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Abstract: Bacillus cereus is the fourth most common cause of foodborne illnesses that produces a variety
of pore-forming proteins as the main pathogenic factors. B. cereus hemolysin II (HlyII), belonging to
pore-forming β-barrel toxins, has a C-terminal extension of 94 amino acid residues designated as
HlyIICTD. An analysis of a panel of monoclonal antibodies to the recombinant HlyIICTD protein
revealed the ability of the antibody HlyIIC-20 to inhibit HlyII hemolysis. A conformational epitope
recognized by HlyIIC-20 was found. by the method of peptide phage display and found that it is
localized in the N-terminal part of HlyIICTD. The HlyIIC-20 interacted with a monomeric form of
HlyII, thus suppressing maturation of the HlyII toxin. Protection efficiencies of various B. cereus
strains against HlyII were different and depended on the epitope amino acid composition, as well
as, insignificantly, on downstream amino acids. Substitution of L324P and P324L in the hemolysins
ATCC14579T and B771, respectively, determined the role of leucine localized to the epitope in
suppressing the hemolysis by the antibody. Pre-incubation of HlyIIC-20 with HlyII prevented the
death of mice up to an equimolar ratio. A strategy of detecting and neutralizing the toxic activity of
HlyII could provide a tool for monitoring and reducing B. cereus pathogenicity.

Keywords: pore-forming toxin; hybridoma; bacteriophage display; epitope mapping; neutralizing
monoclonal antibody; oligomerization; ELISA; hemolysis; in vivo efficiency

Key Contribution: The antibody HlyIIC-20 against the C-terminal domain of Bacillus cereus
hemolysin II is capable of recognizing hemolysin II and protecting rabbit erythrocytes from hemolysis.
Replacement of leucine by proline in the linear part of the conformational epitope decreased the
efficiency of HlyII recognition by the antibody. Survival of mice injected with hemolysins pretreated
with the HlyIIC-20 that have naturally occurring Leu–Pro substitutions was also decreased.
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1. Introduction

Bacillus cereus is the fourth most common cause of foodborne illnesses [1]. Modern phylogeny
singles out nine species in seven phylogenetic clades in the B. cereus group [2]. B. cereus species are
associated with outbreaks of foodborne illnesses (B. cereus sensu stricto and Bacillus cytotoxicus) [3],
food spoilage (psychrotolerant Bacillus weihenstephanensis and Bacillus mycoides) [4] and anthrax disease
in humans and animals (Bacillus anthracis) [5,6].

B. cereus hemolysin II (HlyII) belongs to pore-forming β-barrel toxins [7–10]. The hemolysin II
gene is found in all clades of B. cereus sensu lato [11], but is more common among various natural
isolates of Bacillus thuringiensis [12]. This places HlyII in the focus of the study, since B. thuringiensis is
widely used as a biological insecticide for plant protection [6]. The toxin forms weakly anion selective
pores, whose radius varies from 0.6 to 0.8 nm in both natural erythrocyte membranes and model
membranes [13]. In its mature state, this toxin is the closest-known homolog of Staphylococcus aureus
α-toxin with a 38% identity at the amino acid level [1]. The HlyII protein possesses a C-terminal
extension of 94 amino acid residues designated as HlyIICTD (C-terminal domain) [7,14] previously
undescribed for this class of toxins. HlyII∆C shows an 8-fold lower hemolytic activity in affecting
rabbit erythrocytes [14]; monoclonal antibodies (mAbs) against HlyIICTD proved useful in revealing
the CTD role at various stages of pore formation.

The formation of mAbs against pore-forming proteins is hampered by their toxicity of these
proteins to animals during their immunizatin. Previously, these mAbs were produced using inactivated
antigens. In this approach, however, the generated mAbs recognized proteins of an artificial structure.
Some parts of such proteins can also be used as antigens. In this case, most mAbs obtained also
recognize proteins with a structure different from the natural one. According to an assumption in [15],
the presence of the C-terminal domain located on the surface of the mushroom-shaped part allows
this part of the protein to be used as an antigen. mAbs against toxin fragments, instead of full-length
proteins, are potential candidates for developing vaccine antigens [16]. In [17], we presented a panel
of mAbs against this part of HlyII. Among these, the antibody HlyIIC-20 was found in the present
work to be able to suppress the hemolysis of rabbit erythrocytes by HlyII. Here, we describe this mAb
against HlyIICTD and determine its characteristics.

2. Results

2.1. Characteristic Features of the Monoclonal Antibody HlyIIC-20

The work [17] describes the formation of a panel of mAbs against the C-terminal domain of
B. cereus HlyII, using to which the HlyIICTD is shown to be capable of independently binding
erythrocyte membranes.

All 24 antibodies from the formed panel have been tested for the ability to influence the hemolytic
activity of HlyII. The mAb HlyIIC-20, which contains a heavy chain γ2b and a light chain κ, inhibits
hemolytic activity (GenBank accession numbers MW194175 and MW194176).

The antibody HlyIIC-20 recognizes HlyIICTD, both the native form of HlyII and the denatured
forms of these proteins, in immunoblotting assays. The affinity constants characterizing the interaction
of this antibody with HlyIICTD, intact HlyII14579 and HlyII771 were determined by indirect ELISA
as described in [18]. Before the measurements and all other antibody experiments, the samples were
checked for aggregates by dynamic light scattering. The analysis of the particle size distribution showed
that the solution contained mainly particles corresponding to the molecular weight of the antibodies,
without a significant number of high-molecular aggregates. Figure 1 shows a plot for determining the
affinity constant for the interaction of HlyIIC-20 with HlyII14579. The affinity constant characterizing
the interaction of HlyIICTD with HlyIIC-20 was 3.4 × 109 M−1; with HlyII14579, 2.6 × 109 M−1;
with HlyII771, 1.8 × 109 M−1.
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Figure 1. A plot of titration of the antibody HlyIIC-20 for determining its affinity constant by the
method of [18] with 10 (•) and 20 (�) ng/well HlyII ATCC14579T.

Based on the determined coefficients, it can be concluded that the degree of accessibility of
the antigen epitope for natural hemolysins varies, and it differs from the recombinant HlyIICTD.
The efficiency of recognition of the ATCC14579T and B771 hemolysins II by the antibody HlyIIC-20
differs by 30%, while the binding efficiency of the antibody to the recombinant HlyIICTD of ATCC14579T

hemolysin is approximately 25% higher than that for the full-length protein.
An excess of HlyIIC-20 did not inhibit the interaction of biotinylated HlyIICTD with erythrocytes,

which indicates that the antigenic determinant on the surface of HlyIICTD recognized by this antibody
is located at a site different from the site of target cell binding.

2.2. Dependence of HlyII Oligomerization on the Presence of HlyIIC-20

In the absence of erythrocyte membranes in solution, full-length HlyII is monomeric (Figure 2,
lane 1). HlyII is characterized by the formation of stable oligomeric forms (Figure 2, lane 2) upon
interaction with the target cell membrane [14]. Pretreatment of the full-length toxin with HlyIIC-20
prevents the formation of stable oligomeric forms (Figure 2, lane 3) during its interaction with the
erythrocyte membrane, which means that the HlyIIC-20 epitope is located in the region of the molecule
important for oligomerization of the monomeric form of the toxin into a full pore on the cell membrane
and, consequently, the formation of a channel.
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Figure 2. Immunoblotting of HlyII B771 in the presence of erythrocytes with and without preliminary
incubation with HlyIIC-20 stained with the biotinylated form of HlyIIC-20 and streptavidin conjugated
with horseradish peroxidase.

2.3. Identification of the Primary Sequence-Dependent Epitope Recognized by HlyIIC-20

Phage display revealed six sequences that could be epitopes recognized by HlyIIC-20 (Figure 3).
Analysis of the sequences in Figure 4 revealed no identical motifs, although all of them interacted with
HlyIIC-20. This suggests that these epitopes are conformational, i.e., in the sequences it is necessary to
look for a similar composition of amino acids, and their correct mutual arrangement occurs only when
the three-dimensional (3D) structure is formed. When analyzing the composition of these sequences,
we assumed that the formation of an epitope required a pair of amino acid residues with amino
groups (N, Q or H) and a positively charged amino acid lysine or arginine (K, R). Figure 4 shows a
conformational model of the C-domain (PDB: 6D5Z), in which amino acids N, Q and K are highlighted
(see the legend to Figure 5). It should be noted that there are no histidines (H) in the amino acid
sequence of the C-domain. An analysis of amino acid localization showed that the protein has only
two places on the surface, where all the three amino acids, N, Q and K, are close together. One is at the
beginning of HlyIICTD and the other in its middle part (see Figure 5). Phage display revealed two
putative epitopes: NQKALEEQ and NGNQLK (Figure 4). Figure 5 demonstrates a conformational
model of the C-domain of HlyII with two regions where the amino acid residues N, Q and K are
close to one another. Figure 5B shows a 3D structure containing the amino acids that can presumably
form an epitope at the beginning of the C-terminal domain; these are amino acids N320–Q327 and,
in contact with them, N377 and Y396. Figure 5D shows a 3D structure containing the amino acids that
can presumably form an epitope in the middle of the C-domain; these are amino acids N350–K355 and
N401, L403 in contact with them. The same areas are underlined by black lines in Figure 4. To check
which of these two putative epitopes is functional, this region of HlyII was compared with each epitope
in three natural strains B771, ATCC14579T and ATCC4342T. The latter putative epitope was found
to be identical in hemolysins of all three strains, while the former had one amino acid substitution.
Hemolysin II of ATCC 14579T and ATCC 4342T contained an identical amino acid composition in this
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region, and in B771 HlyII, the amino acid residue of leucine was replaced by proline. The region located
between these putative epitopes contains variable amino acid residues that are almost identical in B771
and ATCC4342T hemolysins. To check which of the putative epitopes is true, reciprocal mutations
L324P and P324L were introduced into ATCC14579T and B771 hemolysins, respectively (Figure 4).
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Figure 4. Sequence alignment of Bacillus cereus sensu lato HlyIICTD (ATCC14579T, B771, ATCC4342T)
and mutant forms of the latter (numbered from 319 aa to 360 aa according to the full length HlyII
toxin [7]). Putative binding sites (linear part of epitops) for the neutralizing HlyIIC-20 are double
underlined: aa N320-Q327 and N350-K355. Amino acid residues within these regions are highlighted as
in Figure 3. Identical amino acid residues for B771 and ATCC4342T are in grey. Amino acid substitutions
for HlyIICTD are marked as red.
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and K are highlighted in cyan, blue and yellow, respectively. Amino acid L324 of hemolysin II strain
ATCC14579T is shown as a grey ball. Figure B shows a three-dimensional (3D) structure containing
amino acids that can presumably form an epitope at the beginning of the C-terminal domain; these are
amino acids N320–Q327 and, in contact with them, N377 and Y396. Figure D shows a 3D structure
containing amino acids that can presumably form an epitope in the middle of the C-domain; these are
amino acids N350–K355 and, in contact with them, N401 and L403.

2.4. Inhibition of HlyII in Experiments In Vitro

In used natural strains, the putative conformational epitope has several amino acid substitutions
both within and away from its linear region (Figure 4). A set of constructs were made to verify the
theoretically solved structure of the putative conformational epitope. The constructed ATCC14579T

and B771 hemolysin mutants were tested for the level of protection of rabbit erythrocytes against
hemolysis by HlyIIC-20. Comparison of the curves in Figure 6A,C shows that the level of protection
against hemolysis by the mutant form of ATCC14579T hemolysin II is significantly reduced. Thus,
the presence of the amino acid L324 is essential for the suppression of hemolysis. The affinity coefficient
of HlyIIC-20 with B771 HlyII differs slightly from that for ATCC14579T. Introduction of the substitution
P324L into B771 hemolysin II confirmed the role of leucine in epitope recognition, since the antibody
suppressed hemolysis in mutant more efficiently than in the wild type. The presence of proline in the
linear part of the epitope impairs recognition by 30%, but the inhibition level of hemolysis significantly
decreases (up to 10 times). The role of leucine in the linear part of the conformational epitope in
protection against hemolysis in the presence of HlyIIC-20 was confirmed by using hemolysin from
the ATCC4342T strain (Figures 4 and 6E). The influence of the proline amino acid residue (P324) on
the recognition of the epitope by HlyIIC-20 and its effect on the decrease in the level of protection
by the antibody is apparently determined by the possible existence of this residue in two isoforms.
The cis and trans isoforms of proline are able to alter the 3D structure of proteins that contain proline
residues [19]. The ratio of the isoforms is determined by the state of the peptidyl-proline-cis-trans
isomerase of the bacterial cell [20] and can additionally regulate the functional activity of bacterial
proteins by changing their structure. HlyIIC-20 recognizes a conformational epitope located at the
N-terminus of HlyIICTD. The presence of proline in its content in some natural hemolysins reduces
both the efficiency of antibody recognition and the level of protection against hemolysis due to its
effect on the protein conformation.

The treatment of rabbit erythrocytes with hemolysin on ice followed by washing with cold
PBS showed that HlyIIC-20 could not protect erythrocytes from hemolysis. At room temperature,
the antibody was shown to inhibit the hemolytic activity. The reason is, evidently, that the described
antibody binds to HlyII in a monomeric form both in the solution and on the membrane.

2.5. Inhibition of HlyII in Experiments with Mice

Experiments on the inhibition of the toxic activity of HlyII (ATCC14579T) in vivo were carried out
using white BALB/c mice. The animals were injected intravenously through the tail vein with a dose
of toxin equal to LD50 and the corresponding amount of toxin pre-incubated with excess HlyIIC-20.
In the case of using HlyII (ATCC14579T), after 24 h observation, all mice that received an injection
of the toxin incubated with all dilutions of antibodies, including that with an equimolar number of
antibodies, remained alive. In the control group, 50% of animals injected with a toxin dose of LD50

were alive, while the deviation in each individual experimental group was no more than 25% with
a hemolysin dose of 200 U per animal at an intravenous injection of purified ATCC14579T HlyII.
This result evidenced the toxin-neutralizing activity of HlyIIC-20 for HlyII (ATCC14579T). When the
HlyII toxin from B. cereus B771 was used for injection, no noticeable neutralizing activity of HlyIIC-20
was observed. This survival rate suggests the possibility of developing antidotes against HlyII based
on this antibody.
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As seen in Figure 6A,B, the efficiency of rabbit erythrocyte protection against hemolysis upon
addition of HlyIIC-20 for hemolysins from strains ATCC14579T and B771 differs significantly.
Under conditions of the experiment, rabbit erythrocytes are protected by HlyIIC-20 from 10 U
ATCC14579T HlyII, whereas for B771 HlyII, in the presence of HlyIIC-20, they are lysed immediately
upon addition of less than 1 unit of HlyII. Thus, the results obtained on experimental animals agree
with those described in the previous sections.
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hemolysins. (A) ATCC14579T HlyII before (dotted line) and after (solid line) addition of HlyIIC-20.
(B) B771 HlyII; (C) ATCC14579T with mutation L324P; (D) B771 P324L; (E) ATCC4342T HlyII. Averaged
data from five experiments are presented.

3. Discussion

Pore-forming toxins are the most important virulence bacterial factors They represent an attractive
target for the development of molecules that neutralize their actions with high efficacy [21,22].
Monoclonal antibodies are promising as highly specific and reproducible tools for neutralizing virulent
factors [23]. The mAbs can be broadly cross-reactive and recognize several pore-forming toxins [24].
Despite the significant number of described neutralizing monoclonal antibodies against bacterial
toxins [25,26], in the fight against bacterial infections, these antibodies are not yet widespread, in contrast
to other fields, such as oncology and viral infections. Research activities towards developing novel
strategies for the diagnosis and suppression of pore-forming toxins allow developing the anti-virulence
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therapy. Unlike in other studies, in our work, a separate fragment of the toxin molecule was used to
obtain antibodies, which has been shown to be of importance for the process of hemolysis. A strategy
of detecting and neutralizing the toxic activity of HlyII could provide a potent tool for monitoring and
reducing B. cereus pathogenicity [27]. The first involves the detection of B. cereus HlyII in food and
biological fluids [28]. The latter supposes the development of approaches to anti-virulence therapy,
which requires the study of all stages of pore formation: regulation of the expression of genes encoding
toxin, secretion of monomeric forms from a bacterial cell into the external environment, as well as
stages of pore formation during an attack by eukaryotic cells.

This paper describes HlyIIC-20 from the mAb panel against HlyIICTD that recognizes a
conformational epitope and is able to protect rabbit erythrocytes against hemolysis. Oligomerization of
the HlyII toxin is a necessary stage in the formation of pores and determines the possibility of hemolysis
of rabbit erythrocytes [14]. Based on the analysis of the effectiveness of erythrocyte protection against
hemolysis by hemolysins of various B. cereus strains, it can be concluded that the efficiency of hemolysis
in the presence of HlyIIC-20 depends on the primary structure of the region of conformational epitope
recognized by this antibody. This work presents a comparative analysis of these regions in hemolysins
from B. cereus ATCC14579T, B771 and ATCC4342T strains. The amino acid composition downstream
of the linear region of the epitope varies in different hemolysins. In this region, the compositions of
the ATCC4342 and B771 hemolysin II were almost identical and different from that of ATCC14579T

hemolysin II. However, for HlyII from the strains ATCC14579T and ATCC4342T, the level of hemolysis
inhibition was relatively the same, while the sensitivity of HlyII from B771 to the presence of HlyIIC-20
was noticeably lower. The linear part of the epitope in B771 hemolysin II has a natural replacement
of Leu324 by Pro, which apparently determines the revealed differences in the level of recognition
by HlyIIC-20 and protection against hemolysis. Introduction of the reciprocal mutations L324P and
P324L into ATCC14579T and B771 hemolysins, respectively, changed their sensitivity to HlyIIC-20.
The sensitivity of the mutant form of ATCC14579T HlyII to the presence of the antibody decreased,
while that of the B771 mutant increased significantly. The proline amino acid residue usually exists in
proteins in two isoforms. One amino acid substitution in the epitope region reduced the recognition
efficiency and inhibition of hemolysis in the presence of HlyIIC-20. The formation of mAbs based on a part
of the toxin protein allows further use of these antibodies to identify toxins and to neutralize their action.

4. Conclusions

An antibody capable of forming an immune complex in aqueous solution was found in a panel
of monoclonal antibodies to the B. cereus recombinant HlyIICTD protein. HlyII pretreated with the
antibody HlyIIC-20 inhibits the formation of oligomers and decreases the cytolytic activity of HlyII.
The level of inhibition depends on the origin of HlyII. A comparison of HlyIICTD from various B. cereus
strains revealed the presence of a variable region in the conformational epitope. The introduction of the
reciprocal mutations L324P and P324L into this region of hemolysin II from the B. cereus ATCC14579T

and B771 strains, respectively, suggested the importance of these amino acid residues for pore
maturation. Since the binding efficiency of HlyIIC-20 with respect to various hemolysins and HlyIICTD
was different, and the antibody-caused suppression of hemolysis also varied, we assume a significant
role of leucine located within the epitope in HlyII pore maturation at the step of oligomerization.
The obtained data confirm the structure of the conformational epitope. HlyIIC-20 suppresses the
HlyII-induced deaths of mice in quantities up to the equimolar pre-incubated HlyII/antibody ratio.

5. Materials and Methods

5.1. Plasmid Strains and Proteins

Bacillus cereus ATCC 14579T, Bacillus cereus ATCC 4342T, Bacillus cereus B771 [29].
E. coli BL21 (DE3) (Novagen, Germany) was used to transform pET29b (+) (Novagen, Darmstadt,

Germany), E. coli ER2738 for affinity phage selection.
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5.2. Media and Solutions

Medium: 2YT (16 g/L bactotryptone, 1 g/L yeast extract, 5 g/L NaCl, pH 7.0), 1.5% agar and 0.7%
agar based on 2YT. Solutions: 1000 × IPTG/X-gal (1.25 g IPTG (isopropyl-β-d-thiogalactoside) and 1 g
X-gal (5-bromo-4-chloro-3-indolyl-β-d-galactoside, Sigma, USA) in 25 mL DMF (dimethyl formamide,
Sigma, USA), tetracycline 20 mg/mL (Sigma, USA) in 50% ethanol, phosphate buffered saline (PBS),
PBST—PBS containing 0.1% Tween-20 (Sigma, USA), blocking solution of 1% gelatin (Sigma, USA)
based on PBST, PEG/NaCl precipitating solution (20% (w/v) polyethylene glycol-6000, Sigma, USA,
2.5 M NaCl). Protein markers (Abcam, GB) and DNA electrophoresis markers (Fermentas, Lithuania),
conjugate of streptavidin with horseradish peroxidase (Thermo Fisher Scientific, USA).

5.3. Determination of the Primary Sequence of CDR (Complementarity-Determining Region) Antibodies

Hybridoma cells (106) producing antibodies that inhibit ATCC14579T HlyII hemolysis were
selected. The hydridoma cells were washed twice with PBS, supplemented with 1 mL of TRIzol
(Invitrogen, Carlsbad, CA, USA) and frozen at –70 ◦C. RNA was isolated by the phenol-chloroform
method using TRIzol reagent (Thermo Fisher Scientific, USA) according to the manufacturer’s
protocol (Thermo Fisher Scientific, USA) [30,31]. The purity and amount of RNA was assessed
spectrophotometrically. Reverse transcription was performed according to [32] using SuperScript
III reverse transcriptase (Invitrogen, USA) for 90 min at 42 ◦C. Next, the touchdown PCR with Q5
polymerase (NEB, Ipswich, MA, USA), GC buffer and a proprietary set of primers (Biogen, Cambridge,
MA, USA) was used. The heavy chain was sequenced using PCR primers at Evrogen (Russia). Due to
the doubling of light chain sequences, the PCR product was excised from the gel and then integrated
into SmaI site of pUC18 vector after blunt ends dephosphorylation using T4 ligase (NEB, USA).
The reaction was stopped by heating the mixture to 65 ◦C, and the mixture was used to transform
chemically competent cells E. coli XL1-blue (Evrogen, Moscow, Russia). Selected clones were sequenced
by Evrogen.

5.4. Production and Isolation of mAbs against HlyIICTD

MAbs were isolated by affinity chromatography on protein A sepharose (Thermo Fisher Scientific,
USA) [33] from hybridoma culture fluids secreting the mAbs. Then, the samples were centrifuged at
12,000× g at +4 ◦C. Dynamic light scattering was measured by a particle size analyzer from “Malvern
Zetasizer Nano ZSP.” The thermostated cuvette had a size of 0.3 × 0.3 cm and a volume of 100 µL. Light
scattering was measured at an angle of 173 degrees. The data were analyzed with Malvern software.

The types of heavy and light chains of immunoglobulins were determined by ELISA (Termo
Fisher Scientific, USA) according to the manufacturer’s instructions.

5.5. Conjugation of Antibodies with Biotin

HlyIIC-20 and HlyIICTD were biotinylated using a solution of biotin N-hydroxysuccinimide ester
(Sigma, St. Louis, MO, USA) in dimethyl sulfoxide at a concentration of 2.9 mM. Biotin ether was
added at a 20-fold molar excess in relation to antibodies. The mixture was incubated for 4 h at room
temperature. To remove the unreacted reagent, the mixture was dialyzed against PBS overnight.

5.6. Immunoblotting

HlyII toxin (0.3 µM) was incubated with HlyIIC-20 (1 µM) for 1 h at 37 ◦C, then erythrocytes were
added to a final concentration of 0.5% and incubated for 1 h at 37 ◦C with stirring. Control samples
contained no HlyIIC-20. Electrophoretic separation of proteins was carried out in the presence of
β-mercaptoethanol (Sigma, USA) as in [34]. Transfer to a nitrocellulose membrane was carried out for
15 h at a current of 20 mA in a buffer containing 25 mM Tris–HCl, 0.25 M glycine, 0.1% sodium dodecyl
sulfate, 20% methanol, pH 8.3. Centers of nonspecific sorption were blocked by adding 1% (w/v) gelatin
solution in PBST for 30 min. Then, the membrane was incubated for 2 h with biotinylated antibodies
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HlyIIC-20 (10 µg/mL). After incubation, the membrane was treated for 1 h with streptavidin conjugated
with horseradish peroxidase diluted in PBST according to the manufacturer’s recommendation (Thermo
Fisher Scientific, Waltham, MA, USA). At each stage, the membrane was thoroughly washed with PBST.
The membrane was stained with a solution containing 3 mM diaminobenzidine-3,3 tetrahydrochloride
(Sigma-Aldrich, St. Louis, MO, USA) and 0.03% hydrogen peroxide.

5.7. Peptide Phage Display

Peculiarities of the interaction of HlyIICTD with erythrocytes revealed with the use of HlyIIC-20 set
the task of determining the epitope recognized by this antibody. The antigenic determinant HlyIICTD
recognized by HlyIIC-20 was determined by the peptide phage display method as described in [35].
We used a library of random peptides of 12 amino acid residues (NEB, Ipswich, MA, USA) displayed
on the M13KE phage [36]. The 12-dimensional phage peptide library has a repertoire of 109; peptides
are exposed on the surface of bacteriophages in the composition of the minor protein pIII. Each clone in
the library is represented by ~1000 copies. Selection of phages carrying peptide amino acid sequences
specifically interacting with HlyIIC-20 was performed according to their ability to interact with one
another. Three rounds of selection were carried out. The DNAs of the selected individual phage
clones were sequenced. Using the GeneRunner program, the obtained nucleotide sequences were
analyzed and the amino acid sequences of the peptides recognized by HlyIIC-20 and exposed in
the pIII protein of bacteriophages were determined. After analyzing their interaction with the mAb,
10 clones were selected, in which the sequences of the peptide displayed by the phage were determined.
Affinity selection of bacteriophages, cultivation of bacteriophages in semiliquid agar and isolation of
bacteriophage DNA were performed as in [37].

5.8. DNA Sequencing

Analysis of the DNA sequences of the descendants of phage clones to determine the sequence of
the insertions was carried out at the Evrogen (Russia). Sequencing results were processed using the
Gene Runner 6.5.52 and ClustalW programs.

5.9. Interaction of Biotinylated HlyIICTD with Erythrocytes in the Presence of HlyIIC-20

The effect of the antibody HlyIIC-20 on the interaction of HlyIICTD with erythrocytes was studied
in the reaction carried out in PBS containing 10% bovine serum as follows: 1.7 µM HlyIIC-20 was
preincubated with 0.39 µM HlyIICTD-bio for 1 h at 37 ◦C, then a suspension of erythrocytes was added
to a concentration of 0.025%, and the mixture was incubated for 1 h at 37 ◦C. Washing was carried out
with 5% bovine serum albumin solution in PBS to remove a possible nonspecific interaction. A total of
100 µL of the solution was added to the wells and centrifuged for 10 min at 3000 rpm. The reaction
was developed with streptavidin conjugated with horseradish peroxidase.

5.10. HlyII Neutralization Assay

The hemolytic activities of wild type HlyII from various B. cereus strains (ATCC 14579T, ATCC4342T

and B771) and mutant forms of recombinant hemolysin II (ATCC14579T L324P, B771 and P324L) and
their neutralization by HlyIIC-20 were investigated using rabbit erythrocytes [38]. Lysates of induced
bacterial cells carrying recombinant plasmids with natural and mutant HlyII at a stepwise twofold
dilution in a volume of 45 µL were incubated for 20 min at 37 ◦C in the presence of 5 µL of 6.7 µM
HlyIIC-20 or PBS, then added to 50 µL of 1% rabbit erythrocytes in PBS. Analysis of the neutralization
of HlyII with the antibody HlyIIC-20 after the integration of HlyII monomers into the erythrocyte
membrane was performed according to the following scheme. After binding 0.5% suspension of
erythrocytes to HlyII on ice, the suspension was divided into two parts and sedimented. One part
was resuspended in PBS with HlyIIC-20 to a final concentration of 0.33 µM, the other part—in the
antibody-free buffer. Both parts were incubated at 37 ◦C for 30 min. The hemolytic activity was
measured as described in [38].
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The 0.5% suspension of erythrocytes was bound to HlyII at room temperature in two test tubes
and sedimented; one pellet was suspended in PBS with HlyIIC-20 to a final concentration of 0.67 µM,
the other was suspended in PBS. The reaction mixture was kept for 5 min at room temperature and
incubated at 37 ◦C for 30 min. Then, the hemolytic activity was measured [38].

5.11. Animal Experiments

The in vivo toxin neutralization assay was performed using female 6–8-week-old BALB/c mice
about 20 g each, five experimental groups with four mice per group. The animals were used according
to the protocol: “Search for toxin-neutralizing antibodies to bacterial toxins in a mouse model,”
registration number 674/18 of 08.10.2018, approved at a meeting of the Commission for Control over the
Maintenance and Use of Laboratory Animals of the BIBCh RAS on 25 December 2018. These studies
were planned for two years. Animals were obtained from the Laboratory Animal Breeding Nursery,
Pushchino Branch, Institute of Bioorganic Chemistry, Russian Academy of Sciences, which has earned
the international AAALACi accreditation. Toxins were applied in 100 µL PBS for intravenous challenge.
Minimal lethal doses were determined in experiments using serial dilutions of toxins. For BALB/c mice,
LD50 was experimentally picked (the half-lethal dose is the average dose of a substance that causes the
death of half of the members of the test group), which was 200 hemolytic units in 100 µL saline solution
per animal. In an experiment for the in vivo toxin neutralization assay, groups of BALB/c mice were
passively injected intravenously into the tail vein with serial twofold dilutions of HlyII. This amount of
toxin was incubated with a 20-, 10-, 5- and 2-molar excess and the equimolar amount of HlyIIC-20 for
40 min at room temperature. Then, mixtures of antibodies with toxin, as well as toxin at a dose of
LD50, were injected. The mice were observed up to 24 h and all deaths were recorded, during which
time the animals were kept in their usual conditions of detention with free access to water and food.
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