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ABSTRACT: The renewed urgency to develop new treatments for Mycobacterium
tuberculosis (Mtb) infection has resulted in large-scale phenotypic screening and thousands
of new active compounds in vitro. The next challenge is to identify candidates to pursue in
a mouse in vivo efficacy model as a step to predicting clinical efficacy. We previously
analyzed over 70 years of this mouse in vivo efficacy data, which we used to generate and
validate machine learning models. Curation of 60 additional small molecules with in vivo
data published in 2014 and 2015 was undertaken to further test these models. This
represents a much larger test set than for the previous models. Several computational
approaches have now been applied to analyze these molecules and compare their
molecular properties beyond those attempted previously. Our previous machine learning
models have been updated, and a novel aspect has been added in the form of mouse liver
microsomal half-life (MLM t1/2) and in vitro-based Mtb models incorporating cytotoxicity
data that were used to predict in vivo activity for comparison. Our best Mtb in vivo models
possess fivefold ROC values > 0.7, sensitivity > 80%, and concordance > 60%, while the
best specificity value is >40%. Use of an MLM t1/2 Bayesian model affords comparable results for scoring the 60 compounds
tested. Combining MLM stability and in vitro Mtb models in a novel consensus workflow in the best cases has a positive
predicted value (hit rate) > 77%. Our results indicate that Bayesian models constructed with literature in vivo Mtb data generated
by different laboratories in various mouse models can have predictive value and may be used alongside MLM t1/2 and in vitro-
based Mtb models to assist in selecting antitubercular compounds with desirable in vivo efficacy. We demonstrate for the first
time that consensus models of any kind can be used to predict in vivo activity for Mtb. In addition, we describe a new clustering
method for data visualization and apply this to the in vivo training and test data, ultimately making the method accessible in a
mobile app.

■ INTRODUCTION

Tuberculosis (TB) is a major infectious disease that unfortu-
nately knows no geographic boundaries and accounts for
approximately 9 million new cases and 1.5 million deaths each
year.1 TB and its etiological agent, Mycobacterium tuberculosis
(Mtb), continue to be the focus of intense international efforts to
develop new tools for the control and ultimate elimination2 of
this devastating disease that is increasingly associated with
resistance to first- and second-line drugs.3 The discovery of new
TB drug candidates with novel mechanisms of action is of
fundamental importance in this regard. The majority of funding

for TB research still comes from the NIHNIAID and the Bill and
Melinda Gates Foundation. In the past, the European
Commission has also funded TB research in the FP7 Program
(although nowhere near the levels of the aforementioned
organizations). However, no funding for TB small-molecule
drug discovery is foreseen in the EC’s Horizon 2020 Program
over the next few years. These cuts in funding highlight the need
to increase the efficiency of tuberculosis small-molecule drug
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discovery. Analysis of the recent pipeline at TB Alliance4 and
elsewhere5 reveals that while there are∼27 projects in preclinical
stages and 13 in clinical trials in phases 1−3, only one project is in
phase 4 (Figure 1). This indicates a suboptimal pipeline. Of the

latter clinical-stage compounds, several do not seem to have
progressed since earlier analyses. It is incredibly concerning that
we do not have more new molecules in clinical stages, especially
with the prescribing limitations surrounding bedaquiline and
delamanid because of their cardiovascular side effects from hERG
inhibition.6,7

A major hurdle to progressing molecules into the clinic is
identifying compounds that have activity in the mouse models of
Mtb infection.8 Mice have been used since the 1940s to test drug
efficacy.9 Of course, the mouse cannot completely model the
complex pathology observed in humans, and its drug metabolism
and pharmacokinetics also may differ. A recent questionnaire
polled different TB laboratories and found that most use BALB/
C, C57BL/6, or Swiss mice.9 It was concluded that the mouse
model may be most useful for rank ordering of compounds to
select a drug regimen. However, some laboratories also
supplement the in vivo mouse data with in vivo rabbit or
marmoset studies of Mtb infection. We previously published a
comprehensive assessment of over 70 years of literature resulting
in modeling of 773 compounds reported to modulate Mtb
infection in mice.8 Our detailed analyses of the physiochemical
and structural properties of both active and inactive molecules as
well as their chemical property space coverage revealed new
insights. Furthermore, we used machine learning models to
correctly predict in vivo efficacy in theMtb-infected mouse model
for eight of 11 compounds. We identified gaps corresponding to
the discovery and approval of new compounds,10 as highlighted
by the 40 years between the approvals of rifampicin and
bedaquiline, suggesting that we can learn from earlier drug
discovery. Furthermore, there were clear peaks in in vivo testing
in the 1940s and 1950s, and it now appears that recent testing in
mouse in vivo seems to have peaked,10 also leading to concerns
about the future health of the TB drug pipeline.
Since that report, we have collated an additional 60 molecules

from more recent data published in 2014 and 2015 and further
evaluated and validated the earlier models with this much larger
test set that was not previously available. In addition, we have
used recently published models based on in vitro data to create
consensus models to predict in vivo activity. Further we describe a
new clustering method for data visualization and apply it to all of
the in vivo data gathered to date. Our goal is to continue to
develop and validate various computational approaches for

predicting and visualizing in vivo activity data in the Mtb mouse
model, enabling the prediction of new compounds that are the
most promising for advancement.

■ EXPERIMENTAL SECTION
Data Collection. The original data used in the initial

published model were curated and quality-assessed as described
previously.8 Literature searching in the 2014−2015 time frame
was performed using PubMed, and data curation was also
described previously.8 We present only new molecules that were
not included in the earlier in vivo paper as assessed using
similarity of training and test compounds based on the Tanimoto
similarity distance metric11−13 in Discovery Studio (a value of 0
represents the molecule being in the model). Distance is a
generalization to continuous properties of the Tanimoto distance
for binary fingerprints: D = 1 − ∑xiAxiB/[∑(xiA)

2 + ∑(xiB)
2 −

∑xiAxiB]. Possible values range from 0 to 1.3333. As also
described earlier, molecules were classified as active in the mouse
model if they demonstrated at least 1 log10 reduction in colony-
forming units (CFU) (or in some cases a statistically significant
reduction in CFU).8

Test Set Molecular Property Distribution. AlogP,
molecular weight, number of rotatable bonds, number of rings,
number of aromatic rings, number of hydrogen-bond acceptors,
number of hydrogen-bond donors, and molecular fractional
polar surface area were calculated from input structural data (SD)
files using Discovery Studio 4.1 (San Diego, CA).8

Principal Component Analysis with in Vivo Test Set
Compounds and TB Mobile Data. In order to assess the
applicability domain of the 60 new in vivomolecules and the 784
compounds in the in vivo Mtb training set, we used the union of
these sets to generate a principal component analysis (PCA) plot
based on the interpretable descriptors selected previously
(AlogP, molecular weight, number of rotatable bonds, number
of rings, number of aromatic rings, number of hydrogen-bond
acceptors, number of hydrogen-bond donors, and molecular
fractional polar surface area) for machine learning. We also
compared the 60 new compounds tested in the in vivomouseMtb
model to the previously described 805 compounds with known
Mtb targets collated from the literature14 and available in TB
Mobile (version 2).15 This PCA model essentially represents the
published target-chemistry property space for Mtb.15

Building and Validating Machine Learning Models
with Mouse Mtb in Vivo Data. We have previously described
the generation and validation of the Laplacian-corrected naiv̈e
Bayesian classifier models developed from the mouse Mtb
infection in vivomodel using Discovery Studio 3.5.16−20 We have
now updated the Bayesian, tree, and support vector machine
(SVM) models using Discovery Studio 4.1. In addition to the
eight molecular descriptors listed in the previous section, the
molecular function class fingerprints of maximum diameter 6
(FCFP_6) was added as the ninth descriptor.21 Computational
models were validated using leave-one-out cross-validation, in
which each sample was left out one at a time, a model was built
using the remaining samples, and that model was utilized to
predict the left-out sample. Each model was internally validated,
the receiver operator characteristic (ROC) plots were generated,
and the areas under the cross-validated ROC curves (XV ROC
AUC) were calculated. Fivefold cross-validation (leave out 20%
of the data set and repeat five times) was also performed, as was
leave out 50% × 100-fold cross-validation. We compared the
resulting Bayesian model with SVM, recursive partitioning forest
(RP Forest), and RP Single Tree models built with the same set

Figure 1. Global TB pipeline using data from TB Alliance and the
Working Group on New TB Drugs Drug Pipeline.
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of molecular descriptors in Discovery Studio. For SVM
models22,23 we calculated interpretable descriptors in Discovery
Studio and then used Pipeline Pilot to generate the FCFP_6
descriptors, followed by integration with R.24 RP Forest25−28 and
RP Single Tree models used the standard protocol in Discovery
Studio. In the case of RP Forest models, 10 trees were created
with bootstrap aggregation (“bagging”). For each tree, a
bootstrap sample of the original data is taken, and this sample
is used to grow the tree. A bootstrap sample is a data set of the
same total size as the original one, but a subset of the data records
can be included multiple times (i.e., each tree is built with a
slightly different subset of the original set, and each tree’s set can
contain duplicates). RP Single Tree models had a minimum of 10
samples per node and a maximum tree depth of 20. In all cases,
fivefold cross-validation was used to calculate the ROC for the
models generated. CDDModels (Collaborative Drug Discovery,
Inc., Burlingame, CA) was also utilized to build a Bayesian model
using just the open source FCFP_6 descriptors and threefold
cross-validation as described previously.29 This provides an
approach for generating models that can be shared between
researchers and used in mobile apps, thereby making the models
more accessible.30−33

Mouse Mtb Infection Model Predictions for Com-
pounds Identified after Model Building. From the data
curation in this study, 60 compounds were identified from the
literature (2014−2015) that were tested in Mtb infected mice
(Supplemental Data 1). These were predicted with the mouse
Mtb infection computational machine learning models pre-
viously reported as well as the updated models with 784
compounds. For each molecule, the closest distance to the
training set for each model was also calculated using the
“calculate molecular properties” protocol in Discovery Studio, in
which a value of zero represents a molecule in the training set
while larger values indicate that a molecule is more different than
the training set.
In Vivo Activity Predictions with Previous in Vitro-

Trained Bayesian Models. Previously generated Bayesian
models for mouse liver microsomal half-life (MLM t1/2)

34 and
dual-event models that combine in vitro Mtb activity and Vero
cell cytotoxicity35,36 (e.g., the Tuberculosis Antimicrobial
Acquisition and Coordinating Facility (TAACF-CB2) and
Molecular Libraries Small Molecule Repository (MLSMR)
data sets) were used either alone or in a novel consensus
workflow to predict the in vivoMtb activity for the 60 compounds
identified from the literature (2014−2015) that were tested in
mice. The sort by two attributes features in Discovery Studio and
Excel were used to organize the data, followed by tabulating the
numbers of true positives (TP), false positives (FP), true
negatives (TN), and false negatives (FN), to enable calculation
of the external statistics and enrichment factors.
Clustering of Mouse Mtb in Vivo Data. Honeycomb

clustering (Molecular Materials Informatics, Inc., Montreal,
Canada) is a greedy layout method for arranging structures on a

plane in a meaningful way. A single reference compound is
selected by the user as the focal point, and this is placed on a
hexagonal grid pattern. For each compound, the ECFP_6
fingerprints are determined, and for all similarity comparisons,
the Tanimoto coefficient is used as the metric. The six
compounds most similar to the reference compound are
arranged in the six available positions immediately adjacent to
the focus to form the initial flower-petal starting point. The
compound that is most similar to the reference compound is
placed immediately above (“north”), and all possible permuta-
tions of the remaining five neighbors are considered and
evaluated by summing the pairwise similarities between radially
adjacent neighbors. The permutation with the highest score is
used, and thus, the placement positions for the first seven
compounds are fixed. The remaining compounds are ordered by
decreasing similarity to the reference compound, and each is
evaluated in turn. At each step the next compound is placed
irreversibly: all of the unoccupied hexagons that are adjacent to at
least one already-placed compound are considered and evaluated
according to a score. The hexagon with the highest score is taken
to be the position for this compound. The score is calculated by
determining the average similarity of the compound to each of its
putative neighbors. An additional “density fudge factor” of 0.01
per neighbor is added to balance out what would otherwise be a
tendency to minimize the neighbor count, i.e., to prevent
overfavoring long, spindly branches. For positions where there is
just a single neighbor, there are three positions that may be
occupied by neighbors of the neighbors, and each of these that is
occupied is compared with the current compound: for the
position directly opposite, the score is increased by its similarity
to the current compound multiplied by 0.001, whereas for the
other two positions the multiplier is 0.002. This additional term
encourages the arrangement of compounds to “bend” in the
direction that encourages higher similarity. This approach was
used with the complete training and test set for compounds
tested in the mouse Mtb infection model.

Statistical Analysis. Means for descriptor values for active
and inactive compounds were compared by two-tailed t test with
JMP version 8.0.1 (SAS Institute, Cary, NC). We also evaluated
several additional alternative statistics for the test set, including
Youden’s J statistic,37 Matthews’ correlation coefficient
(MCC),38the F1 score,39 and κ,40,41 which are given by the
following expressions:

= + −J sensitivity specificity 1

=
× − ×

+ + + +

MCC
TP TN FP FN

(TP FP)(TP FN)(TN FP)(TN FN)

= ×
×
+

F 2
precision recall
precision recall1

Table 1. Means and Standard Deviations of Molecular Descriptors for the New in Vivo Mtb Dataset (N = 60), Comparing Actives
and Inactivesa

MW AlogP HBD HBA Num Rings Num Arom Rings FPSA RBN

active (N = 41) 493.88 ± 219.81 3.65 ± 3.00 2.07 ± 2.70b 7.22 ± 2.95 3.63 ± 0.83 2.15 ± 0.96 0.26 ± 0.08 7.10 ± 3.18
inactive (N = 19) 427.83 ± 72.78 3.63 ± 1.91 1.05 ± 0.97 6.21 ± 2.17 3.68 ± 1.06 2.53 ± 0.90 0.24 ± 0.10 6.47 ± 1.87

aMW = molecular weight; HBD = number of hydrogen-bond donors; HBA = number of hydrogen-bond acceptors; Num Rings = number of rings;
Num Arom Rings = number of aromatic rings; FPSA = fractional polar surface area (sum of areas of the polar regions of the molecular surface
divided by the total molecular surface area); RBN = number of rotatable bonds. bp < 0.05.
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where po is the relative observed agreement among raters and pe
is the hypothetical probability of chance agreement, obtained
using the observed data to calculate the probabilities of each

Figure 2. (A) Principal component analysis (PCA) of the updated training set for the in vivo model (blue) and compounds tested in vivo in 2014 and
2015 (yellow). Three principal components explain 86.9% of the variance. (B) PCA of TBMobile 2 compounds (N = 805, blue) and compounds tested
in vivo in 2014 and 2015 (yellow). Three principal components explain 87.5% of the variance.
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observer randomly saying each category. If the raters are in
complete agreement, then κ = 1. If there is no agreement among
the raters other than what would be expected by chance (as given
by pe), κ ≤ 0.

■ RESULTS
Molecular Property Distribution. The 60 compounds

identified from the literature (2014−2015) that were tested in
Mtb-infected mice were collated in this study (Table S1 and
Supplemental Data 1) and analyzed with respect to eight simple
and interpretable molecular descriptors used previously (Table
1). The only difference between active and inactive compounds
was that the number of hydrogen-bond donors was statistically
significantly higher for the in vivo active compounds.
Principal Component Analysis with in Vivo Data, in

Vitro Hits, and TB Mobile Data. The PCA analysis of the
complete set of 844 molecules with in vivo data indicated that the
majority of the 60 new molecules are within the area of the
training set (Figure 2A), suggesting similar chemical property
coverage. PCA with the same descriptors and compounds for
which we have previously collected information on targets inMtb
suggested that these 60 molecules tested in vivo in mice are in the
same regions of physiochemical property space as the prior
compounds (Figure 2B).
Building and Validating Machine Learning Models

with Mouse Mtb Data. The original N = 773 data set used to
build a Discovery Studio Bayesian model had a leave-one-out
ROC of 0.77 and fivefold cross-validation value of 0.73
(Supplemental Data 2). The updated N = 784 Discovery Studio
Bayesian model (combining the initial training set and test set8)
for in vivoMtb activity had fivefold cross-validation ROC values >
0.70 (Table 2), which were comparable to those published

previously.8 The fivefold cross-validation model ROC values
(Supplemental Data 3) were comparable with the leave out 50%
× 100-fold ROC values, although the concordance, specificity,
and sensitivity were lower in the latter case (Table S2).
Model Predictions for Additional Compounds Identi-

fied after Model Building. The 60 molecules collated in this
study (Table S1 and Supplemental Data 1) were used as an
external test set for the original N = 773 Bayesian model
(Supplemental Data 1), which produced a poor ROC score
(0.554). The updated N = 784 Bayesian model performed
similarly (Supplemental Data 3) and displayed a poor ROC
(0.558). The set of 60 molecules included 20 PA-824 analogues
(mean closest distance = 0.26 with a standard deviation of 0.07;
Table S3); all were predicted by these Bayesian models as actives
(including seven in vivo inactives), which may reflect some bias
based on similarity to active PA-824 analogues. New models
including SVM (Supplemental Data 4), Single Tree and Forest
models had similar ROC values (Table S4). When the sensitivity,
specificity, and concordance data for the 60 molecules are
compared across the different models, there are subtle
differences. For example, the RP Forest model has highest
sensitivity (85.4%) and concordance (66.7%). The CDD
Bayesian, relying solely on the open source FCFP_6 descriptors,

was similar (82.9% and 61.7% for sensitivity and concordance,
respectively). The SVM model has the highest specificity
(42.1%) (Table 3).

In Vivo Activity Predictions with Prior in Vitro Bayesian
Models. Previously generated Bayesian models for MLM t1/2,
dual-event models for Mtb in vitro activity and Vero cell
cytotoxicity, and a consensus approach were used to predict
mouse in vivo activity (Table 4). The dual-event Bayesian models
displayed poor sensitivity (<35%) and concordance (≤50%), but
two had sufficient specificity (78.9%). The full t1/2 MLM stability
model with just FCFP_6 descriptors and the pruned t1/2 MLM
model with all nine descriptors produced sensitivity (78%),
specificity (26.3%), and concordance (61.7%) data for the 60
molecules that were comparable to those for the N = 784 in vivo
Bayesian model (Table 4). When the MLM stability Bayesian
model and a dual-event in vitro Bayesian model agreed that a
compound was either “good” or “bad,” the concordance (overall
accuracy) values for the in vivo predictions were significantly
improved relative to the original dual-event model (from 43.3%
to 58.8%, from 48.3% to 62.5%, and from 50.0% to 60.6%; Table
4). The confusion matrices for all of the models are also shown
for clarity (Table 5).

Enrichment Factors. All of the computational models were
used to calculate enrichment factors (EFs) for the test set (Table
6). The best enrichment in the hit rate (positive predicted value,
or PPV) for the top-scoring 10% of compounds was 1.22, which
was obtained for the in vivo Bayesian models, the Combined TB
in vitro dual-event Bayesian, and the TAACF-CB2 in vitro dual-
event Bayesian. The highest overall PPV (78.6%) was seen for
the consensus model that involved using both the combined TB
dual-event Bayesian and the full t1/2 MLM stability Bayesian (just
FCFP_6). The second-best PPV (77.8%) was also produced by a
consensus approach (the TAACF-CB2 dual-event in vitro
Bayesian plus the full t1/2 MLM stability Bayesian). These two
consensus approaches had better overall hit rates (and thus
better overall enrichment factors) than the machine learning
models that were trained with in vivomouseMtb data alone. Our
analysis of additional statistics illustrates that some models
perform better on the basis of some statistics versus others
(Table 7). For example, the consensus models perform best on
the basis of κ and MCC, whereas the combined dual-event
Bayesian does best on the basis of Youden’s J statistic and the RP
Forest model performs best on the basis of the F1 score (Table
7).

Table 2. Fivefold Cross-Validation ROC AUC Values for the
Updated (N = 784) in Vivo Machine Learning Models

Bayesiana SVM Single Tree Forest

0.733 0.77 0.72 0.74
aBayesian leave-one-out cross-validation = 0.772.

Table 3. External Statistics for the in Vivo TB Machine
Learning Models Tested on the New in Vivo Mouse TB Data

machine learning model
sensitivity

(%)
specificity

(%)
concordance

(%)

TB in vivo N = 773 Bayesian 70.7 36.8 60.0
TB in vivo N = 784 Bayesian 78.0 10.5 56.7
RP Forest TB in vivo N = 784 85.4 26.3 66.7
Best RP Tree TB in vivo N = 784 78.0 21.1 60.0
TB in vivo N = 784 SVM 68.3 42.1 60.0
TB in vivo N = 784 CDD
Bayesiana

82.9 15.8 61.7

aExternal statistics were calculated from the results of the Bayesian
modeling tool on Collaborative Drug Discovery using a cutoff score of
>0.65, which produced an internal sensitivity of 0.7 and an internal
specificity of 0.67.
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Clustering of Mouse Mtb in Vivo Data. The new
honeycomb clustering approach (Figure 3A; an enlarged version
is shown in Figure S1) provides a map of the in vivo active and
inactive compounds according to structural similarity. The 60
additional test set molecules cluster near similar molecules, such
as the macrolides (Figure 3B). This approach can also be used to
infer activity on the basis of similarity:11−13 if a compound is
surrounded by other active molecules, this might suggest that it
too is active. For example, the macrolides cyclogriselimycin and
ecumicin in the test set are surrounded by other active
compounds (Figure 3B).

■ DISCUSSION

An abundance of data from large in vitro phenotypic screens
against Mtb exists in the public domain42−46 that can readily be
used to assist future drug discovery. Since machine learning
methods can learn from past data, we have extensively applied
Bayesian and other machine learning algorithms to model Mtb
inhibition and Vero cell cytotoxicity. We have pioneered the use
of dual-event data sets, which use both dose−response data for
whole-cell antitubercular activity47,48 and Vero cell cytotox-
icity.35,36,42,49−51 We have also used the same approach to model
mouse Mtb in vivo data8 and most recently MLM stability.34 In
addition, we have recently developed a freely available mobile
app called TB Mobile15 that displays over 800 Mtb-active
molecule structures and their targets, with links to associated
data. This tool was recently enhanced by adding target-specific
Bayesian models to rank probable targets.15 Such Bayesian
modeling approaches with FCFP_6 fingerprints have also been
integrated into the CDD Vault software,29 and the algorithms
were made open source and applied to large numbers of data
sets.31 Our combined efforts in this area indicate that such
machine learning models are a valuable resource and can be used

prospectively to suggest molecules to test not only against Mtb
but also for other diseases.52,53

Since our earlier study compiling compounds tested in the
mouseMtbmodel,8 we have continued to collect and curate data
with the aim of testing the machine learning models developed
and improving upon them. We have now added to our database
60 unique molecules published in 2014−2015 (Table S1 and
Supplemental Data 1), of which 41 were classified as actives. The
large percentage of active compounds (∼60%) in this new set
may represent a publication bias, as noted in our prior analysis for
data up to 2014.8 Simple molecular property analysis suggested
that only the number of hydrogen-bond donors was significantly
higher for the 41 in vivo active compounds (Table 1). These 60
molecules broadly cover a similar physiochemical property space
as the training set of 784 molecules (Figure 2A) and the over 800
molecules collated in TB Mobile15 (Figure 2B). These results
suggest that we are likely in the applicability domain of the data
set. The closest similarity values calculated with the N = 784
Bayesian model (mean closest distance = 0.40 with a standard
deviation of 0.15, where a value of zero connotes identity and
larger values indicate greater difference; Figure S2) are quite low,
suggesting that most are within the applicability domain of the
model.
In this study, we have updated the machine learning models

and also evaluated whether models for other properties, such as
the combined in vitro bioactivity and Vero cell cytotoxicity, MLM
t1/2, or a consensus of these models, could also predict
compounds likely to have in vivo activity. When comparing
different machine learning approaches such as Bayesian, SVM,
and recursive partitioning, we observed little difference based on
internal fivefold ROC (Table 2), although predictions for the
external test set produced some slight differences in sensitivity,
specificity, and concordance (Table 3). These show that the
sensitivity values are generally much higher than the specificity

Table 4. External Statistics for the Dual-Event Bayesian (in VitroMtb Efficacy andNon-cytotoxicity in Vero Cells) andMouse Liver
Microsomal Stability Bayesian Models Tested on the New in vivo Mouse TB Data

machine learning model sensitivity (%) specificity (%)
concordance

(%)

full t1/2 MLM stability Bayesian (just FCFP_6) 78.0 26.3 61.7
pruned t1/2 MLM stability Bayesian (all nine descriptors) 78.0 26.3 61.7
TAACF-CB2 dual-event Bayesian 26.8 78.9 43.3
combined TB dual-event Bayesian 34.1 78.9 48.3
MLSMR dual-event Bayesian 34.1 57.9 50.0
consensus:a TAACF-CB2 dual-event Bayesian + full t1/2 MLM stability
Bayesian (just FCFP_6)

7 true positives when predictions
agree

3 true negatives when
predictions agree

58.8

consensus:a combined TB dual-event Bayesian + full t1/2 MLM stability
Bayesian (just FCFP_6)

11 true positives when predictions
agree

4 true negatives when
predictions agree

62.5

consensus:a MLSMR dual-event Bayesian + full t1/2 MLM stability Bayesian
(just FCFP_6)

17 true positives when predictions
agree

3 true negatives when
predictions agree

60.6

modified consensus:b TAACF-CB2 dual-event Bayesian + full t1/2 MLM
stability Bayesian (just FCFP_6)

7 true positives when predictions
agree (17.1%)

17 true negatives (89.5%) 40.0

modified consensus:b combined TB dual-event Bayesian + full t1/2 MLM
stability Bayesian (just FCFP_6)

11 true positives when predictions
agree (26.8%)

16 true negatives (84.2%) 45.0

modified consensus:b MLSMR dual-event Bayesian + full t1/2 MLM stability
Bayesian (just FCFP_6)

17 true positives when predictions
agree (41.5%)

13 true negatives (68.4%) 50.0

aFor the initial consensus approaches, both types of Bayesian models had to classify a compound as good/active for it to be considered as a true
positive or false positive. Similarly, both models had to classify a compound as bad/inactive for it to be considered as a true negative or false negative.
Since the combination of the models agreed on the classification only for a subset of the test set, the overall sensitivity and overall specificity are not
applicable. However, the overall concordance is still relevant and was calculated as (number of true positives + number of true negatives)/(number
of compounds on which both models agreed on the good or bad classification). bFor the modified consensus approaches, both types of Bayesian
models had to classify a compound as good/active for it to be considered as a true positive. However, if either model classified a compound as bad/
inactive, it was defined as a true negative or false negative (depending on its experimental value). Thus, the modified consensus approaches made
predictions for all of the test compounds.
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values, which is a reversal of what we observed for the fivefold
ROC for the Bayesian model training sets (Supplemental Data 1
and 2). This likely suggests that we would have some difficulty
classifying inactives with these models while being able to select
actives. The updated training set is fairly well balanced, as it was
before.8 Obviously the use of a computational approach to select
compounds presents advantages in likely reducing follow-up
costs and lowering numbers of mice used. The t1/2 MLM stability
models follow the same trend with the sensitivity being much
higher than the specificity (Table 4), while the in vitro Mtb
bioactivity TAACF-CB2 dual-event, combined TB dual-event,
and MLSMR dual-event models have higher specificity than
sensitivity for the test set molecules (Table 4).
Surprisingly, we found that Bayesian models built with in vitro

MLM t1/2 data sets could produce external statistics similar to
those for the in vivo Mtbmodels (Table 4), as dual-event models
that included in vitro Mtb bioactivity and cytotoxicity had positive
predicted values of >70% and the best overall hit rates were
obtained with a consensus of anMtb in vitromodel and theMLM
t1/2 model (Table 6). In vivo models and in vitro models in the
best cases individually had enrichment factors of 1.22 for the top-
scoring 10% of compounds, and the combined TB dual-event in

vitro Bayesian achieved the best enrichment factor of 1.32 for the
top-scoring 10 compounds. Because of the large percentage of
active compounds in this new in vivo test set (60%), the
maximum enrichment factor that a “perfect” model could
produce was 1.46. On the basis of these results (Table 6), it
seems that the better PPV hit rates and enrichment factors for
two of the consensus approaches are due to (a) superior
specificity (filtering out compounds likely to be MLM-unstable,
Mtb-inactive, and/or cytotoxic gave ∼2 times the best specificity
of an in vivo-trained model) while (b) not having high false
positive rates for the consensus approaches. The use of additional
external statistics suggested that no single model performed best
across all (Table 7). Therefore, these may not be as useful as
considering the enrichment factors for test set evaluation (Table
6).
Perhaps part of the accuracy of the MLM Bayesian for

predicting in vivo activity is based on the fact that at least 190 of
the 894 compounds in the full t1/2 MLM Bayesian training set
were from Mtb and malaria projects (i.e., 20 stable compounds
out of 42 were fromMtb projects and 49 stable compounds out of
148 were from malaria projects). Antimalarial compounds
sometimes display activity against Mtb,36,54 and researchers are

Table 5. Confusion Matrices Produced When the Machine Learning Models Were Tested on the New in Vivo Mouse TB Data

Legend

true positives false positives
false negatives true negatives

TB in Vivo N = 773 Bayesian

29 12
12 7

TB in Vivo N = 784 Bayesian

32 17
9 2

RP Forest TB in Vivo N = 784

35 14
6 5

Best RP Tree TB in Vivo N = 784

32 15
9 4

TB in Vivo N = 784 SVM

28 11
13 8

TB in Vivo N = 784 CDD Bayesiana

34 16
7 3

Full t1/2 MLM Stability Bayesian (Just FCFP_6)

32 14
9 5

Pruned t1/2 MLM Stability Bayesian (All Nine Descriptors)

32 14
9 5

TAACF-CB2 Dual-Event Bayesian

11 4
30 15

Combined TB Dual-Event Bayesian

14 4
27 15

MLSMR Dual-Event Bayesian

19 8
22 11

Consensus:b TAACF-CB2 Dual-Event Bayesian + Full t1/2 MLM Stability
Bayesian (Just FCFP_6)d

7 2
5 3

Consensus:b Combined TB Dual-Event Bayesian + Full t1/2 MLM Stability
Bayesian (Just FCFP_6)e

11 3
6 4

Consensus:b MLSMR Dual-Event Bayesian + Full t1/2 MLM Stability Bayesian
(Just FCFP_6)f

17 6
7 3

Modified Consensus:c TAACF-CB2 Dual-Event Bayesian + Full t1/2 MLM
Stability Bayesian (Just FCFP_6)g

7 2
34 17

Modified Consensus:c Combined TB Dual-Event Bayesian + Full t1/2 MLM
Stability Bayesian (Just FCFP_6)g

11 3
30 16

Modified Consensus:cMLSMR Dual-Event Bayesian + Full t1/2 MLM Stability
Bayesian (Just FCFP_6)g

17 6
24 13

aExternal statistics were calculated using the Bayesian modeling tool
on Collaborative Drug Discovery with a cutoff score of >0.65, which
produced an internal sensitivity of 0.7 and an internal specificity of
0.67. bFor the consensus approaches, both types of Bayesian models
had to classify a compound as good/active for it to be considered as a
true positive or false positive (depending on the experimental value of
the compound). Similarly, both models had to classify a compound as
bad/inactive for it to be considered as a true negative or false negative.
cFor the modified consensus approaches, both types of Bayesian
models had to classify a compound as good/active for it to be
considered as a true positive. However, if either model classified a
compound as bad/inactive, it was defined as a true negative or false
negative (depending on its experimental value). dCoverage = 17/60 =
28%. eCoverage = 24/60 = 40%. fCoverage = 33/60 = 55%. gCoverage
= 60/60 = 100%.
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unlikely to devote the time and money to MLM stability assays
unless a compound displays promising therapeutic activity. Thus,
perhaps some of the chemical features and properties that are
deemed favorable by the MLM stability Bayesian implicitly
incorporate both stability and efficacy. Greatly simplified, it is
reasonable to correlate in vivo efficacy in the mouse with
compounds that at minimum are metabolically stable with regard
to phase I metabolism in themouse and inhibit the growth ofMtb
under in vitro conditions mimicking aspects of their actual
pathologic environs. Support for this notion is provided by the
fact that when evaluating an external test set of known

antitubercular molecules, the MLM stability Bayesian recognized
most TB drugs as metabolically stable.34

It is interesting that although the TAACF-CB2 and combined
TB dual-event Bayesian models had poor overall external
sensitivity and concordance values, they displayed enrichment
factors for the top-scoring 10% of compounds that were
equivalent or superior to the in vivo models. When these two
in vitroMtb dual-event models were combined with the t1/2MLM
stability model to make a novel consensus workflow, the best
overall hit rates (and thus the best overall enrichment factors)
were achieved (Table 6). This highlights the importance of

Table 6. External Enrichment Factors in Hit Rates for the Machine Learning Models Tested on the New in VivoMouse TB Data

enrichment factorsb,c

machine learning model overall hit rate (PPV)a,c
for top
10%

for top 10
compounds

for top
20%

TB in vivo N = 773 Bayesian 29/41 (70.7%) 1.22 1.17 0.98
TB in vivo N = 784 Bayesian 32/49 (65.3%) 1.22 1.17 0.98
RP Forest TB in vivo N = 784 35/49 (71.4%) 0.98 1.02 0.98
TB in vivo N = 784 SVM 28/39 (71.8%) N/A N/A N/A
TB in vivo N = 784 CDD Bayesiand 34/50 (68.0%) 1.22 1.02 1.10
full t1/2 MLM stability Bayesian (just FCFP_6) 32/46 (69.6%) 0.98 0.88 0.98
pruned t1/2 MLM stability Bayesian (all nine descriptors) 32/46 (69.6%) 0.73 0.88 0.98
TAACF-CB2 dual-event Bayesian 11/15 (73.3%) 1.22 1.17 1.10
combined TB dual-event Bayesian 14/18 (77.8%) 1.22 1.32 1.22
MLSMR dual-event Bayesian 19/27 (70.4%) 0.73 0.88 0.98
consensus: TAACF-CB2 dual-event Bayesian + full t1/2 MLM stability Bayesian (just
FCFP_6)

7/9 (77.8%); overall EF = 1.14 N/A N/A N/A

consensus: combined TB dual-event Bayesian + full t1/2 MLM stability Bayesian (just
FCFP_6)

11/14 (78.6%);
overall EF = 1.15

N/A N/A N/A

consensus: MLSMR dual-event Bayesian + full t1/2 MLM stability Bayesian (just
FCFP_6)

17/23 (73.9%);
overall EF = 1.08

N/A N/A N/A

aThe hit rate (positive predicted value = PPV) was calculated as (number of true positives)/(number of true positives + number of false positives).
bThe enrichment factor was calculated as (hit rate in %)/(% of in vivo active compounds in the external test set). Since 41 of the 60 compounds in
this external test set (68.3%) were active, the maximum enrichment factor that a perfect model could achieve would be 100%/68.3% = 1.46. cSince
each original consensus model and the corresponding “modified consensus” model have the same number of true positives and false positives, their
hit rates and enrichment factors are equivalent. dExternal statistics were calculated from the results of the Bayesian modeling tool on Collaborative
Drug Discovery using a cutoff score of >0.65, which produced an internal sensitivity of 0.7 and an internal specificity of 0.67.

Table 7. Additional External Statistics for the Machine Learning Models Tested on the New in Vivo Mouse TB Dataa

machine learning model κ MCC J F1

TB in vivo N = 773 Bayesian 0.08 0.08 0.08 0.71
TB in vivo N = 784 Bayesian −0.13 −0.14 −0.11 0.71
RP Forest TB in vivo N = 784 0.13 0.14 0.12 0.78
TB in vivo N = 784 SVM 0.10 0.10 0.10 0.70
TB in vivo N = 784 CDD Bayesian −0.01 −0.02 −0.01 0.75
full t1/2 MLM stability Bayesian (just FCFP_6) 0.05 0.05 0.04 0.74
pruned t1/2 MLM stability Bayesian (all nine descriptors) 0.05 0.05 0.04 0.74
TAACF-CB2 dual-event Bayesian 0.04 0.06 0.06 0.39
combined TB dual-event Bayesian 0.10 0.13 0.13 0.47
MLSMR dual-event Bayesian 0.04 0.04 0.04 0.56
consensus:b TAACF-CB2 dual-event Bayesian + fullt1/2 MLM stability Bayesian (just FCFP_6) 0.13 0.17 N/A 0.67
consensus:b combined TB dual-event Bayesian + full t1/2 MLM stability Bayesian (just FCFP_6) 0.18 0.20 N/A 0.71
consensus:b MLSMR dual-event Bayesian + full t1/2 MLM stability Bayesian (just FCFP_6) 0.19 0.04 N/A 0.72
modified consensus:c TAACF-CB2 dual-event Bayesian + full t1/2 MLM stability Bayesian (just FCFP_6) 0.05 0.09 0.07 0.28
modified consensus:c combined TB dual-event Bayesian + full t1/2 MLM stability Bayesian (just FCFP_6) 0.08 0.12 0.11 0.40
modified consensus:c MLSMR dual-event Bayesian + full t1/2 MLM stability Bayesian (just FCFP_6) 0.08 0.09 0.10 0.53

aThe top two scores for each particular type of external statistic are shown in bold. bFor the initial consensus approaches, both types of Bayesian
models had to classify a compound as good/active for it to be considered as a true positive or false positive. Similarly, both models had to classify a
compound as bad/inactive for it to be considered as a true negative or false negative. Consequently, these workflows made active/inactive
classifications on only a subset of the test set. cFor the modified consensus approaches, both types of Bayesian models had to classify a compound as
good/active for it to be considered as a true positive. However, if either model classified a compound as bad/inactive, it was defined as a true negative
or false negative (depending on its experimental value). Thus, the modified consensus approaches made predictions for all of the test compounds.
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specificity and of studying more than just the overall external
statistics, especially since most laboratories will only be able to

perform in vivo Mtb studies in mice for a very small number of
candidate compounds. In summary, this suggests that together

Figure 3. Honeycomb clustering of TB in vivo data from 2014 and 2015. Yellow hexagons highlight the compounds from 2014 and 2015, and green
outlines signify in vivo active compounds. (A) Complete map of compounds in the training and testing sets. (B) Enlarged view of the section marked
with the black circle in (A), highlighting cyclogriselimycin and ecumicin.
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the experimental in vitro Mtb and t1/2 MLM stability models are a
good predictor of in vivo Mtb efficacy in the mouse model and
that a consensus machine learning model may be a useful
alternative, at least on the basis of this particular test set as
described.
While humans can visualize quite complex data, there have

beenmany approaches to data visualization to produce maps that
can explain the terrain of biological data, including Kohonen
networks, Sammon maps, and many other approaches.55 In this
study we have described a new data visualization approach called
honeycomb visualization that was used to cluster the in vivo
training set and the new external test set (Figures 3 and S1). This
shows, for example, how macrocyclic compounds cluster
together (Figure 3B) and how the 60 new compounds are
dispersed around the map with local clusters of similar analogues.
Such an approach, while also relying on the same descriptors,
illustrates an alternative way to assess predictions or structure−
activity relationships and has been implemented recently in a
new iOS free mobile app called PolyPharma56 to demonstrate
how machine learning and this visualization can be used outside
of the desktop. In addition, the use of tools such as CDDModels
can enable the sharing of Bayesian models such that they can be
run in freely available mobile apps, making the models more
accessible.30

In summary, this work adds further weight to the use of
machine learning approaches to predict in vivo Mtb activity in the
mouse efficacy model. We have not seen this kind of approach
taken with other disease models and data sets, so this still ranks as
a difficult but interesting problem to address. Our previous
reportedMtb in vivo model8 was tested with only a small test set
of 11 molecules, while we now report one that has 60 molecules.
For the first time we have shown that MLM stability predictions
using a Bayesian model could be a useful adjunct to applying a
specific Mtb in vivo mouse machine learning model to predict
efficacy. This is potentially of importance because it is likely that
MLM stability models are based on more structurally diverse
molecules than just antitubercular efficacy models. Having more
modeling options for predicting in vivo activity is of value because
of the relatively small data set of in vivo Mtb values publicly
available at this time. The in vitro and cytotoxicity models’
training sets are larger, and these with the MLM t1/2 models can
be additionally used for predicting in vivo activity based on our
test set of 60 recently published molecules. There is no shortage
of in vitro screening hits (there are likely many thousands across
the various public−private partnership, NIH-funded, and
commercial screens), and we would propose that computational
models such as those described in this study be made available,
shared,29 and utilized alongside other selection criteria
(medicinal chemistry heuristics or gut feeling) prior to selecting
compounds for testing in the animal model in order to expedite
TB research and save both time and money. Along these lines,
the 177GSK open sourceMtb leads were scored with the top two
consensus dual-event and MLM Bayesian workflows, and the
intersection of their top predictions was analyzed in order to
suggest compounds that should be prioritized for in vivo assays
(Tables S5−S7). In due course we will use our models to make
prospective predictions prior to in vivo testing in the mouseMtb
model in our own laboratories, and these results will be reported
in the future.
In conclusion, we have built on our previousMtb in vivo and in

vitro modeling studies8,35,36,47,48,50,51,57,58 to suggest a combina-
tion of published data and machine learning models that can be
used to harness limited research resources and increasingly

contracting funding for TB research. With continual pressure to
identify novel in vivo active antituberculars to supplement the
currently depleted clinical pipeline, these machine learning
models could be considered.
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