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Abstract

Cyclic α-maltosyl-(1!6)-maltose (CMM) is a cyclic glucotetrasaccharide with alternating α-

1,4 and α-1,6 linkages. Here, we report functional and structural analyses on CMM-binding

protein (CMMBP), which is a substrate-binding protein (SBP) of an ABC importer system of

the bacteria Arthrobacter globiformis. Isothermal titration calorimetry analysis revealed that

CMMBP specifically bound to CMM with a Kd value of 9.6 nM. The crystal structure of

CMMBP was determined at a resolution of 1.47 Å, and a panose molecule was bound in a

cleft between two domains. To delineate its structural features, the crystal structure of

CMMBP was compared with other SBPs specific for carbohydrates, such as cyclic α-nigero-

syl-(1!6)-nigerose and cyclodextrins. These results indicate that A. globiformis has a

unique metabolic pathway specialized for CMM.

Introduction

ABC transporters constitute a membrane protein family that mediates diverse ATP-driven

transport [1]. They basically consist of a pair of cytoplasmic domains, called ATP-binding cas-

settes (ABC) or nucleotide-binding domains (NBD), and transmembrane domains (TMDs) in

the cell membrane [2]. ABC importers facilitate efficient intakes of substrates across the cell

membrane, and bacterial importers usually work in conjunction with respective substrate-

binding protein (SBP) that binds the substrate [3]. As a general transport mechanism of bacte-

rial ABC importers, SBP specifically captures a substrate and delivers it to TMDs, and ATP

hydrolysis by NBDs drives conformational changes of TMDs that translocate the substrate

into the cytoplasm. To date, various SBPs that bind various carbohydrates, amino acids, ions,

and other compounds have been identified, and they share similar three-dimensional struc-

tures despite their low amino acid sequence homology [4]. SBPs have a highly conserved struc-

tural fold that consists of two α/β domains with a central β-sheet flanked by α-helices. The two

α/β domains are connected by a hinge region. On substrate binding, conformations of these
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domains largely change to switch the state from open to closed, with the ‘‘Venus Fly-trap”

mechanism [5]. SBPs in gram-positive bacteria, which include Arthrobacter species, are

anchored to lipids in the cell membrane [6].

Cyclodextrins and other cyclic oligosaccharides have ability to increase solubility and stabil-

ity of various guest molecules, to mask odors and change their physical properties [7]. There-

fore, cyclic oligosaccharides potentially have applications in various fields, such as food,

cosmetics, pharmaceutical, chemical, textile, and agricultural industries. Cyclic α-maltosyl-

(1!6)-maltose [CMM, cyclo-{!6}-α-D-Glcp-(1!4)-α-D-Glcp-(1!6)-α-D-Glcp-(1!4)-α-D-

Glcp-(1!)] is composed of two maltose units with two α-1,6 linkages (Fig 1). Along with

cyclic α-nigerosyl-(1!6)-nigerose (CNN or cycloalternan, see Fig 1) [8, 9], CMM is one of the

smallest cyclic glucosaccharides (tetramers) that can be synthesized using enzymes. We have

previously identified a novel starch utilization pathway via CMM in Arthrobacter globiformis
M6 [10]. The gene cluster of the CMM metabolic pathway consisted of seven open reading

frames (cmmA–G) [11], and three enzymes belonging to glycoside hydrolase family 13 are

involved in the formation and degradation of CMM. An extracellular enzyme, 6-α-maltosyl-

transferase (CmmA), produces CMM by inter- and intramolecular α-1,6-transglucosylation

[10], and two intracellular enzymes, CMM hydrolase (CmmF) [12] and α-glucosidase

(CmmB), synergistically degrade CMM to glucose [13]. We previously reported the mechanis-

tic details of the hydrolysis of CMM by CMM hydrolase with its crystal structures [14]. Gene

products encoded by cmmC, cmmD, and cmmE were suggested to form an ABC transporter

system of an SBP (CmmC) and TMDs (CmmD and CmmE) [11]. Although this transporter

was presumed to import CMM across the cell membrane in CMM metabolism in A. globifor-
misM6, its molecular function has not yet been studied. In this study, we performed functional

and structural analyses of CmmC by gel shift assay, isothermal titration calorimetry (ITC), and

X-ray crystallography. Because our study revealed that the protein specifically binds to CMM,

CmmC was termed CMM-binding protein (CMMBP).

Materials and methods

Protein preparation

The CMMBP-encoding gene (cmmC) was amplified from pBlue-T1 [11] by PCR to express it

as an N-terminally His-tagged (6×His) protein and inserted between the NdeI and BamHI

sites of the pET-28b (+) vector (Novagen, Madison, WI, USA). Escherichia coli Rosetta2 (DE3)

(Novagen) transformed by the expression plasmid was cultured in lysogeny broth (LB)

medium containing antibiotics (50 mg/L kanamycin and 34 mg/L chloramphenicol) at 37˚C

until O. D600 nm = 0.6. To induce protein expression of the transformant, 0.1 mM (final con-

centration) isopropyl 1-thio-β-D-galactopyranoside (FUJIFILM Wako Pure Chemical Co.,

Osaka, Japan) was added to the medium. The medium was further cultured at 15˚C for 24 h.

The cells were harvested by centrifugation at 10,000 g for 15 min at 4˚C and suspended in 50

mM Tris-HCl (pH 8.0) and 500 mM NaCl. To obtain cell-free extracts, the suspended solution

was sonicated and centrifuged at 38,000 g for 45 min at 4˚C. The supernatant was filtered

using a 0.45-μm filter and further purified by nickel affinity column chromatography using

cOmplete His-Tag Purification Resin (Sigma-Aldrich Co., St. Louis, MO, USA) with two elu-

tion steps of 20 and 500 mM imidazole in 50 mM Tris-HCl (pH 8.0). After buffer exchange

using an ultrafiltration centrifugal membrane unit (Vivaspin Turbo, 10 kDa molecular weight

cutoff; Sartorius Stedim Biotech, Göttingen, Germany), the protein was further purified using

a HiTrap Q HP column with a linear gradient from 0 to 1 M NaCl in 20 mM Tris-HCl (pH

8.0). For crystallization, the protein was further purified using a HiLoad 16/60 Superdex 200

pg (GE Healthcare, Buckinghamshire, England). For gel filtration column chromatography,
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the protein sample was concentrated using an ultrafiltration centrifugal membrane unit

(Vivaspin Turbo, 10 kDa molecular weight cutoff; Sartorius Stedim Biotech). The loading

buffer was 20 mM Tris-HCl (pH 8.0) and 150 mM NaCl. The protein was eluted by loading

buffer supplemented with 1% (w/v) TETRUP1 (HAYASHIBARA CO., LTD., Japan). The

content of TETRUP1 is as follows: 2% glucose, 6.9% maltose, 10.7% maltotriose, 53% maltote-

traose, and 28% dextrin (longer maltooligosaccharides). Although MM or panose was not

detected in TETRUP1 in our detailed analysis, we presumed that such α-1,6-linked oligosac-

charides were contained in the gel filtration column. This is because we previously used the

same column for purification of 6-α-maltosyltransferase [10], which can produce MM from

maltooligosaccharides, and TETRUP1 was also used for the previous elution step. The protein

concentration was determined by a NanoDrop ND-1000 spectrophotometer (Thermo Fisher

Scientific, Waltham, WA, USA) using the extinction coefficient ε280 nm = 89,380 M-1cm-1,

which was estimated from the amino acid sequence of the His-tagged recombinant protein.

Gel shift assay and ITC analysis

Pinedex1 #100 (partial hydrolysate of starch used for gel shift assay) was purchased from Mat-

sutani Chemical Industry Co., Ltd. (Hyogo, Japan). Dextran and pullulan were purchased

from FUJIFILM Wako Pure Chemical Co. For native PAGE, a 10% (w/v) lower gel with or

without 0.5% (w/v) polysaccharides was used. The ligand solution contained 100 mM CMM,

MM, isopanose, panose, G2, G3, or G4. Samples loaded on the PAGE (10 μL) contained 2.5 μL

native-PAGE sample buffer (4×), 1 μL CMMBP (2.5 mg/mL in 20 mM Na-acetate, pH 6.0),

and 6.5 μL ligand solution (or H2O). The bovine serum albumin (BSA) standard sample (9 μL)

contained 2.5 μL native-PAGE sample buffer (4×), 2.5 μL BSA (1 mg/ml in H2O), and 4.0 μL

Fig 1. Schematic models of the oligosaccharides appearing in this study. The ligands (oligosaccharides) used for

native PAGE (Fig 2) and cyclic α-nigerosyl-(1!6)-nigerose (CNN). Circles and slashed circles indicate glucose and

reducing end glucose, respectively.

https://doi.org/10.1371/journal.pone.0241912.g001
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H2O. The 4× native-PAGE sample buffer contained 250 mM Tris-HCl (pH 6.8), 40% glycerol

and 0.1% bromophenol blue.

For ITC measurements, a purified CMMBP protein sample was extensively dialyzed against

20 mM Tris-HCl (pH 8.0), and the ligands were dissolved in the same buffer to minimize the

heat of dilution. ITC measurements were performed at 25˚C using Micro-Cal VP-ITC (Mal-

vern Instruments Ltd., Malvern, Worcestershire, UK). The protein solution (10.6 and 82.3 μM

for measurements of CMM and MM titration, respectively) was stirred at 300 rpm in a

1.44-ml cell and titrated with 10 μL of a ligand solution (0.15 and 2.0 mM for CMM and MM,

respectively) 25 times at intervals of 420 s. Calorimetric data were analyzed using MicroCal

Origin 7.0 (Light Stone, Tokyo, Japan). Thermodynamic parameters, such as association con-

stants (Ka), binding enthalpy (ΔH), and the number of binding sites (n), were determined by

fitting data into a one-site binding model. Changes in Gibbs binding free energy (ΔG˚), disso-

ciation constants (Kd), and binding entropy changes (ΔS˚) were calculated from the equations:

ΔG˚ = –RTlnKa = RTlnKd and ΔG˚ = ΔH–TΔS˚, where R and T are the gas constant and abso-

lute temperature (298.15 K), respectively. We assumed that ΔH values determined from ITC

are equal to the standard enthalpy change (ΔH˚).

Crystallography

The protein used for crystallization was purified using gel filtration chromatography, eluted

with a buffer containing maltotetraose-rich syrup (see above). Crystallization was performed

by the sitting drop vapor diffusion method at 20˚C by mixing 0.5 μL of a protein solution (15

mg/mL CMMBP in 10 mM Tris-HCl pH 8.0) and an equal volume of a reservoir solution con-

taining 0.1 M Tris-HCl (pH 8.5) and 2.0 M ammonium sulfate. The crystals were cryopro-

tected in the reservoir solution supplemented with 20% (v/v) PEG400. The X-ray diffraction

data were collected under the 100 K cryogenic nitrogen stream at AR-NW12A beamline of the

Photon Factory in the High Energy Accelerator Research Organization (KEK, Tsukuba,

Japan). The wavelength of X-ray was set at 1.0000 Å. The diffraction images were processed

with XDS [15]. Molecular replacement was performed with MOLREP [16]. The model was

further built manually with COOT [17] and refined with REFMAC5 [18]. A polder map [19]

was created using PHENIX. Molecular graphic images were prepared using PyMOL (Schrö-

dinger LLC, New York, NY, USA). Sequence conservation mapping was performed using the

ConSurf server [20].

Results and discussion

Functional analysis of CMMBP

The substrate-binding ability of CMMBP was preliminarily examined by gel shift assays using

polysaccharides and probable ligands (oligosaccharides). The mobility of CMMBP (Fig 2A)

was not affected in the presence of Pinedex #100 (partial hydrolysate of starch that is mainly

linked by α-1,4 linkages, 1.3%-hydrolysis, Fig 2B), regardless of whether any oligosaccharides

were added. On the other hand, in the presence of dextran (>90% α-1,6 linkages) and pullulan

(polymer of maltotriose connected with α-1,6 linkage), CMMBP exhibited reduced mobility

(Fig 2C and 2D), suggesting that CMMBP interacts with those polysaccharides. In the compe-

tition assay with the oligosaccharide ligands, CMMBP combined with CMM showed the same

mobility as in the polysaccharide-free gel. This result indicates that CMMBP strongly binds to

CMM, and thus interaction with the polysaccharides was canceled. The addition of α-malto-

syl-(1!6)-maltose (MM) slightly changed the mobility, suggesting lower affinity of CMMBP

to MM. There was no significant effect with other oligosaccharide ligands, namely, isopanose,

maltose (G2), maltotriose (G3), and maltotetraose (G4). Then, we performed a gel shift assay
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Fig 2. Gel shift assays. Native-PAGE without polysaccharides (A) and in the presence of Pinedex #100 (B), dextran (C and E), and pullulan

(D) are shown. The concentrations of the polysaccharides were 0.5% (w/v). For (B–E), samples containing 100 mM oligosaccharides were also

used. BSA was used as a control protein. (E) The Rf values were calculated as fraction of the band position of CMMBP from BSA (offset: 0.00)

to the front (1.00).

https://doi.org/10.1371/journal.pone.0241912.g002
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in the presence of dextran to quantitively measure the binding competition effect of the oligo-

saccharides on CMMBP (Fig 2E). In addition to CMM, MM, and isopanose, panose was

included in this assay. The relative to front (Rf) value indicated that the binding competition

effect was CMM (0.88) >MM (0.53) > panose (0.29) and isopanose (0.25).

Subsequently, we measured the binding affinity and thermodynamic parameters for CMM

and MM using ITC (Fig 3 and Table 1). The binding of CMM was both enthalpy- and

entropy-driven with an association constant (Ka) of 1.04 × 108 M–1, which corresponds to a Kd

value of 9.6 nM. Heat pulses were also observed with titration of MM, but the isotherm curve

was not sigmoidal. Although the parameters were not accurately determined due to the weak

affinity and the low c-window value, the Ka value for MM was estimated to be ~500-fold lower

than that for CMM.

Fig 3. ITC of CMMBP binding for CMM (A) and MM (B). Titration thermograms (top) and binding isotherms (bottom) are shown. Assay

conditions are described in the Materials and Methods.

https://doi.org/10.1371/journal.pone.0241912.g003

Table 1. Affinity and thermodynamic parameters of ligand binding to CMMBP at 25˚C estimated by ITC.

Ligand Ka (×108 M–1) ΔG˚ (kcal mol–1) ΔH (kcal mol–1) TΔS˚ (kcal mol–1) n c
CMM 1.04 ± 0.46 −10.93 −3.49 ± 0.068 −7.44 0.833 ± 0.007 352

MM a (0.0022 ± 0.0014) (−7.29) (−0.95 ± 0.008) (−6.34) (6.27 ± 0.876) 1.03

The c-window was calculated as follows: c = nKa[MM].
a Values are not reliable due to the weak affinity and the low c value.

https://doi.org/10.1371/journal.pone.0241912.t001
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Crystal structure of CMMBP

Although our crystallization trials of CMMBP in the presence of CMM failed, crystals were

grown without any substrates in the mother liquors. The crystal structure of CMMBP was

solved by molecular replacement using the structure of an uncharacterized SBP from Thermo-
toga lettingae (PDB ID: 5CI5) as a template. The CMMBP crystal contained one molecule in

an asymmetric unit, and the refined structure was determined at a resolution of 1.47 Å
(Table 2). CMMBP adopts a typical “SBP fold” consisting of two α/β domains, designated as

the N- and C-domains (Fig 4A). The N-domain (residues 31–143 and 303–358) consists of a

five-stranded β-sheet flanked by nine α-helices, and the C-domain (147–299 and 362–421)

consists of a three-stranded β-sheet flanked by nine α-helices. The two domains are connected

by three hinge regions (144–146, 300–302, and 359–361), and a long β-strand penetrates both

domains. Although we did not add any ligands at the crystallization step, an electron density

of three or four glucose residues was observed in the cleft between the two domains (Fig 4B).

The tetrasaccharide appears to be connected by the central α-1,6 linkage and two flanking α-

1,4 linkages, suggesting that this compound is a MM. Because the electron density of the glu-

cose unit at the nonreducing end (Glc4) was ambiguous, we modeled a trisaccharide (Glc1–3),

which corresponds to a panose, in the crystal structure (thick sticks in Fig 4B). There was no

significant interaction at the putative binding site for Glc4, probably because the structure is in

an open conformation (discussed below). We presume that the gel filtration column contained

a small amount of MM and panose (see Materials and methods).

Table 2. Data collection and refinement statistics of the crystallography.

Data set CMMBP

Data collection a

Space group P6122

Unit cell (Å/˚) a = b = 92.08, c = 161.58

Resolution (Å) 46.04–1.47 (1.50–1.47)

Total reflections 1,350,030 (32,216)

Unique reflections 68,976 (3,231)

Completeness (%) 99.5 (95.8)

Multiplicity 19.6 (10.0)

Mean I/σ(I) b 15.7 (1.2)

Rmerge 0.093 (1.794)

CC1/2 0.981 (0.930)

Refinement

Resolution (Å) 44.67–1.47

No. of reflections 65,458

Rwork/Rfree 0.184/0.206

Number of atoms 3,434

RMSD from ideal values

Bond lengths (Å) 0.013

Bond angles (˚) 1.778

Ramachandran plot (%)

Favored/allowed/outlier 99.0/1.0/0.0

PDB ID 7BVT

a Values in parentheses are for the highest resolution shell.

https://doi.org/10.1371/journal.pone.0241912.t002
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Fig 4. Crystal structure of CMMBP. (A) Overall structure. The N-domain, C-domain, and hinge regions are colored in green,

cyan, and magenta, respectively. Panose is shown as gray sticks. (B) Schematic presentation (top) and polder map (3.5σ) of the

ligand (bottom). If the glucose unit at the nonreducing end (Glc4, indicated by a dashed-line circle) is included, the molecule

becomes α-maltosyl-(1!6)-maltose (MM). (C) Stereographic view of the ligand binding site. Protein residues are colored as in

panel (A). (D) Sequence conservation mapping on the molecular surface. Amino acid sequence conservation among CMMBP

homologs (identity> 35%) is colored with red (high), white (middle), and blue (low).

https://doi.org/10.1371/journal.pone.0241912.g004
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Fig 4C shows the interactions between CMMBP and panose. Glc1 forms a stacking interac-

tion with Trp269, and no hydrogen bond interaction was observed. Glc2 forms a stacking

interaction with Trp204 and several hydrogen bonds. Direct hydrogen bonds are formed with

the side chains of Asp95, Asn145, and Arg376 and the main chain of Gly301. Glc3 forms a rela-

tively distant stacking interaction with Tyr192 and a direct hydrogen bond with Trp204. The

Glc2 and Glc3 moieties form water-mediated hydrogen bonds with Asn205, Gln265, and

Glu302. The residues involved in the interactions are mainly from the C-domain (cyan in Fig

4C), and the hinge-region (magenta) makes several polar interactions with Glc2. The degree of

amino acid sequence conservation among homologous proteins on the database was mapped

on the molecular surface of CMMBP (Fig 4D) This result illustrated that the residues forming

interactions with the ligand in the cleft are highly conserved. The thermodynamic parameters

in Table 1 shows that the binding process of CMMBP is dominantly driven by the favorable

entropy change. This feature is consistent with the ligand interactions of CMMBP, in which

three stacking (hydrophobic) interactions can influence on the affinity (Fig 4C). The entropy-

driven thermodynamics of maltose (or maltodextrin)-binding protein from E. coli, which has

a large hydrophobic cleft, have been explained by the release of a large number of ordered

water molecules upon substrate binding [21]. The hydrogen bonds mediating ligand binding

may contribute to the smaller but favorable enthalpy change of CMMBP.

Comparison with other SBPs

A database search using the DALI server [22] revealed that CMMBP shows high structural

similarity to SBPs that bind maltooligosaccharides (or other α-glucosides) and other sugar

compounds (Table 3). The best match was a maltose binding protein 3 from Thermotoga mari-
tima (tmMBP3) [23] and a putative maltose/trehalose-binding protein from Xanthomonas
citri (Xac-MalE) [24]. We noticed that the binding protein for CNN from Listeria monocyto-
genes (Lmo0181) also exhibited structural similarity to CMMBP [25]. CNN is the other type of

cyclic glucotetrasaccharide linked by alternating α-1,3 and 1,6 linkages (Fig 1). Fig 5A shows

superimposition of the CMMBP structure with the open (unliganded) and closed (maltose

complex) structures of tmMBP3 by alignment of Cα atoms in the C-domain. As evident from

Table 3. Results of the structural similarity search using the Dali server.

PDB IDa Z score RMSD (Å) LALIb Identity (%) Protein name Organism Binding specificity Reference

6DTR (A) 43.7 2.5 376 23 tmMBP3 Thermotoga maritima Maltotetraose [23]

3UOR (A) 42.0 2.5 370 21 Xac-MalE Xanthomonas citri Unknown [24]

4MFI (A) 41.3 2.7 378 20 UgpB Escherichia coli sn-Glycerol-3-phosphate [26]

4RJZ (A) 41.3 2.6 365 25 ATU4361 Agrobacterium fabrum Maltooligosaccharides TBP

6JAL (A) 41.1 2.5 374 21 αGlyBP Thermus thermophilus α-glucosides [27]

5CI5 (B) 41.0 3.8 369 27 Tlet_1705 Thermotoga lettingae α-D-Tagatose TBP

4QRZ (A) 41.0 3.6 367 25 ATU4361 Agrobacterium fabrum Maltooligosaccharides TBP

5YSB (A) 41.0 2.6 365 21 SO-BP Listeria innocua β-1,2-glucooligosaccharide [28]

3K01 (A) 40.9 2.4 369 23 GacH Streptomyces glaucescens Acarbose [29]

1EU8 (A) 39.8 3.7 373 23 TMBP Thermococcus litoralis Trehalose/maltose [30]

5F7V (A) 37.9 3.6 366 25 Lmo0181 Listeria monocytogenes CNN [25]

4GQO (B) 37.7 2.7 379 20 Lmo0859 Listeria monocytogenes Unknown TBP

2ZYO (A) 37.0 2.5 365 16 TvuCMBP Thermoactinomyces vulgaris Cyclo/maltodextrin [31]

TBP, to be published. Proteins appearing in the main text are underlined.
aChain ID is shown in parentheses.
bNumber of aligned residues.

https://doi.org/10.1371/journal.pone.0241912.t003
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Fig 5. Structural comparison of CMMBP with tmMBP3 (A), Xac-MalE (B), and Lmo0181 (C). Cα traces of

CMMBP (green for the N-domain and hinge and gray for the C-domain), tmMBP3 plus maltose (PDB ID: 6DTQ,

magenta), unliganded state of tmMBP3 (6DTR, yellow), Xac-MalE (PDB ID: 3UOR, yellow) and Lmo0181 plus CNN

(5F7V, magenta) are shown. The structures were superimposed with the C-domain.

https://doi.org/10.1371/journal.pone.0241912.g005

PLOS ONE Structure of CMM-binding protein

PLOS ONE | https://doi.org/10.1371/journal.pone.0241912 November 19, 2020 10 / 14

https://doi.org/10.1371/journal.pone.0241912.g005
https://doi.org/10.1371/journal.pone.0241912


the position of the N-domains, the CMMBP structure adopts an open conformation. Superim-

positions with Xac-MalE (open state without ligand) and Lmo0181 (closed state complexed

with CNN) also suggested that CMMBP has an open conformation (Fig 5B and 5C).

The substrate-binding cleft of CMMBP was compared with other SBPs that bind cyclic glu-

cooligosaccharides (Fig 6). Cyclo/maltodextrin-binding protein from Thermoactinomyces vul-
garis (TvuCMBP) [31] was included in this comparison because it showed a structural

similarity with CMMBP comparable to Lmo0181 (Table 3). Surface representations of

CMMBP, Lmo0181, and TvuCMBP illustrated that they generally have a large and hydropho-

bic cleft. The binding cleft of TvuCMBP is narrow and long, and the binding orientation of

cyclodextrin is perpendicular to the major axis of the ellipsoidal protein (Fig 6C). In contrast,

CMMBP (Fig 6A) and Lmo0181 (Fig 6B) have a relatively hydrophilic area in the cleft, and the

binding orientation of the glucotetrasaccharides (CMM or CNN) is parallel to the major axis

of the protein molecule. A pocket accommodating a glucose unit is present in the C-domain

side of CMMBP and Lmo0181, but no such pocket is present in TvuCMBP because of a wall

formed by Glu170. CMMBP has a deeper pocket than that Lmo0181. When compared with

the closed structure of Lmo0181 (Fig 5A), a closing movement of CMMBP on CMM binding

may be triggered by a hinge-movement of the N-domain, which will form additional interac-

tions with the Glc1 and Glc2 units in the cleft. This hypothesis is also supported by the more

extensive interactions with the C-domain (mainly by stacking interaction with aromatic resi-

dues) compared with the N-domain (Fig 4C).

Conclusion

In this study, we performed a functional and structural analysis of CMMBP (CmmC), a puta-

tive SBP involved in a bacterial ABC importer system. Functional analysis revealed that

Fig 6. Comparison of the substrate binding cleft with other SBPs. Surface representation of CMMBP (A), Lmo0181 (B, 5F7V), and

TvuCMBP (C, 2ZYM) are shown. The surfaces are colored by hydrophobicity. Yellow dashed lines indicate the direction of the ligands from the

nonreducing end (NRE) side to the reducing-end (RE) side. α-CD, α-cyclodextrin (cyclic glucohexasaccharide).

https://doi.org/10.1371/journal.pone.0241912.g006

PLOS ONE Structure of CMM-binding protein

PLOS ONE | https://doi.org/10.1371/journal.pone.0241912 November 19, 2020 11 / 14

https://doi.org/10.1371/journal.pone.0241912.g006
https://doi.org/10.1371/journal.pone.0241912


CMMBP specifically binds CMM with a high Ka value. Structural determination of CMMBP

enabled structural comparison with other SBPs for carbohydrates. The structural features of

CMMBP and Lmo0181 for binding cyclic glucotetrasaccharides (CMM or CNN) were basi-

cally similar, despite the very low amino acid sequence conservation (~20%, see Table 3). The

CMMBP structure complexed with MM has an open conformation, suggesting that closure of

the bilobed SBP structure requires binding of the canonical cyclic ligand (CMM). In the case

of maltose transport system of E. coli, the substrate specificity is conveyed by the interface

between maltose-binding protein in a closed conformation and the membrane transporter

(MalFGK2) in a pre-translocation state [32], and the structure of maltose-binding protein

complexed with a non-physiological ligand (β-cyclodextrin) was in a fully open conformation

[33]. Therefore, the present study suggested that CMMBP plays a key role in the “three-stage”

metabolic pathway of A. globiformis [14] because this protein is tuned for specific binding and

intake of the cyclic compound, CMM. While CNN is formed from partial hydrolysate of starch

(maltodextrin) by the actions of two enzymes of L. monocytogenes (α-6-glucosyltransferase

and 3-α-isomaltosyltransferase) [25], the metabolic system of A. globiformis forms CMM

directly from starch by the two-step actions of a single extracellular enzyme, 6-α-maltosyl-

transferase (CmmA) [10]. This type of metabolic pathway may be advantageous in the compe-

tition of carbon source acquisition by transiently changing the molecular form of a digestible

glucan (starch) into an exclusive cyclic form, which is rarely assimilated by other microorgan-

isms in the same biological niche.
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