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Abstract: Venous thromboembolism (VTE) constitutes a serious and potentially fatal disease, often
complicated by pulmonary embolism and is associated with inherited or acquired factors risk.
A series of risk factors are known to predispose to venous thrombosis, and these include mutations
in the genes that encode anticoagulant proteins as antithrombin, protein C and protein S, and
variants in genes that encode instead pro-coagulant factors as factor V (FV Leiden) and factor II (FII
G20210A). However, the molecular causes responsible for thrombotic events in some individuals
with evident inherited thrombosis remain unknown. An improved knowledge of risk factors, as well
as a clear understanding of their role in the pathophysiology of VTE, are crucial to achieve a better
identification of patients at higher risk. Moreover, the identification of genes with rare variants but
a large effect size may pave the way for studies addressing new antithrombotic agents in order to
improve the management of VTE patients. Over the past 20 years, qualitative or quantitative genetic
risk factors such as inhibitor proteins of the hemostasis and of the fibrinolytic system, including
fibrinogen, thrombomodulin, plasminogen activator inhibitor-1, and elevated concentrations of
factors II, FV, VIII, IX, XI, have been associated with thrombotic events, often with conflicting results.
The aim of this review is to evaluate available data in literature on these genetic variations to give a
contribution to our understanding of the complex molecular mechanisms involved in physiologic
and pathophysiologic clot formation and their role in clinical practice.
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1. Introduction

Venous thromboembolism (VTE) is an important disease that represents a major health
problem worldwide with an incidence in the general population of 1 per 1000 adults, and a
significant different prevalence among distinct ethnic groups, as well as across the ages [1].
General population and hospital-based samples involving individuals of European ancestry
(Caucasians) indicated that the incidence of first-time symptomatic VTE varies from 104
to 183 per 100,000 person-years. In comparison to Caucasians, higher rates of VTE are
recorded in Africans while lower rates—in Asians.

The susceptibility to VTE is largely accounted for by the clustering of several, possibly
inherited, risk factors. Studies of twins and families show that VTE is highly heritable
and follows a multifactorial non-Mendelian inheritance model, involving interaction with
clinical risk factors. Both acquired and inherited factors play important roles in the patho-
genesis of VTE. However, the risk varies greatly from one individual to another, and the
causes for many cases remain unidentified. Indeed, also in populations from different
ancestries an important proportion of idiopathic VTE events is recorded, the rate of cases
ranging from 19% to 40% [2].

Among environmental factors are blood stasis, plasma hypercoagulability, endothelial
dysfunction, advancing age, male sex, obesity, surgery, trauma, cancer, immobilization,
and pregnancy and use of exogenous hormones [1]. All these risk factors altogether explain
almost half of all episodes of VTE. On the other hand, inherited thrombotic factors have
been identified in gene variants of transcripts with an antico-agulant function, such as
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antithrombin, protein C, and protein S, which are considered to be strong genetic risk
factors [3]. In addition, variants in genes encoding pro-coagulant factors as FV (in particu-
larly the so-called “FV Leiden”) and FII (prothrombin G20210A) have also been identified,
which are, instead, considered moderate genetic risk factors [4].

In a multifactorial model, the susceptibility does not change drastically with the
presence or the absence of a specific risk factor, being accounted for by the clustering
of several, possibly inherited, risk factors. None of these factors is either necessary or
sufficient for the occurrence of VTE, but the totality makes VTE development more likely.
This means that the liability to develop VTE is continuously distributed in the general
population because of the additive effects of genetic and environmental factors. Our current
thinking is that only in individuals whose liability exceeds a certain threshold will VTE
then occur.

In the last years, the availability of powerful technologies allowed for a series of
studies aimed at investigating novel VTE loci. Several loci have been suggested to affect
the risk for VTE, most of them through gene expression in blood and liver tissue [1].

The above-mentioned model was demonstrated to be effective, using 31 replicated
common genetic variants [5]. Loci acted in concert each other in an additive fashion to
produce the final phenotype. A meta-analysis of genome-wide association studies found
suggestive evidence for an association of a large series of com-mon gene variants and
VTE [6]. However, uncommon and familial rare variants (e.g., those in antithrombin), even
those with large effect sizes, are not likely to be detected using this approach.

Clinical characteristics of patients carrying a strong risk factor are significantly differ-
ent from people with a moderate risk factor. Usually, in subjects carrying a strong genetic
risk factor, VTE occurs at a younger age as an idiopathic or provoked episode, a family
history of VTE is often present, and there is a high probability of recurrence [3]. However, in
about one-third of patients with a positive family history for VTE or with recurrent episodes,
despite our knowledge, the underlying molecular mechanisms remain unsolved [7].

Several additional genetic factors within the procoagulant, anticoagulant, and fibri-
nolytic pathways were suggested to be potential risk factors for VTE [8].

The objective of this review is to collect the current genetic and clinical knowledge of
rare variants in pro-coagulant (fibrinogen, FII, FV, FVII, FXI, tissue factor), anticoagulant
(thrombomodulin, ADAMTS13), and fibrinolytic (PAI-1) genes to better clarify VTE patho-
physiology and the role of these variants as well as the clinical utility for developing new
strategies for the management of VTE patients (Table 1).

Table 1. Characteristics of thrombosis of congenital disorders examined.

Congenital Defects Type of Thrombosis References

Afibrinogenemia Arterial and mainly venous Korte W. et al., 2016
Dysfinogenemia arterial and mainly venous Korte, W. et al.; 2016

Phrotrombin mainly venous Djordjevic, V, 2013; Bulato, C. 2016
FV mainly venous Chan, WP 1998; Mumford, AD 2013

FVII mild arterial risk, mainly venous Marty, S. 2008.

FXI deficiency mild venous, mainly in association
with replacement therapy Palla, R. 2015; Puy, C. 2016.

High FXI level arterial (conflicting results) Suri MF, 2010.Yang DT, 2006. Meijers
JCM, 2000. I M Rietveld, 2019.

TFPI
Athersclerotic plaque, intravascular

thrombosis conflicting results,
predictive value in tumor metastasis

Toschi, V. 1997; Engelman, B. 2003.

Trombomodulin Animals model, conflicting results in
humans

Ahmad, A. et al. 2017; Burke, J.P. et al.
2005.

PAI-1 deficiency Mainly venous Meltzer, M.E. et al. 2010.
High plasminogen level Arterial and venous Flevaris, P. 2017; Margaglione, 1998.

ADAMTS13
TTP

conflicting results for arterial and
venous

Levy, G.G. 2001; Akyol, O. 2015; Xin,
C. 2019; Bittar, L.F. 2010; L.A. Lotta,

2013.

1.1. Inherited Disorders of Fibrinogen and Thrombosis: Afibrinogenemia and Dysfibrinogenemia

Hereditary fibrinogen abnormalities a prevalence rate of ~8% among the rare bleeding
disorders with an estimated prevalence of one in a million [9]. Inherited disorders of
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fibrinogen encompass two classes of plasma fibrinogen defects: Type I, afibrinogenemia
or hypofibrinogenemia, which has a complete absence or low plasma fibrinogen antigen
levels (quantitative fibrinogen deficiencies), and Type II, dysfibrinogenemia or hypodysfib-
rinogenemia, which shows normal or reduced antigen levels but low or very low functional
activity (qualitative fibrinogen deficiencies) [10].

1.1.1. Afibrinogenemia

Afibrinogenemia is associated with mild-to-severe bleeding, whereas hypobrinogen-
emia are most often asymptomatic [10]. In afibrinogenemic patients venous and arterial
thrombotic events have been rarely reported [11]. Thrombotic events can occur spon-
taneously in half of the cases, or with concomitant risk factors such as surgery proce-
dures [11], replacement therapies such as fibrinogen concentrate [12] or recombinant factor
VIIa plasma infusion [13]. Furthermore, in young afibrinogenemic women, with a positive
family history of thrombosis an increased rate of the occurrence of thrombotic events,
unrelated to replacement therapy, has been found [14]. However, in the majority of pa-
tients, no known risk factor was present. Many hypotheses have been proposed to explain
the predisposition to thrombosis of afibrinogenemic subjects. Based on animal models
it has been shown that in the absence or reduction of fibrinogen, the αIIbβ3 receptor,
which normally transfers the fibrinogen molecule into the platelet α-granule, imports
fibronectin. In turn, the αIIbβ3-bound fibronectin may promote platelet aggregation [15].
Furthermore, in the absence of fibrinogen platelet aggregation is possible due to the ac-
tion of von Willebrand factor (VWF), which stabilizes the factor VIII and interacts with
subendothelial components and platelet membrane receptors [15]. On the basis of the
mechanism described above, VWF and fibronectin might play a compensatory role in the
absence of fibrinogen. Indeed, fibrinogen absence increases the levels of other procoagulant
factors, and this could increase patients’ prothrombotic susceptibility, with a tendency to
embolize [15]. In any case, available data in the literature suggest that afibrinogenemia is
associated with thromboembolic complications with or without fibrinogen replacement
therapy [14]. In conclusion, although thrombosis is very rare in afibrinogenemic patients,
a series of episodes were reported in the literature. However, considering the conflicting
studies carried out to date, the pathophysiology of thrombotic events in these patients is
largely unknown and needs to be further investigated.

1.1.2. Dysfibrinogenemia

Dysfibrinogenemia is rare, with a prevalence of approximately 15 per 100,000 people,
and clinical manifestations have a high phenotypic variability [16]. Indeed, most of them
are clinically asymptomatic, whereas some can present with bleeding diathesis or throm-
botic episodes, rarely with both [16]. Bleeding episodes involve mostly the skin and mucus
membranes, less frequently the musculoskeletal apparatus, genitourinary and gastroin-
testinal tract [17,18]. On the other hand, most severe and often fatal bleeding episodes may
involve the central nervous system with intracranial hemorrhage [19]. Women with dysfib-
rinogenemia, in some cases have obstetric complications, such as recurrent abortions and
pre- and post-partum bleeding episodes [20]. Although many patients with dysfibrinogen-
emia bleed, both arterial and venous thromboembolic disease have been observed [21,22].
Thrombotic events can occur in the presence of concomitant risk factors such as co-inherited
thrombophilic risk including natural inhibitors abnormalities, such as factor V Leiden, or
acquired risk factors, pregnancy, and replacement therapy [11]. However, in many patients,
no known genetic or acquired risk factors were found. Recently, patients with chronic
thromboembolic pulmonary hypertension (CTEPH) in association with dysfibrinogenemia
have been described. In these patients, an increased resistance to the fibrinolytic system, as
a consequence of a change in the molecular structure of the fibrin, leading to the develop-
ment of CTEPH after acute thromboembolism has been suggested [23]. Two hypotheses
that can explain why individuals can develop thrombotic events in cases of dysfibrinogen-
emia have been proposed. First, the abnormal fibrinogen may have a defective binding to
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thrombin, with a consequent increase of the latter. Secondly, the fibrin clot containing a
dysfunctional fibrinogen may be less sensitive to plasmin during tissue-type plasminogen
activator (t-PA)-mediated fibrinolysis [24]. In addition, an abnormal fibrinogen molecule
can display abnormal interactions with platelets, impaired assembly of the fibrinolytic
system, and abnormal calcium binding that affect the polymerization pocket [25].

1.1.3. Prothrombin

Variants in the prothrombin gene (F2) causing abnormally low factor II (FII) antigenic
and functional levels (Type I defects) have always been associated with bleeding, often
severe bleeding [26]. In addition, different gene variants, causing low FII activity but
normal or near normal antigen levels, show a milder bleeding tendency. Recently, a series
of studies identified unrelated families carrying different variants in the same FII codon
(p.Arg596) encoding for different amino acids (Leu [27]; Gln [28]; and Trp [29]), which
causes a resistance to the anticoagulant effect of antithrombin and a consequent throm-
bophilic state. Findings of rare additional patients carrying the p.Arg596Leu variant further
confirm the possibility that F2 may harbor rare variants strongly associated with VTE.

1.1.4. Factor V (FV)

In addition to the frequent factor V (FV) gene (F5) variant p.Arg506Gln, also known
as FV Leiden, the most frequent inherited VTE risk factor among Caucasians, few rare,
or quite rare F5 variants have been described to be associated with an increased risk for
VTE [30–32]. Variants occurring at a cleavage site for anticoagulant activated protein C
(p.Arg306Thr and p.Arg306Gly), a key event for the inactivation of activated FV, resulted in
partial FVa inactivation [33]. However, the effect on VTE is limited, if any. Private F5 gene
variants associated with VTE were described. The FV p.I359T substitution was found to
confer a risk for VTE through resistance to activated protein C, but only when co-inherited
with a F5 null allele.

More recently, two different homozygous substitutions (p.Trp1920Arg and p.Ala2086Asp)
[34,35], both affecting FVa inactivation, were identified and further showed the FV as a target
for innovative anticoagulant drugs.

1.1.5. Factor VII (FVII) Deficiency

The FVII deficiency shows a high genetic and clinical heterogeneity. Although gene
variants within the F7 gene are essentially responsible for a bleeding phenotype, in the last
years, FVII deficiency was suggested to causes both venous and arterial thrombosis [36].
Thrombotic episodes, particularly VTE, have been re-ported in 3% to 4% patients carrying
a FVII deficiency, even in those presenting with a severe deficiency [37]. In patients with
FVII deficiency, arterial thromboses are less common than VTE, the latter being described
in unusual locations such as central retinal and cerebral veins, as well as portal and splenic
veins [38]. Thrombotic episodes involve different system and can occur spontaneously
or in conjunction with treatment or others predisposing factors [36]. However, sponta-
neous thrombotic events are very rare and mainly occur after childbirth, main surgery,
replacement therapy (particularly with rFVIIa), or in association with other thrombophilic
risk factors such as FV Leiden, prothrombin G20210A variant, elevated FVIII levels, and
antiphospholipid antibodies [36]. Pathogenic mechanisms leading to thrombotic events are
not yet fully understood. A specific role for particular F7 variants was suggested. Indeed,
two gene variants, p.Arg304Gln (FVII Padua) and p.Ala294Val were highly represented
in patients with FVII deficiency and thrombosis events [39]. Both mutations give rise to
a type 2 defect, patients presenting low activity but normal or slightly reduced FVII anti-
gen and are associated with mild clinical thrombotic phenotype [40]. Indeed, thrombotic
events have been described only in two cases of “true” or type I deficient patients [41].
The pathogenetic mechanism induced by p.Arg304Gln and p.Ala294Val gene variants is
the consequence of an amino acid substitution in the catalytic domain of the molecule,
which probably affects the interaction of FVII with TF. Biochemical studies showed that
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both variants induce a conformational change of a β-Strand in the FVIIa catalytic domain
that empowers its binding capacity with the TF [38]. The following modification of the
ability to prime the extrinsic coagulation pathway in vivo, further stresses the critical role
of the TF:VIIa complex in the blood coagulation cascade [38].

1.1.6. Factor FXI (FXI)

Factor XI (FXI) is the zymogen of a plasma protease, factor XIa (FXIa), that contributes
to thrombin generation during blood coagulation by proteolytic activation of several
coagulation factors, most notably FIX [42]. FXI deficiency was first described in literature
in 1953, it is a rare genetic bleeding disorder caused by reduced levels and activity of FXI
clotting factor [42]. The clinical phenotype of individuals with FXI deficiency is highly
variable and not at all correlated with FXI antigen levels and activity, therefore complicating
the ability to predict the bleeding phenotype [42,43]. In the past, on the basis of animal
models and clinical studies, FXI deficiency was essentially associated with a protective
effect from thrombotic events [44], due to a reduction of thrombin generation and a weaker
stability of blood clot [44]. The occurrence of VTE seems mainly be associated with the
replacement therapy, particularly after infusion of concentrated plasma-derived FXI [45].
Indeed, a significant lower VTE incidence in patients with severe FXI deficiency was found,
further stressing the protective role of low FXI levels [46]. On the other hand, in several
studies higher FXI levels were associated with an increased risk for ischemic stroke [47] and
arterial thrombosis [48], while the role for FXI in myocardial infarction (MI) is less clear [49].
The association of high FXI levels with the risk of a first VTE event was investigated [50].
Subjects with FXI levels in the upper quartile of the distribution (above 110 U/dL) had
a twofold increased risk as compared to subjects with FXI levels in the lowest quartile
(below 83.3 U/dL). However, these data were not confirmed [51]. In FV Leiden carriers,
high FXI levels were suggested to contribute to the risk for VTE [52]. Furthermore, animal
models al-so suggest that the activation of FXI by FXIIa promotes pathological thrombus
formation [53]. FXI inhibition has been proposed as an innovative therapeutic tool to
reduce the risk for VTE [54]. Recent studies confirmed the potential use of FXI inhibition
for the prevention of VTE [55,56]. Thus, current evidence is strong enough to support the
role of high FXI levels as a risk factor for VTE.

2. Tissue Factor Pathway Inhibitor (TFPI)

Tissue factor (TF) is best known as the primary cellular initiator of blood coagulation.
After vessel injury, the TF:FVIIa complex activates the coagulation protease cascade, which
leads to fibrin deposition and activation of platelets, highlighting its fundamental role in
the hemostatic process [57]. TF expression by non-vascular cells plays an essential role in
hemostasis by activating blood coagulation. In contrast, TF expression by vascular cells
induces intravascular thrombosis [58]. In the last two decades, moreover, TF was described
as a glycoprotein located in several tissue including vascular wall and atherosclerotic
plaque and circulates in the blood associated with microparticles (Mps) [59]. TF is a “true
surface receptor” involved in many intracellular signaling, cell-survival, gene and protein
expression, proliferation, angiogenesis, and tumor metastasis [60]. There is now strong
experimental evidence that tissue factor pathway inhibitor (TFPI) is a critical inhibitor that
modulates tissue factor-induced coagulation. However, the role of TFPI as a risk factor
for thrombosis is yet to be determined. Coagulation inhibitors play important roles in
preventing individuals from thrombosis and, a limited level of evidence suggests that low
plasma TFPI levels are associated with ischemic stroke or venous and arterial thrombotic
disorders [61]. Furthermore, a predictive risk value for VTE and tumor metastasis was also
associated to TF, this marker displaying a high diagnostic sensitivity and specificity [62].
Plasma TFPI levels were significantly decreased in patients with thrombotic thrombocy-
topenic purpura (TTP) compared with those in healthy volunteers [63]. Recently, it has
been shown that total TFPI was higher in individuals with higher procoagulant factor
levels and advancing age [64]. Only subjects with TFPI levels below the 5th percentile
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(<18.8 ng/mL) showed a modest increase of the risk for VTE, after adjusting for proco-
agulant factor levels [64]. Despite a series of animal models, very few clinical studies
were performed in humans to date. Then, current knowledge is not sufficient to show
whether TFPI levels affect the risk for VTE. Based on the available results, there is no
clinical evidence to measure TF. Further ad hoc clinical trials are needed to assess whether
higher TF or low TFPI levels are a risk factor for VTE.

2.1. Thrombomodulin

Thrombomodulin (TM) is the endothelial cell cofactor for protein C activation working
as a modulator of coagulation system and inflammation. TM enhances thrombin-catalyzed
activation of protein C. Activated protein C (APC) proteolytically inactivates blood coagula-
tion factors Va and VIIIa [65]. Normal APC generation depends on the precise coupling of
thrombin and protein C to their respective receptors, TM and endothelial protein C receptor
(EPCR) on the surface of endothelial cells [66]. The thrombin-TM complex is also involved
in the physiological regulation of fibrinolysis by activating thrombin-activated fibrinolysis
inhibitor (TAFI) [67]. Considering both anticoagulant and pro-fibrinolytic activities of
the thrombin-TM-PC-EPCR system, antithrombotic functions are evident. Animal model
data suggest that TM dysfunction or deficiency may be associated with a prothrombotic
disorder [68,69]. Recently, transgenic mice with a missense mutation in the TM gene
(THBD) corresponding to human E387P, developed a prothrombotic disorder showing an
improvement in fibrin deposition [70], probably due to the thrombomodulin inability to
catalyze in vitro thrombin activation of protein C to APC. The mutant mouse strain was
able to repeat different mechanisms of thrombotic events in humans, confirming previous
knowledge and suggesting new hypotheses to be developed in clinical studies.

In patients with VTE, a series of clinical studies addressed the role of sporadic mu-
tations and polymorphisms in the TM gene [71]. In these studies, genetic variation in
the promoter, coding region, and 3′-untranslated regions (3′-UTR) of the TM gene were
considered [72,73]. Although some studies suggested a role for THBD variants, results
are conflicting. In addition, genome-wide studies also gave inconsistent findings [73].
The association between a disease and a gene variant arises because the latter is directly
causative or is in strong association with a causative variant. The occurrence of several fac-
tors may explain inconsistencies among studies that addressed the identification of THBD
disease-causing variants, including insufficient statistical power, population stratification,
various forms of between-study heterogeneity, including differences in genetic ancestry,
ascertainment schema, environmental influences, and time-varying associations [73,74].
Although it is difficult to known to what extent mutations in the thrombomodulin gene
can actually modify its function as modulator of the coagulation and fibrinolysis path-
ways, it is conceivable that any impairment of TM exposure on the plasma membrane
can produce a lower thrombin binding. The following increased amounts of unbounded
thrombin are expected to induce an imbalance between its procoagulant (increased fibrin
formation) and anticoagulant (impaired APC generation) properties. Indeed, the bleeding
phenotype in patients carrying a THBD mutation associated with increased soluble pro-
tein levels and decreased thrombin generation further stresses the pivotal role of THBD
as key regulator [75].

2.2. Disorders of Fibrinolysis

The fibrinolytic system involves the conversion of plasminogen (PLG) into plasmin
by the action of tissue plasminogen activator (tPA) and urokinase plasminogen activator
(uPA). The plasminogen activator inhibi-tor-1(PAI-1) is a serine protease inhibitor that
plays an important role in the regulation of fibrinolysis. PAI-1 play a role in the inhibition
of the activity of tPA and uPA [76]. Additional inhibitors of the fibrinolytic pathway are
TAFI and α2-antiplasmin [77]. PLG deficiency is a rare disorder that has been classified as
type I or hypoplasminogenemia, and type II or dysplasminogenemia [78]. In type I, both
plasminogen activity and antigen levels are decreased. In contrast, type II is characterized



Int. J. Environ. Res. Public Health 2021, 18, 9146 7 of 13

by decreased plasminogen activity but normal antigen levels. A series of mutations has
been described in the PLG gene that cause plasminogen deficiency, such as missense,
nonsense, frameshift, splice site, deletion, and insertion mutations [79]. These studies
suggested that the most common molecular defects are in association with type I [80].
How-ever, there is not an association between the genotype, the number or the type of
putative pathogenic mutations in PLG with the occurrence of VTE [81]. These data suggest
that decreased plasminogen levels do not, in and of themselves, increase the risk of VTE.
Plasminogen activator inhibitor-1 (PAI-1) deficiency, causing enhanced fibrinolysis due
to the decreased inhibition of plasminogen activators, results in an in-creased conversion
of plasminogen to plasmin, excessive levels of plasminogen activator inhibitor-I (PAI-I)
and hyperfibrinolysis [78]. Plasma hypofibrinolysis was shown to be associated with
an increased risk for VTE [82]. This risk was explained by elevated plasma levels of
TAFI and PAI-1. These events are causally related to the development of atherosclerosis
and associated to thrombotic complications, as well as with the development of venous
and arterial thrombosis. Indeed, plasma concentration of plasminogen tends to increase
5–10 times during arterial or vascular disorders and this would explain its role in the
pathogenesis of venous and arterial thrombosis [83]. Many studies have associated to
PAI-1 the function of mediator of organ fibrosis emphasizing further its involvement in the
pathogenesis of atherosclerosis [83]. A PAI-1 gene polymorphism in the promoter region
(4G/5G) was the one most widely studied. Indeed, the 4G allele has been found to be
associated with rising of plasma PAI-1 levels in different ethnic populations. However,
the association with VTE is still controversial [84]. In a cohort of unselected patients,
it has been found a significant association between the 4G/5G polymorphism and the
risk of VTE or coronary artery disease [85]. However, in most of patients, there was the
contemporary presence of Factor V Leiden or others pre-disposing risk [86]. Furthermore,
other studies have shown that the 4G allele is associated only with a modest increase of
VTE risk, particularly in subjects with other genetic thrombophilic defects [87], thus only
representing a weak additional risk. Then, the role of fibrinolytic pathway in pathogenesis
of VTE re-mains, to date, unclear and, consequently, more investigations are needed.

3. ADAMTS13

ADAMTS13 is a metalloproteinase synthesized predominantly in the liver and respon-
sible for the modulation of the molecular size of von Willebrand factor (VWF) multimers in
plasma. The ADAMTS13 role consists of cleaving VWF ultra-large molecules, initiating
platelet binding to sub-endothelial surface and subsequent platelet adhesion [88]. The as-
sociation between ADAMTS13 dysfunction and thrombotic thrombocytopenic purpura
(TTP) [88,89], diabetes [90], pre-eclampsia [91], and acute myocardial infarction [92] has
been well documented. TTP is a severe microangiopathic disorder of the blood-coagulation
system. A series of animal models demonstrated the role of ADAMTS13 in the pathogene-
sis of ischemic stroke [93]. ADAMTS13 down-regulates both thrombosis and inflammation
through cleavage of VWF multimers. Dysfunction of the ADAMTS13-VWF leads to large
VWF multimers accumulation, leukocyte rolling and adhesion of platelets, which is the
first step of thrombosis and inflammation [94]. Furthermore, a VWF multimers accumu-
lation increases plasma factor VIII (FVIII) levels, a known independent risk factor for
VTE [95]. Deficiency in ADAMTS13 endopeptidase contributes to the development of
VEGF inhibitor-related thrombotic microangiopathies. In addition, patients with sepsis
or DIC have decreased levels of ADAMTS13 and increased levels of VWF [96], which
play a key role in initiating thrombus formation. Complete deficiency in ADAMTS13
induces a prothrombotic state, which represents an important risk factor for TTP or stroke,
but it is insufficient to cause TTP or stroke by itself. It may result in ischemic stroke in
conjunction with additional genetic or environmental factors [97]. Considering the pivotal
role of ADAMTS13 in the modulation of the coagulation cascade, a significant effect in
the development of VTE has been suggested [98]. It was supposed that genetic factors
affecting ADAMTS13 activity might modulate the risk for VTE by modifying VWF and
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FVIII levels. In patients with VTE, the association with sporadic and common gene variant
has been investigated [99]. However, no polymorphism was found to correlate with VTE.
Recently, using a next generation sequencing (NGS) approach in patients with idiopathic
VTE, rare and low-frequency gene variants of the ADAMTS13 coding region were found
with a significantly higher frequency [100]. These findings suggested that genetic variants
modulating the VWF-cleaving activity may modulate the risk for thrombosis. To date,
studies investigating ADAMTS13 activity as a result of molecular abnormality and its
ability to predict thrombosis events produced contradictory results. Then, further studies
in patients with low level of ADAMTS 13 and rare or common gene variants are needed in
order to perform a more accurate genotype-phenotype correlation to understand the role
on arterial and venous thrombosis pathogenesis.

4. Conclusions

Even though many years of investigation aimed at improving diagnosis and man-
agement, VTE remains a significant public health threat. In general population, VTE
heritability has been estimated to account for approximately 30% [101], whereas a higher
figure was shown between twins (50%) [102].

The heritability of VTE is very high and patients often report positive family history
of VTE. Efforts to predict and prevent venous thromboembolic disease largely depends
on our ability to accurately identify patients at risk. On the whole, known gene variants
only explain a small portion of the VTE heritability. Thus, many of the disease-causing
mechanisms underlying VTE remain to be fully characterized, including those involving
genetic risk factors. Although genes encoding for protein involved in the coagulation
pathway are natural candidate genes for VTE, genome-wide association studies found
suggestive evidence for a role of genes involved in different pathways, e.g., encoding for
platelet and red blood cell traits. This review provided an overview of available data
to date on studies that investigated inherited venous thrombosis, rare gene variants, as
potential thromboembolic risk factors. To date, the clinical utility in diagnostic practice
of specific tests for the investigation of these rare defects in VTE patients is unknown.
A better understanding of the wide-ranging and complex role of these disorders in both
thrombosis and hemostasis will allow for a better prediction of the thrombotic risk in the
general population as well as in different clinical settings of patients. The identification
of new candidate genes is urgently needed to improve current risk prediction models for
VTE. Moreover, the identification of genes with rare variants but a large effect size may
pave the way for studies addressing new antithrombotic agents, in order to improve the
management of VTE patients.

Cutting edge technologies may enable a thorough and clever estimation of the personal
risk profile, which is currently relatively inaccurate, involving the assessment of “omics”
signatures or biomarkers. This approach will represent a welcome improvement in the
ability to measure the risk for VTE in a meaningful way.
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