytes [4].

Several members of the Arabidopsis genus have been described as pseudo-

metallophytes, i.e. harbouring populations on both M and nonmetalliferous

(NM) soils, namely Arabidopsis halleri [5,6], Arabidopsis arenosa [7–9] and Arabi-
dopsis lyrata [10]. Among these species, only A. halleri is widespread on
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calamine-type M soils of Central and Eastern Europe as well

as in East Asia and has thus become a model organism for

the study of evolutionary adaptation to challenging soils.

Calamine soils are defined as containing high levels of

zinc (Zn), which are geologically accompanied by the

metals cadmium (Cd), lead (Pb) and occasionally copper

(Cu). Arabidopsis halleri is a diploid (2n ¼ 16), stoloniferous

perennial and obligate outcrosser with a haploid genome

size of approximately 260 Mbp [11]. On both M and NM

soils, A. halleri exhibits Zn, and regionally also Cd, hyper-

accumulation, defined as the ability to accumulate greater

than 3000 mg Zn g21 dry leaf biomass or greater than

100 mg Cd g21 dry leaf biomass in its natural habitat

[5,6]. Experimental studies in synthetic hydroponic

media have demonstrated species-wide hypertolerance to

both metals in comparison to the closely related species

A. lyrata and Arabidopsis thaliana [12,13]. These same

studies also established that A. halleri accessions originat-

ing from calamine M soils exhibit enhanced Zn and/or

Cd hypertolerance, which is probably the result of local

adaptation. Importantly, the basal metal tolerance present

in all plants, which enables them to acclimate to local fluc-

tuations in soil composition, does not allow survival on

calamine M soils [14].

Arabidopsis arenosa occurs as diploid (2n ¼ 16) and auto-

tetraploid (2n ¼ 32) cytotypes and is a perennial obligate

outcrosser with ample seed set in the field, compared

with A. halleri. Generally, A. arenosa is absent from most

calamine M soils and is known as a so-called metal exclu-

der, i.e. a plant that maintains normal Zn and low Cd

concentrations in its above-ground biomass in natural

populations [15,16]. While A. halleri and A. arenosa gener-

ally occupy differing edaphic niches, both species are

rarely found together at few calamine M sites [17] in East-

ern Europe and at some NM sites, suggesting that their

populations can occasionally undergo convergent niche

shifts. Our information on tolerance to and accumulation

of calamine-type metals in A. arenosa and its intra-species

variation is still rudimentary [7,8,18,19].

Work over the past two decades has established a first

understanding of the genetic basis of species-wide metal

hypertolerance and hyperaccumulation in A. halleri in

comparison to closely related species [11,20,21]. However,

no causal genetic locus governing within-species variation

in tolerance to calamine-type metals has been identified to

date. With this study, we aimed to detect convergent genomic

footprints of selection at two calamine M sites, each by com-

parison to a NM site in their vicinity, in both A. halleri and

A. arenosa. We thus took advantage of a few exceptional

cases where both species have adapted to the same sites

and thus similarly composed soils. Individual genome

resequencing of 64 individual plants from eight populations,

followed by high-density genome scans for selective sweeps,

identified a handful of compelling candidate genes under

selection at both of the two site pairs or in both of the

two species. Notable among these, we identify the A. halleri
Cysteine Protease-Like 1 (CPL1) locus as a candidate for

convergent selection in both population pairs. We show

that this gene exhibits a series of convergent derived sequence

variants in individuals originating from M sites, and appears

to have undergone a loss of function in populations at

NM sites.
2. Methods
(a) Field sampling, and plant and soil materials
Field sampling was conducted for multi-element analysis from

A. halleri (L.) O’Kane and Al-Shehbaz ssp. halleri and A. arenosa
ssp. arenosa (L.) Hayek at four field sites in September 2015

and May 2016 (seven to 10 individuals per species and site; see

the electronic supplementary material, table S1). From each

plant individual, we collected both a sample of root-proximal

soil for multi-element analysis and a leaf sample for DNA extrac-

tion (see [6] for a description of sites and methods for soil sample

collection and processing). Five to 10 leaves per individual were

placed in a 2 ml polypropylene tube for later DNA isolation,

immediately frozen in liquid nitrogen (MVE vapor shipper,

Chart, Minnesota, USA) and stored in liquid nitrogen. For exper-

iments under controlled growth chamber conditions, we collected

about 40 l of soil (�0.3 m depth) at the M site Miasteczko Śląskie

(Mias; see the electronic supplementary material, table S1) in May

2016 (see below). All-purpose greenhouse soil (Minitray, Einheit-

serde, Sinntal-Altengronau, Germany) was used as NM control

soil. Plants were grown from cuttings of A. halleri individuals col-

lected at Mias and Zakopane [6] and maintained in the

greenhouse (Ruhr-Universität Bochum, Germany, [6]) and from

A. arenosa seeds collected at the two field sites Mias and Zakopane

(Zapa).

(b) Plant cultivation under growth chamber conditions
Seedlings of A. arenosa and vegetative clones of A. halleri (see the

electronic supplementary material, Supplementary methods, a)

were pre-cultivated for 17 days in 1 : 1 (v/v) peat : sand (round

pots, 5 cm Ø, 3.5 cm depth, 50 ml volume) in a climate-controlled

growth chamber (208C/178C, 10 h light at 100 mmol m22 s21;

GroBanks, Arabidopsis BB-XXL.3, CLF Plant Climatics, Wertin-

gen, Germany). Subsequently, plants were transferred into

experimental treatment soils (three volume parts of field-col-

lected M Mias or NM greenhouse soil, each mixed with one

volume part of sand; square pots 7 � 7 cm width, 8 cm depth,

300 ml volume) and cultivated in the growth chamber for

another six weeks. Pots were arranged in trays (separated by

species and treatment soil; 16–23 pots per tray), and plants

were watered with tap water (poured from above) when

needed (two to three times per week, preventing waterlogging).

Positions and orientation of trays were re-arranged randomly

once per week. Photographs were taken at the start, after three

weeks and at the end of cultivation. At harvest, plant survival

was scored and fresh above-ground biomass was determined

for each plant. The biomass between experimental groups was

assessed using a generalized linear mixed effect model with

fresh biomass as dependent variable, genotype (site of origin:

Mias M site versus Zapa NM site) and treatment (experimental

soil type of exposure: control-soil versus M soil) as fixed predic-

tors. Individual plants and genotype nested in treatment were set

as random factors. The significance of each variable as well as the

interaction between genotype and treatment was tested with

type II x2 based likelihood-ratio tests (based on inverse Gaussian

distribution with the link function 1/mu2; glmer and ANOVA

functions in R-packages lme4 [22] and car [23], respectively).

(c) Analysis of soil samples and DNA extraction
Soil pH, as well as extractable and exchangeable concentrations

of Al, B, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Ni, P, Pb, S and Zn in

soil samples were determined as described [6]. Frozen leaf tissues

were lyophilized overnight (Alpha 1-4 LSC plus, Martin Christ

LCG, Osterode am Harz, Germany) and subsequently homogen-

ized with a single ceramic bead (3 mm Ø; Precellys Beads,

Peqlab, Erlangen, Germany) in a Retsch mixer mill (Type
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MM300, Retsch, Haan, Germany) for 2 � 1.5 min at 30 Hz. For

each individual sample 9–15 mg of dry leaf powder was

weighed into a 2 ml polypropylene tube and mixed thoroughly

with 0.9 ml cetyl trimethylammonium bromide buffer, followed

by DNA extraction according to [24] with small modifications

(see the electronic supplementary material, Supplementary

methods). DNA quality was verified by spectrophotometry and

agarose gel electrophoresis, and DNA was quantified using the

dsDNA HS assay (Q32854) following the manufacturer’s instruc-

tions with an incubation time of 20 min (Qubit 3.0, ThermoFisher

Scientific, Life Technologies Ltd., Paisley, UK).

(d) Library preparation, sequencing, processing of next
generation sequencing data, and variant calling

We prepared Illumina TruSeq polymerase chain reaction (PCR) free

(FC-121-3003; Illumina United, Fulbourn, UK) sequencing libraries

with 350 bp insert lengths according to manufacturer’s instructions

with slight modifications. We processed the sequencing data files

using custom PYTHON3 or BASH scripts that allowed batch processing

on high performance cluster computers. Workflows were based on

GATK Best Practices, GATK version 3.6 or higher [25]. The next

generation sequencing (NGS) data processing pipeline involved

initial processing of raw sequence data, mapping, re-aligning of

sequence data around indels, and variant discovery (electronic sup-

plementary material, Supplementary Methods, https://github.

com/syllwlwz/Divergence-Scans/tree/master/SNP_calling_are-

nosa). For each species, we mapped sequence reads to the high

quality chromosome-build A. lyrata reference genome (JGI Phyto-

zome, https://phytozome.jgi.doe.gov/pz/portal.html). Mapping

both species to the same reference allows a clean comparison of

the same gene space in both species. However, given this design

our study cannot reliably assess regions of the genomes of

A. halleri or A. arenosa that are highly divergent from the genome

of A. lyrata. The genome assemblies presently available for A. are-
nosa and A. halleri are of insufficient quality for conducting

genome scans, thus outweighing any disadvantage arising from

mapping reads to the heterologous A. lyrata genome. Neutral popu-

lation structure was assessed based on initial NGS data processing

as conducted for environmental association analysis (EAA),

employing the putatively neutral fourfold degenerate sites from

the filtered variant call files. We extracted the allele frequency per

individual and used this data for a principal component analysis

(PCA) using the R-package FactoMineR [26].

(e) Genome scans, large-effect variant identification,
candidate gene lists and test for convergent
evolution

For each population pair, the genome was partitioned into win-

dows of 25 consecutive single nucleotide polymorphisms

(SNPs), for which we calculated the per-window mean of each

pairwise metric diversity-divergence residuals (DD) [9,27],

Wright’s fixation index (FST) [9,28,29], a two-dimensional site fre-

quency spectrum composite likelihood ratio test (Nielsen 2dSFS)

[9,27,30], absolute net divergence (dXY) [9,31], the Lewontin–

Krakauer LK test (Flk) [32], VarLD [33], absolute allele frequency

difference (AFDabs), the single population metrics Tajima’s D
[34] and Fay and Wu’s H [35], as well as SWEED [30,36]. We pro-

ceeded in this manner in order to reduce sampling noise of single

SNPs and to avoid the known caveats of windows of set length in

base pairs [37]. We used different metrics to address different

ages of selection events and corresponding divergence times

[38]. Candidate windows for selection were identified as

�99.9%iles (�0.1%ile for DD) of all windows for either one of

the pairwise metrics for each population contrast. Orthologous

A. thaliana gene identifiers were retrieved for A. lyrata genes
and genes not assigned to an OrthoGroup were submitted for

a local blastx on the nr database. All candidate genes underwent

a custom annotation process for filtering. All variants (SNPs and

indels) were annotated and their effects predicted by SNPEFF [39]

based on the A. lyrata annotation version 2 [40]. SNPEFF uses the

reference annotation to predict the effects of variants on the

encoded proteins.

In addition to the genome scans described above, we used

the genome-wide output of SNPEFF to identify large-effect

variants at divergent frequencies between populations of a

pair. This identified putative candidate genes of high allele fre-

quency difference between M and NM populations, which may

have escaped detection in genome scans. Coverage was calcu-

lated per gene or per exonic gene content and the number of

paralogous genes within the same OrthoGroup was extracted.

To identify candidate genes shared between site pairs or between

species, Venn diagrams of candidate genes were generated with

VENNY 2.1.0 [41], and hypergeometric tests were performed to

compare observed and expected overlaps. A gene function

enrichment test was performed for each population pair using

the CLUEGO app version 2.5.2 [42] in CYTOSCAPE version 3.6.1

[43] using the A. thaliana gene identifiers and the gene ontology

(GO) ‘BiologicalProcess’.

( f ) Identifying divergence signatures, environmental
association analysis, and compilation of candidate
gene lists

To identify divergence signatures, we calculated the per-window

mean values for allele frequency difference (AFD), dXY [9,31], FST

[9,28,29], DD [9,27], and Tajima’s D [34] in SNP based windows.

We defined a divergence signature as �99.5%ile windows in

the empirical distributions for each metric (https://github.com/

SailerChristian/Divergence_Scan). If at least one of the metrics

dXY, FST, or DD showed a divergence signature overlapping a

gene, we considered this gene as a DIVERGENCESCAN candidate.

Signatures of positive selection are expected to harbour a

divergence signature and an association with a particular selection

pressure, in this case we focus on soil trace metal element (TME)

concentrations. To identify which of the DIVERGENCESCAN candidate

genes fulfil the second condition of association with soil TME, we

used the environmental association analysis tool BAYENV2 [44],

which allows for testing in a two-step process. We therefore took

all SNPs overlapping candidate genes identified using DIVERGEN-

CESCAN and subsequently used EAA to analyse these for

association with extractable Cd and extractable Zn concentrations

in soil across all four populations. In order to infer effects on

protein structure, we selected environmentally very strongly

associated SNPs (environmental associated (EA) SNPs, Bayes

Factor (BF)� 100 [45]) that cause a non-synonymous change

according to the annotation using SNPEFF [39]. To draw conclusions

about convergence, we created a union list of extractable Cd and

extractable Zn EA SNPs per contrast and species and identified

the intersect between the two contrasts within each species.

(g) Homology modelling and re-assessment of putative
intron – exon boundaries

Homology models of AhCPL1 were generated with MODELLER 9.20

[46] using the structures of Actinidia chinensis (PDB: 2ACT), Taber-
naemontana divaricata (PDB: 1IWD), Zingiber officinale (PDB: 1CQD)

and Homo sapiens (PDB: 1BY8, identified using PSIPRED [47] and

incorporated to model the pro-peptide). The final model was

determined based on DOPE score. Multiple sequence alignments

were generated using CLUSTAL OMEGA (https://www.ebi.ac.uk/

Tools/msa/clustalo/) and MODELLER 9.20 [46], with colour

scheme showing percentage identity through JALVIEW [48].
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Figure 1. Mineral composition of exchangeable fraction of soils, and soil pH. (a) Site pair Miasteczko Śląskie (Mias) and Zakopane (Zapa), (b) Site pair Kletno (Klet)
and Kowary (Kowa). Concentrations of elements were determined in 0.01 M BaCl2 extracts of soils collected in the field directly adjacent to roots of the plant
individuals that we resequenced (see Methods). Concentrations (mg element kg21 dry soil mass) were normalized to the global minimum per site pair across
both species, and subsequently log10-transformed. Shown are the median (solid line), 10 and 90%iles (dashed lines), minimum and maximum (dotted lines)
for each site per species (n ¼ 5 to 9 plant individuals) for metalliferous (M, red) and non-metalliferous (NM, black) soils.
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Intron–exon boundaries were initially determined by align-

ment to the annotated A. lyrata reference genome. Boundaries

were re-defined using the A. halleri reference genome [49].

Arabidopsis halleri introns from gene Araha.2668s0004 were

aligned to the genomic consensus sequences of AhCPL1. In this

way, intron 2 was expanded by six nucleotides at the 30 end (2

amino acids) and intron 4 was expanded at the 50 end by 117

nucleotides for the M site allele and 185 nucleotides for the

NM site allele.
3. Results
(a) Choice of site pairs and edaphic characterization of

sites and microhabitats
While sampling A. halleri at 165 European sites [6], we

noticed the additional presence of A. arenosa plants at a

small subset of M and NM A. halleri sites. According to soil

multi-element analysis, A. halleri grows in highly metal-

contaminated soil patches at M sites whereas A. arenosa
typically occupies low-metal soil microhabitats (data not

shown). However, at Miasteczko Śląskie/PL (Mias) and

Kletno/PL (Klet), individuals of both species grew in M

soil microhabitats of highly similar composition (figure 1;

electronic supplementary material, tables S1 and S2 and

dataset S1). Between the two species, the only significant

differences were higher extractable Al and extractable Cu con-

centrations in A. halleri-adjacent soil at Klet (A. halleri 513+
99 mg Al kg21 soil, A. arenosa 384+131 mg Al kg21 soil,

F1,16¼ 4.930, p , 0.05; A. halleri 53.25+30.84 mg Cu kg21

soil, A. arenosa 27.72+14.53 mg Cu kg21 soil, F1,16¼ 5.514,

p , 0.04; electronic supplementary material, table S2).
Based on these two focal M sites that were very high in

soil exchangeable Zn and Cd, we chose geographically prox-

imal NM sites that also hosted both species, namely

Zakopane/PL (Zapa) and Kowary/PL (Kowa), respectively.

Plant-proximal soils at these NM sites contained tenfold

less or lower average exchangeable soil Zn and Cd concen-

trations (figure 1). Indeed, exchangeable soil cadmium and

zinc concentrations differentiated M from NM sites for both

species, based on one-way ANOVA (linear model; Cd:

F3,26 ¼ 149.7, p ¼ 2.2 � 10216; Zn: F3,26 ¼ 68.63, p ¼ 1.8 �
10212; electronic supplementary material, table S3). These

major global contrasts between M and NM soils were also

evident in the extractable fraction of soils (electronic sup-

plementary material, figure S1). Thus, we were able to

address the parallel evolution of edaphic adaptation to cala-

mine M soil through the comparison between the site pairs

Mias-Zapa and Klet-Kowa in both species, as well as through

the comparison between species for either of the two site

pairs. NM sites were generally lower in soil pH and higher

in soil Zn, Cd and Ni at A. halleri microhabitats compared

to those of A. arenosa.
(b) Experimental test for adaptation to metalliferous soil
Under climate-controlled growth chamber conditions survi-

val of A. halleri was 100% irrespective of plant origin and

experimental soil treatment (figure 2a; electronic supplemen-

tary material, figure S2 and table S4). Similarly, there was

100% survival of A. arenosa plants on control soil irrespective

of plant origin. However, on M Mias soil, only A. arenosa of

Mias origin were able to survive (100% survival rate),

whereas all plants originating from the NM Zapa site died
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Figure 2. Experimental test for adaptation to metalliferous soil. (a,b) Survival
of A. halleri (a) and A. arenosa (b) plants originating from Mias (M site, red) and
Zapa (NM site, black) transferred into metalliferous (Mias) or non-metallifer-
ous (control) soil. (c,d ) Fresh biomass of A. halleri (c) and A. arenosa (d ) plants
originating from Mias (M site, red) and Zapa (NM site, black) transferred into
metalliferous (Mias) or non-metalliferous (control) soil. Shown are means and
standard deviations of survival rate (a,b) and fresh above-ground biomass (c,d )
after six weeks of cultivation on experimental soils (see the electronic supplemen-
tary material, table S4 for details).
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(survival rate 0%) (figure 2b). Biomass production of A. halleri
exhibited crossing reaction norms, which indicates local

adaptation of Mias plants to M Mias soil (figure 2c, electronic

supplementary material, figure S2, significant interaction

between plant genotype and treatment soil at p ¼ 0.013,

electronic supplementary material, table S4). Similarly,

A. arenosa exhibited a signature of local adaptation

(figure 2d, p , 0.001). The observed trends were reproduced

in an independent experiment (electronic supplementary

material, figure S3 and table S4).
(c) All population pairs are genetically distinct
To assess population structure, we conducted a PCA using

putatively neutral (fourfold degenerate) sites. We found

that the A. halleri individuals from Mias (M1) and Zapa

(NM1) were genetically more closely related to one another

than those at Klet (M2) and Kowa (NM2). By contrast, in A.
arenosa we observed greater genetic similarity between the

Klet and Kowa populations than between the Mias and

Zapa populations (electronic supplementary material, figure

S4a,b). Furthermore, for A. halleri the first principal com-

ponent separated individuals from Klet from those at the

other three populations (electronic supplementary material,

figure S4a). This is most likely caused by a relative excess of

low frequency variants in Klet, as illustrated by folded site

frequency spectra (electronic supplementary material, figure

S4e), and consistent with a population bottleneck at Klet.

Importantly, the neutral population structure was clearly dis-

tinct from the dominant contrast between M and NM soil

types in both species.
(d) Population pairwise identification of candidate
genes for selection at metalliferous sites

To obtain candidate loci underlying repeated adaptation to

M soils, we next scanned genomes sampled from these popu-

lations for selective sweep signatures. We determined gene

content of candidate 25 SNP windows based on unique

A. lyrata gene identifiers, and filtered candidate gene-coding

loci manually (see the electronic supplementary material,

Supplementary Methods, f ). In A. halleri, in the single popu-

lation pair of Mias (M1) and Zapa (NM1) alone, this

identified 94 candidate loci based on any one metric (0.1%

upper or lower outliers of DD, FST, 2dSFS, dXY, AFDabs or

Flk; see Methods) in Mias relative to Zapa (figure 3a, dark

blue oval; electronic supplementary material, dataset S2).

Independently, we identified an additional 81 genes exhibit-

ing predicted large-effect SNPs and 74 genes exhibiting

predicted large-effect indels (see Methods; not shown;

electronic supplementary material, dataset S2). In the single

population pair Klet (M2) by comparison to Kowa (NM2),

we identified 73 candidates in genome scans (figure 3a,

light blue oval), as well as 488 genes containing large-effect

SNPs and 379 genes containing large-effect indels (not

shown; electronic supplementary material, dataset S3).

In A. arenosa for the single population pair Mias-Zapa, we

identified 135 candidate genes in divergence window-based

scans (figure 3a, dark yellow oval), and 15 and 33 genes con-

taining predicted high-effect SNPs and indels, respectively

(not shown; electronic supplementary material, dataset S4).

Finally, in A. arenosa at Klet compared to Kowa, we identified

147 candidate genes (figure 3a, light yellow window), as well

as five and 16 genes containing high-effect SNPs and indels,

respectively (not shown; electronic supplementary material,

dataset S5). We conducted an enrichment analysis on GO

‘biological pathways’ with CYTOSCAPE for the candidate

genes identified (see Methods; electronic supplementary

material, datasets S2–S5). In A. halleri, this identified an

over-representation among candidates in the functions

‘ammonium ion metabolic process’ for Mias (versus Zapa)

and ‘acceptance of pollen’ for Klet (versus Kowa), among

others (figure 3b). In A. arenosa, ‘regulation of sequestering

of zinc ion’ were most over-represented among candidate

genes at Mias (versus Zapa), and ‘vacuolar sequestering’ for

Klet (versus Kowa) (figure 3b).
(e) Degree of convergent evolution
Based on the candidate genes identified in genome scans

(§3d above), we identified intersecting sets of genes which

represent candidate genes undergoing convergent selection.

We identified five candidate genes exhibiting selective

sweep signatures that were convergent between both popu-

lation pairs Mias (versus Zapa) and Klet (versus Kowa) in

A. halleri (figure 3a, intersection of dark blue and light blue

oval), and another five convergent candidate genes in

A. arenosa (figure 3a, intersection of dark yellow and light

yellow ovals; both p , 0.001, hypergeometric test; table 1).

There was no convergent candidate gene across both site

pairs common to both species (see the electronic supplemen-

tary material, dataset S6 for a less conservative list that

additionally includes those candidate genes identified

through the presence of large-effect SNPs or indels at high

allele frequencies). One of the convergent candidate genes
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across both site pairs in A. halleri (AL8G20240, annotated as

tRNA dihydrouridine synthase, see table 1 and electronic

supplementary material, figure S5c) was also a candidate

for selection in Klet (versus Kowa) in A. arenosa. Two candi-

date genes were in common between the two species at Mias

(versus Zapa), and one gene at Klet (versus Kowa) (n.s.,

hypergeometric test). Three genes were candidates at Mias

in A. halleri and at Klet in A. arenosa ( p , 0.01), and one

gene was a candidate at Mias in A. arenosa and at Klet in

A. halleri (n.s.). Additionally, there was some convergence

among gene functional categories related to cellular protein
localization (figure 3b). These were significantly over-

represented at Klet (versus Kowa) in A. halleri and at both

site pairs in A. arenosa (protein localization, establishment

of protein localization, regulation of protein localization, cel-

lular macromolecule localization, cellular localization,

intracellular transport; figure 3b).
( f ) Environmental association analysis
In a complementary approach taken to identify environmen-

tally associated changes in primary protein structure, we



Table 1. Convergent candidate genes for selection as identified in this study.

A. lyrata
genome identifier

A. thaliana
genome identifier short gene name gene annotationb

Arabidopsis halleri candidate genes convergent between site pairs

AL2G22120 AT1G65430 ARI8 Ariadne 8; ubiquitin protein ligases

AL2G31400 AT1G71820 SEC6 exocyst complex gene family member; vesicle secretion

AL5G40920 AT3G59040 tetratricopeptide repeat (TPR)-like superfamily protein

AL5G40930 AT2G43020 PAO2 polyamine oxidase 2s

AL8G20240 AT5G47970 tRNA dihydrouridine synthase; Aldolase-type TIM barrela

Arabidopsis arenosa candidate genes convergent between site pairs

AL2G12590 AT1G63010 PHT5;1 major facilitator superfamily, SPX domain; vacuolar Pi sequestrations

AL2G30820 AT1G71210 pentatricopeptide repeat (PPR) superfamily proteing,r

AL7G17030 AT4G34260 AXY8 altered xyloglucan 8; 1,2-a-L-fucosidase; mutant is Al-tolerantg,r

AL8G14060 AT5G45140 NRPC2 nuclear RNA polymerase C2g,f

AL7G35050 AT4G19050 NB-ARC protein; GWAS association with H2O2 tolerance

candidate genes at Mias (versus Zapa) convergent between species

AL5G26930 AT3G47640 PYE Popeye; bHLH TF acting in iron homeostasisa,g

AL5G26940 AT3G47650 BDS2 bundle sheath defective 2; DnaJ/Hsp40 cys-rich domaina,l

candidate genes at Klet (versus Kowa) convergent between species

AL8G20240 AT5G47970 tRNA dihydrouridine; Aldolase-type TIM barrel familya

candidate genes convergent between A. halleri at Mias (versus Zapa) and A. arenosa at Klet (versus Kowa)

AL1G26370 AT1G14470 pentatricopeptide repeat (PPR) superfamily proteinf,g

AL8G20240 AT5G47970 tRNA dihydrouridine; Aldolase-type TIM barrel familya

AL6G35310 AT5G23980 FRO4 Fe reduction oxidase 4; root surface Cu(II) chelate reductaser,l

candidate genes convergent between A. halleri at Klet (versus Kowa) and A. arenosa at Mias (versus Zapa)

AL1G53790 AT1G47560 SEC3B exocyst complex gene family member; vesicle secretion

A. halleri candidate genes convergent between site pairs identified by EAA

AL1G34900 AT1G21722 unknown transmembrane proteinf

AL3G38930 AT3G24250 glycine-rich proteins

AL3G53910 AT2G20800 NDB4 NAD(P)H dehydrogenase B4p

AL5G24630 none Blast: Alpha-D-xyloside xylohydrolase

AL6G23510 none DNA damage repair/tolerance DRT100-related (AT5G12940)r

AL8G32870 none CPL1 cysteine protease-like 1a

AL8G32880 none hypothetical protein AXX17-related (AT5G56200)s

aLarge-effect SNPs or indels of allele frequency difference greater than 0.9 in at least one population pair.
bTissue-specific or strongly enhanced gene expression: ggermination, ssiliques, rroot, fflower, ppollen, lleaves.
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conducted an EAA across all four sites, separately for each

species. This analysis was justified by our analysis of

population structure and by the differentiation in soil com-

position (see figure 1; electronic supplementary material,

figure S4). We first identified candidate gene-coding loci

positioned in a 25 SNP window exhibiting a signature of

relative divergence (see Methods and the electronic sup-

plementary material, Supplementary methods). For each

gene identified in the DIVERGENCESCAN as overlapping with

an outlier window, we subjected all SNPs of the coding

region to an EAA using BAYENV2. Out of approximately

100 000 and 540 000 SNPs from transcribed regions tested

for A. halleri and A. arenosa (see the electronic supplemen-

tary material, table S1), respectively, between 0.047% and
1.12% were identified to exhibit a strong environmental

association (BF . 100, from BAYENV2). Among these, we

additionally required that a candidate gene-coding locus

must contain at least one associated non-synonymous SNP.

We restricted this analysis to non-synonymous SNPs pri-

marily because mapping coverage in intergenic regions in

these highly heterozygous outcrossing plant species can be

poor, whereas mapping to coding regions is very good. It

is important to note that for both species we mapped

sequencing reads against a diverged heterologous reference,

A. lyrata. We further required that the environmentally

associated non-reference allele must be present at a higher

frequency in both M populations (Klet and Mias) compared

to both NM populations. In other words, we required a
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change in primary protein structure to be derived. In A. hal-
leri, a total of seven loci fulfilled all these stringent criteria,

whereas for A. arenosa, no gene-coding locus was retained

(table 1). None of the seven identified genes is associated

with a pathway based on the NCBI biosystems repository.

Thus, based on this stringent implementation of an EAA

analysis, we did not find a single locus to be convergent

between both species. This finding is consistent with the

results of other less stringent approaches we applied with

less success (not shown), such as the double outlier and

Null-W test [50], a possible consequence of insufficient stat-

istical power of our study including four populations and

divergence metrics only.
(g) Integrating results from both approaches
One candidate gene, Cysteine Protease-like 1 (AL8G32870,

CPL1), was identified in A. halleri by both (i) intersecting

results of genome scans combined with potentially selected

large-effect SNPs/indels (see §3d,e), and (ii) EAA of candi-

date genes in both M populations (see §3f) (table 1,

electronic supplementary material, datasets S2 and S3,
figure 4). The signature of selection over the candidate gene

AL8G32870 was stronger for Mias-Zapa (�99.9%ile for

FST, dXY, Flk, highly negative Tajima’s D, �0.1% for DD)

than for Klet-Kowa (figure 4a). AhCPL1 was identified as a

candidate gene in the Klet-Kowa population pair based on

a large-effect indel exhibiting a high allele frequency

difference (allele frequency difference ¼ 0.86, electronic sup-

plementary material, dataset S3). SWEED indicated a strong

signal for the Klet (M2), but not the Kowa (NM2) popu-

lation. Window-based divergence metrics gave FST and

dXY values in the �99.5%ile and DD in the �0.5%ile in

Klet-Kowa. Extreme values of metrics pinpointed exons

one to four (figure 4a), in agreement with EAA which ident-

ified 50% of the significantly associated SNPs in this region

(figure 4b,c). A closer inspection of haplotypes revealed that

the predicted proteins at Mias (M1) and Klet (M2) share

amino acid variants at 12 out of a total of 16 variable pos-

itions of the predicted protein that differentiate them from

Zapa (NM1) and Kowa (NM2) (electronic supplementary

material, figure S6). Of these 12 amino acids characteristic

of M sites, nine are derived compared to the A. lyrata
reference.



royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

374:20180243

9
(h) Homology modelling of AhCPL1 proteins
To gain insight into possible consequences of the amino acid

exchanges in the predicted AhCPL1 Papain-like cysteine pro-

tease protein, we generated a homology model of the protein

structure. An initial multiple sequence alignment (electronic

supplementary material, figure S7a) suggested that a segment

of the protein was missing (t2, A. lyrata genome v2.1, JGI

Phytozome, https://phytozome.jgi.doe.gov/pz/portal.html).

Intron–exon boundaries were then re-assessed based on

A. halleri v1.1 (JGI Phytozome). We hypothetically expanded

the 50-end of the fifth exon by 177 nucleotides (59 amino

acids), leading to the incorporation of the missing protein

motifs in the metallicolous AhCPL1 variants (electronic sup-

plementary material, figures S7b and S8). In the structures

generated by homology modelling the protein consists of an

N-terminal 42-amino acid propeptide, which is likely to be

cleaved during enzyme maturation. The mature protein con-

sisted of characteristic L- and R-domains characterized by

alpha helices and beta sheets, respectively (electronic sup-

plementary material, figure S9, N-terminus included). While

the protein is relatively divergent from other proteins with

available cysteine protease structures, the active site is recog-

nizable in the model and contains all four catalytically active

residues in close proximity (Q62, C68, H212 and N234). How-

ever, with the intron–exon boundaries reconstructed here, a

frameshift leading to a premature stop codon renders the

predicted non-metallicolous AhCPL1 variants non-functional.
4. Discussion
The objective of this study was to probe for candidate genes

that have undergone convergent selection on calamine M

soils. We focused on genes with evidence for selection at

two M sites, each of them in comparison to a geographically

proximal NM site, in the two closely related and genetically

tractable species A. halleri and A. arenosa (electronic sup-

plementary material, table S1). This sampling design was

chosen in order to gain power [51] and test for convergence

between species. We analysed genome-wide resequencing

data obtained from field-collected individuals in relation to

the mineral composition of root-proximal soils from the

same individuals. Our objective of identifying convergent

genes thus targeted selection by environmental factors

common among (rather than specific to) population pairs.

The two M sites Mias and Klet were previously known for

their vegetation type characteristic of calamine M soils [6]. In

agreement with this, we found highly elevated Zn and Cd

levels in root-proximal soils which distinguish both of these

sites from the NM sites in this study (figure 1; electronic sup-

plementary material, tables S2 and S3 and dataset S1). Our

hypothesis of local adaptation to Mias soil in both species

was supported by differing plant biomass production

depending on population and soil type in independent exper-

iments (figure 2; electronic supplementary material, table S4

and figures S2 and S3). In particular, upon cultivation on

Mias M soil, plants of NM origin were more severely affected

in A. arenosa than in A. halleri. Indeed, it is well-known that

A. halleri exhibits enhanced hypertolerance to Zn and Cd

species-wide [12,52], which is exceedingly rare [5,6]. Thus,

local adaptation to M soil at Mias, and probably also at

Klet, must confer a larger increment in heavy metal tolerance

to A. arenosa than to A. halleri.
Genome scans identified few candidate genes being conver-

gently under selection at both site pairs in either of the two

species (figure 3). Similarly, the number of genes convergent

between species across site pairs, i.e. between A. arenosa at Klet

(versus Kowa) and A. halleri at Mias (versus Zapa) was very

low, but both also exceeded the number expected by chance

alone (electronic supplementary material, table S5). This latter

finding was consistent with our expectations based on species-

wide traits as outlined above, and with the fact that Zn and

Cd concentrations were considerably lower in Klet soils than

in Mias soils (electronic supplementary material, dataset S1).

At the level of GOs, protein localization was common to

three out of four contrasts and is thus a candidate function

under convergent selection (figure 3b). To date, functions in cel-

lular protein trafficking are neither known as vulnerable targets

of Zn or Cd toxicity nor as a means of attaining cellular metal

tolerance. The cellular targets of heavy metal toxicity are very

poorly understood to date.

Among the candidate genes exhibiting some degree of

convergence, we identified genes known to act in the homeo-

stasis of Fe (bHLH transcription factor-encoding PYE [53])

and Cu (cell surface Cu(II) chelate reductase-encoding

FRO4 [54]). Homeostasis of essential nutrients Fe and Cu is

a well-known target of Zn and Cd toxicities [55–59]

(table 1; electronic supplementary material, figure S5). Pre-

dicted functions of other convergent candidate genes were

diverse, generally poorly characterized, and sometimes in a

context of known relevance under heavy metal stress, for

example cell wall composition or DNA damage repair

[60,61]. These results suggest a modest degree of biologically

relevant convergent evolution, more prominently within

species and between sites, but also between species across

environmental contrasts of comparable magnitude.

Based on existing knowledge of the molecular basis of

species-wide metal hypertolerance, we had expected to ident-

ify candidate genes with direct roles in the detoxification of

Cd2þ and Zn2þ, such as their transmembrane transport and

binding [11,21,62]. This was indeed the case in A. arenosa at

one site pair (Mias-Zapa), yet with no apparent convergence

(figure 3b). The genes underlying within-species variation in

metal tolerance of plants are unknown. Almost all genes that

have been experimentally demonstrated to contribute to natu-

rally selected species-wide Zn and Cd hypertolerance, and also

many candidate genes implicated in these traits, are copy

number-expanded in A. halleri, with paralogues almost identi-

cal in sequence [62–64]. Genes with such sequence properties

are usually disregarded in genome scans by excluding both

reads mapping to multiple loci in the genome and genomic

regions with excessive short read coverage. Beyond these tech-

nical issues, it can be very difficult to detect selective sweeps at

such loci, because they commonly exhibit complex patterns of

polymorphism resulting from ectopic gene conversion or

illegitimate recombination. This was exemplified by the copy

number-expanded metal hyperaccumulation and metal

hypertolerance locus HMA4 of A. halleri [65].

Through both genome scan and EAA approaches, we

identified the A. halleri locus corresponding to AL8G32870

in the A. lyrata reference genome as a convergent candidate

gene between both population pairs (table 1 and figure 4;

electronic supplementary material, datasets S6 and S7). In

confirmation, we observed convergent high frequency non-

synonymous sequence divergence at this locus specific

to M sites (electronic supplementary material, figure S6).

https://phytozome.jgi.doe.gov/pz/portal.html
https://phytozome.jgi.doe.gov/pz/portal.html
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According to between-population differentiation metrics, this

gene was thus not among the strongest selective sweep candi-

dates in Klet-Kowa, but instead entered the list of candidates

through an indel observed with a high between-population

allele frequency difference (electronic supplementary material,

dataset S3). AhCPL1 is predicted to encode a papain family

cysteine protease that has no orthologue in A. thaliana (elec-

tronic supplementary material, figure S7). An adjustment of

the intron–exon boundaries raised the possibility that a func-

tional CPL1 protein may be specific to the M sites Mias and

Klet (electronic supplementary material, figure S8). We were

not able to identify an AhCPL1 cDNA encoding a functional

protein using PCR on cDNA synthesized from total RNA

extracted from leaves of individuals from the populations

from this study, even with primers designed according to

various alternative predictions. More extensive molecular

approaches, also incorporating a comprehensive set of

A. halleri organs, will be required to address the functional

implications of the AhCPL1 sequence variants identified here.

AhCPL1 is the first candidate metal hypertolerance gene of a

Brassicaceae species lacking a homologue in a syntenic

position in the A. thaliana genome. This finding may contribute

to explaining why no A. thaliana accession was identified to

grow naturally on M soil.

The possible molecular role of AhCPL1 in metal tolerance

remains unknown. The papain family cysteine protease genes

of A. thaliana Response to Dehydration 19 and 21 (RD19, RD21)

have long been known as components of the transcriptional

response to dehydration and salt stress [66]. More recently,

RD19 was reported to function in signalling to trigger anti-

microbial defences [67]. In wheat, a cysteine protease was

transcriptionally upregulated under aluminium stress [68].

In Chlamydomonas sp., oxidative stress induced a cysteine

protease which provided Cd tolerance [69]. In A. halleri,
transcript levels encoding a putative cysteine proteinase

(AT2G27420) were observed to be about 30-fold higher than

in A. thaliana according to microarray-based cross-species

transcriptomics [70].

It must be kept in mind that there were several important

environmental factors differing between sites. Specifically,

when compared to all other soils, Mias M soil was between

3- and 10-fold lower in exchangeable Ca2þ, a nutritional con-

dition that is well known to enhance the toxicity of divalent

heavy metal cations [71]. Mias soil was also lower in several

nutrients, i.e. exchangeable Kþ, Mg2þ and Mn2þ, in contrast

to the Klet-Kowa pair (electronic supplementary material,

dataset S1 and table S2). Importantly, Mias soils were on

average more than 100-fold higher in exchangeable Pb than

Zapa NM soils. Pb is a heavy metal with extremely high tox-

icity potential. By contrast, soil exchangeable Pb was not

elevated at Klet (versus Kowa). Conversely, Klet soils

contained about fourfold elevated exchangeable concen-

trations of Cu, which can be highly toxic to plants. As a

former uranium mine, Klet soil may additionally contain
elevated levels of toxic decay products of uranium

that were not quantified here (e.g. polonium, thallium).

Consequently, the limited number of convergent candidate

genes identified here may relate to the multi-factorial stress

of local soil environments (figure 3; electronic supplementary

material, datasets S2–S7). Future experiments should now

address the precise degree of phenotypic convergence by test-

ing for local soil adaptation in the Klet-Kowa pair in both

species and by testing the performance of plants from the

Klet M site on Mias M soil, and vice versa.

The candidates obtained through the sequence divergence-

based approaches pursued in this study, and their intersection,

overall suggested a limited sensitivity of these approaches.

Nevertheless, we could identify several candidate genes con-

vergent between site pairs and between species, as well as

convergent sequence variants in one convergent candidate

gene. Our data suggest the existence of functional gene net-

work convergence, but with partially differing proximal

molecular factors mediating functional convergence. Consider-

able future effort will be required for the functional

characterization of identified candidate genes and networks.

Additionally, a greater degree of convergent evolution within

species may be observed in future work at M sites chosen for

higher similarity in soil composition, whereas here we chose

M sites exclusively based on the presence of both species.
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