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Abstract

Eumycetoma is a chronic infectious disease characterized by a large subcutaneous mass,

often caused by the fungus Madurella mycetomatis. A combination of surgery and pro-

longed medication is needed to treat this infection with a success rate of only 30%. There is,

therefore, an urgent need to find more effective drugs for the treatment of this disease. In

this study, we screened 800 diverse drug-like molecules and identified 215 molecules that

were active in vitro. Minimal inhibitory concentrations were determined for the 13 most

active compounds. One of the most potent compounds, a fenarimol analogue for which a

large analogue library is available, led to the screening of an additional 35 compounds for

their in vitro activity against M. mycetomatis hyphae, rendering four further hit compounds.

To assess the in vivo potency of these hit compounds, a Galleria mellonella larvae model

infected with M. mycetomatis was used. Several of the compounds identified in vitro demon-

strated promising efficacy in vivo in terms of prolonged larval survival and/or reduced fungal

burden. The results presented in this paper are the starting point of an Open Source Myce-

toma (MycetOS) approach in which members of the global scientific community are invited

to participate and contribute as equal partners. We hope that this initiative, coupled with the

promising new hits we have reported, will lead to progress in drug discovery for this most

neglected of neglected tropical diseases.

Author summary

Mycetoma is a poverty-associated disease that was recently recognised as a neglected trop-

ical disease by the World Health Organisation (WHO). This disease can be caused by

either bacteria (actinomycetoma) or fungi (eumycetoma). The most common causative

agent of mycetoma is the fungus Madurella mycetomatis. Actinomycetoma can be easily
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treated, but for eumycetoma, the current and only antifungal drug used is only able to suc-

cessfully treat 30% of patients. Treatment often involves prolonged medication use and

amputation of the affected area. This disease is disfiguring and is a social stigma for

patients in endemic countries. To improve treatment for patients, we have looked at over

800 diverse drug-like molecules and compounds in hope to develop new drugs in this

study. We have identified 215 compounds with activity against M. mycetomatis in vitro

and several in vivo with our Galleria mellonella larvae model. We have chosen an open

source approach with this study and placed our findings in an online database and made

it available to the public. We invite the global scientific community to participate in our

study and contribute as equal partners as long as an open source approach is held in

hopes to fast track and boost drug discovery for Eumycetoma.

Introduction

Mycetoma is a chronic infectious and inflammatory disease, characterised by a large subcuta-

neous mass and the excretion of grains, usually affecting the lower limbs [1]. This infection

can be caused by either bacteria (actinomycetoma) or fungi (eumycetoma) [1] and the most

common causative agent of mycetoma is the fungus Madurella mycetomatis [2]. Given its

diverse etiology, it is not surprising that the course of treatment depends on the causative

agent [3]. In general, actinomycetoma can be treated with medication only, with success rates

of up to 90% [4], while for eumycetoma a combination of surgery and prolonged medication is

needed [3]. Ketoconazole has been the mainstay of medical treatment for decades, given in a

dose of 400–800 mg/day for a year with 50–70% success rates when combined with surgery [5,

6]. Recently, its use was restricted by the European Medicines Agency (EMA), the United

States Food and Drug Administration (FDA) and the government of Sudan due to potentially

fatal liver injury, drug interactions and adrenal gland problems [7, 8]. This restriction causes a

dilemma, as few other options are available. Itraconazole is the most widely used alternative

and in a recent study no serious hepatoxicity was noted (400 mg/day for 3 months, then 200

mg/day for 9 months) [9]. In all patients, the lesions were reduced enabling less mutilating sur-

gery but, as is the case for ketoconazole, the fungus was still viable when isolated from surgical

material [9, 10]. Other azoles have been used to some extent and with some success, but these

are usually too expensive for use in endemic regions. Indeed, the only affordable drug for

endemic areas was ketoconazole, at a cost of $30/month. With an average monthly income of

only $60/month, itraconazole at $330/month is already considered to be too expensive for the

patient and the affordability problem becomes more acute with the newer generation of anti-

fungal agents such as voriconazole and posaconazole [11].

There is an urgent need to find an effective, safe and affordable oral antifungal agent with a

short treatment duration for eumycetoma. Traditionally, the pharmaceutical industry has

taken the lead in the development of novel antimicrobial drugs, but antimicrobial drug devel-

opment programs have been drastically reduced in recent decades due to increased costs,

decreased return on investment and the prospect of a long and expensive development pro-

cess. Furthermore, drugs have never been specifically developed for neglected infectious tropi-

cal diseases such as mycetoma, due to the lack of sufficient potential return on investment.

Therefore, in order to find a new, safe and effective treatment for eumycetoma, alternative

approaches are necessary. A strategy that has gained much attention recently is to screen drugs

already approved for other indications or drug candidates with a historical track record of

development. This approach, also known as drug repurposing, is appealing as it is expected to
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reduce the overall costs and the timeframe required for drug development as well as de-risking

the development process by capitalizing on preclinical and possibly phase I clinical data pack-

ages already available from a pre-existing drug development program [12].

The Pathogen Box is a set of 400 diverse, cherry-picked drug-like molecules previously

shown to be active against pathogens causing tropical and neglected diseases. The Box includes

a collection of approved drugs—the so-called reference set—used for the treatment of such dis-

eases [13] and is made available free of charge by the Medicines for Malaria Venture (MMV)

as an Open Access initiative tool to stimulate research and development on neglected diseases

[12, 13]. In return, researchers are asked to share any data generated in the public domain

within 2 years, creating an open and collaborative forum for infectious disease drug research.

The chemical structures of the molecules in the Pathogen Box are publicly available and all

compounds are annotated with valuable biological data sets arising from phenotypic screens,

including cytotoxicity. Additionally, key in vitro and in vivo data related to drug metabolism

and pharmacokinetics (DMPK) have recently been associated with all 400 compounds. A

related MMV drug repurposing subset, the Stasis Box, has also been made available and con-

sists of 400 compounds selected by medicinal chemistry experts out of 8000 compounds which

have entered preclinical or clinical development but have been discontinued for various rea-

sons, for example a lack of efficacy [14]. All compounds included in the Stasis Box can be pur-

chased from commercial suppliers and have their chemical structures available in the public

domain.

Here we describe the screening of the 800 drug-like compounds contained in the Pathogen

and Stasis Boxes, as well as selected compounds from the fenarimol-based chemical library, for

their ability to inhibit the in vitro growth of M. mycetomatis. The hits with greatest potential

were verified through chemical resynthesis and further evaluated in our grain model in G. mel-
lonella larvae to determine the in vivo efficacy against M. mycetomatis grains. Finally, we pro-

pose a strategy for executing hit-to-lead campaigns based on these results that takes a highly

collaborative, community-centered approach.

Material and methods

Chemical libraries

The Pathogen and Stasis Boxes were kindly provided by Medicines for Malaria Venture

(MMV, Geneva, Switzerland). The compounds were obtained in a 10 mM solution in dimethyl

sulfoxide (DMSO) (S1 Table). The fenarimol analogues were kindly provided by DNDi via
Epichem (Perth, Australia) and dissolved in DMSO, to reach a concentration of 10 mM. The

resynthesis of hit compounds, and the chemical synthesis of the novel analogues reported, are

described in S2 Text.

Mycetoma strains

In this study, M. mycetomatis genome strain MM55 [15] was used to screen the Pathogen and

Stasis Boxes and to determine the IC50 and IC90 of each of the compounds with inhibitory

activity at a concentration of 100 μM. In vivo efficacy was also determined for this strain. To

assess the activity of the selected compounds against other M. mycetomatis isolates, isolates P1,

MM25, MM36, MM50, MM55, MM68 and MM83 were selected [16]. To assess the activity of

the fenarimol analogues, strains MM13, MM14, MM26, MM30, MM41, MM45, MM49,

MM50, MM54 and MM55 were selected. Strains MM26 and MM45 belonged to Amplified

Fragment Length Polymorphism (AFLP) cluster I, strains P1, MM13, MM14, MM25, MM30,

MM36, MM41, MM49, MM50, MM54, MM55 and MM68 belonged to AFLP cluster II and

strain MM83 belonged to AFLP cluster III [16]. All MM-isolates have been isolated from
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patients diagnosed with mycetoma seen in the Mycetoma Research Centre, Khartoum, Sudan;

the P1 strain originated from a patient in Mali [17]. The strains were isolated by direct culture

of the black grains obtained by a deep surgical biopsy and were identified at the species level

by morphology, polymerase chain reaction with M. mycetomatis specific primers [18] and

sequencing of the internal transcribed spacers [19, 20]. The isolates were maintained in the lab-

oratory on Sabouraud Dextrose Agar (Difco laboratories, Becton and Dickinson, Sparks, USA).

Screening the Pathogen and Stasis Boxes

In order to screen the Pathogen and Stasis Boxes, an M. mycetomatis hyphal suspension was

made as described previously [21]. In short, M. mycetomatis was cultured for 7 days at 37˚C in

RPMI 1640 medium supplemented with 0.3 g/L L-glutamine and 20 mM morpholinepropane-

sulfonic acid (MOPS). The mycelia were harvested by centrifugation and homogenized by son-

ication for 20 s at 28 μm (Soniprep, Beun de Ronde, The Netherlands). The fungal suspension

was diluted in RPMI 1640 medium to obtain a transmission of 70% at 660 nm (Novaspec II,

Pharmacia Biotech) [22]. In each well of a 96-well microplate, 100 μL of suspension was added.

1 μL of compound was added per well to obtain a final concentration of 100 μM. In each assay,

two controls were included. These were a growth control (GC), only exposed to the solvent

and a negative control consisting of only culture medium. The microplate was taped to prevent

evaporation and incubated for 7 days at 37˚C. To facilitate end-point reading, 2,3-bis(2-meth-

oxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide (XTT) was

added to a final concentration of 25 μg/well and incubated for 2 h at 37˚C, and another 3 h at

room temperature [22, 23]. Plates were centrifuged and the extinction (E) of 100 μL of super-

natant was measured at 450 nm using the spectrophotometer. Percentage growth was calcu-

lated by the following formula: (Esample-Enc)/(Egc-Enc)
�100%. Each compound was tested in

triplicate. A hit-compound was defined as a compound resulting in 80% or more reduction in

viable fungal mass [21]. To establish which of these hit-compounds were the most potent in

inhibiting M. mycetomatis growth, the concentration of the compound in μM at which a 50%

reduction in growth was obtained (IC50) was determined. In order to do this, all positive com-

pounds were tested at concentrations of 0.098 μM, 0.39 μM, 1.56 μM, 6.25 μM and 25 μM and

growth was calculated again with the formula (Esample-Enc)/(Egc-Enc)
�100%. The calculated

growth was plotted against concentration and the IC50 was determined from the resulting

graphs by visual reading. IC50s were determined in duplicate and the means plus standard

deviations were determined in Excel. Four positive growth controls were included in each

plate, consisting of a well in which the fungus was exposed to solvent only. Furthermore, two

antifungal agents, namely posaconazole and amphotericin B, were included in the plates as

positive controls for growth inhibition.

Minimal inhibitory concentrations of seven M. mycetomatis strains

To determine if the most potent compounds identified above were also active against M. myce-
tomatis isolates with a different genetic background, seven M. mycetomatis isolates with differ-

ent AFLP types were selected. Minimal inhibitory concentrations (MIC) were determined

using the same protocol as described above. The MIC was defined as the first concentration at

which 80% or more reduction in viable fungal mass was obtained [21]. Concentrations ranged

from 0.007 μM to 32 μM.

Toxicity in G. mellonella larvae

To assess the toxicity of the compounds identified in the in vitro screenings in vivo, each com-

pound was tested for toxicity in G. mellonella larvae. For each compound, a single dose was
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injected into the last right proleg with an insulin needle. Final concentrations of compound in

each larva were 0.2 μM, 2 μM or 20 μM of compound. Controls were injected with distilled

water only. Larval survival was monitored for 10 days. A non-significant difference in larval

survival between the treated group and the control group indicated a lack of toxicity up to the

dose under investigation.

Infection of G. mellonella larvae with M. mycetomatis and antifungal

treatment

G. mellonella larvae were infected with M. mycetomatis isolate Mm55 according to a previously

published protocol [24]. In short, M. mycetomatis mycelia were cultured in colourless RPMI

1640 medium supplemented with L-glutamine (0.3 g/L), 20 mM morpholinepropanesulfonic

acid (MOPS) and chloramphenicol (100 mg/L; Oxoid, Basingstoke, United Kingdom) for 2

weeks at 37˚C and then sonicated for 2 min at 28 μm. The resulting homogenous suspension

was washed once in PBS and further diluted to an inoculum size of 4 mg wet weight per larva.

Inoculation was performed by injecting 40 μL of the fungal suspension into the last left pro-leg

with an insulin 29G U-100 needle (BD diagnostics, Sparsk, USA). Larvae injected with PBS

were included as controls. Larvae were treated with 20 μM of compound per larva or with

solvent only. The amount of compound needed to reach a final concentration of 20 μM of

compound per larva was calculated and 25 times concentrated solutions were made. The com-

pound was initially dissolved in DMSO and further diluted in such a manner that each injec-

tion consisted of a maximum DMSO concentration of only 5%. Each group consisted of 15

larvae, and each experiment was performed three times. The results of the three individual

experiments were pooled and plotted in survival curves using GraphPad Prism 5. To treat the

larvae, 20 μl of 25 times concentrated compound was administered at 4, 28 and 52 hours after

infection. For each injection a different pro-leg was used. Treatment was started at 4 hours

since grains were already visible at that time point. To monitor the course of infection, larvae

were checked daily for survival for 10 days. If during these 10 days larvae formed pupa, these

individuals were not considered further, since we could not ascertain whether these individual

larvae would have survived or died during the course of the infection. This means that within

each treatment group, the maximum number of larvae was 45 (if no pupae were formed).

Fungal burden

To determine the fungal burden, 5 larvae from each group were sacrificed at day 3 post infec-

tion. First, haemolymph was collected and measured as described earlier [24] to assess melani-

zation. To assess the number of grains per larva, larvae were fixed in 10% buffered formalin

and dissected longitudinally into two halves with a scalpel and processed for histology [25].

Sections were stained with haematoxylin and eosin (HE) and Grocott methanamine silver, and

grains were manually counted under a light microscope mounted with a Canon EOS70D cam-

era (Canon Inc) by two independent scientists. As controls, infected and non-infected larvae

treated with PBS were used. Grains were magnified 40x and visualized on the computer screen

using the supplied EOS Utilitysoftware (Canon Inc). Grains were categorized into large,

medium or small sizes using the enlargement display frame present in the Live View Shooting

mode. Under 40x magnification, the enlargement display frame has a width and height of

approximately 250 μm and 160 μm and sums up to a dimension of 0.04 mm2. Grains that were

larger than half of the display frame were categorized as large (>0.02 mm2). Grains that were

larger than a quarter of the frame but smaller than half of the frame are categorized as medium

(0.01–0.019 mm2) and those between one-eighth to a quarter of the display frame (0.005–0.009

mm2) were categorized as small. The sum of all large, medium and small grains present in
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larvae was used to represent the total number of grains in the larvae. To determine the total

size of grains in the larvae, the sum of all grains in a larva multiplied by the minimum size of

their respective category (large: 0.02mm2, medium: 0.01mm2 and small: 0.005mm2) was used.

Statistical analysis

To compare survival curves, the Log-rank test was performed with GraphPad Prism 5 (version

5.03, GraphPad Inc.) To determine if there was a statistical difference across the different

groups in terms of melanization and grain counts, the Kruskal-Wallis test was performed with

GraphPad Prism 5. If a difference was found with the Kruskal-Wallis test, pair-wise compari-

sons were made between the PBS treated groups and the different antifungal treated groups

with the Mann-Whitney U test with GraphPad Prism 5 to determine differences in melani-

zation or CFU count. A p-value smaller than 0.05 was deemed significant. All negative values

after normalization were refigured to zero for statistical analysis. To determine the statistical

difference in the total number and sizes of grains between the treated and non-treated groups,

a Mann-Whitney test was performed with GraphPad Prism 5. A p-value smaller than 0.05 was

deemed significant.

Results

In vitro screening of the Pathogen and Stasis Boxes identify MMV006357

and MMV689244 as the most potent exploratory compounds

In total, 800 different drug-like compounds originating from either the Pathogen or Stasis

Boxes were evaluated for their potential to inhibit the growth of M. mycetomatis in vitro and in
vivo using a sequential assay workflow (Fig 1). Of the 800 compounds screened at a concentra-

tion of 100 μM, 215 compounds inhibited growth of M. mycetomatis. The inhibition of growth

was defined as a 80% reduction in fungal growth (<20% growth). Of these 215 compounds,

147 originated from the Pathogen Box and 68 from the Stasis Box (Figs 1 and 2A and S1

Table). A significantly higher hit rate was obtained with the Pathogen Box (36.8%) than with

the Stasis Box (17.0%) (Fisher Exact, p<0.0001). To determine which of these compounds

were most potent at inhibiting the growth of M. mycetomatis, the IC50 values of these 215

compounds were determined (S1 Table, Fig 2B). The IC50 was determined by plotting the

Fig 1. Flow diagram for in vitro and in vivo evaluation of all compounds (red and blue numbers show numbers of hits from the Pathogen and Stasis Boxes

respectively, with the black numbers indicating totals). As is seen in this figure, we started by screening 800 compounds in vitro at a concentration of 100 μM.

Of those 800 compounds, 400 compounds originated from the Pathogen Box (red) and 400 compounds from the Stasis Box (blue). For the 215 compounds which

were inhibited at 100 μM, IC50s were determined. IC50 was defined as the concentration of compound in μM were 50% reduction in fungal growth was obtained.

In total, 13 compounds had an IC50 of 5 μM or lower, 12 originating from the Pathogen Box and 1 from the Stasis Box. Of these 13 compounds, MICs were

determined against 7 clinical M. mycetomatis isolates. The MIC was defined as the first concentration at which 80% or more reduction in viable fungal mass was

obtained. For the 10 most potent compounds, toxicity and efficacy in G. mellonella larvae was determined.

https://doi.org/10.1371/journal.pntd.0006437.g001
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growth percentage at fixed concentrations and determining the concentration at which 50%

reduction of growth was obtained. It appeared that the median IC50 of these 215 compounds

was 47.8 μM (<0.09–77.5). In total, 13 compounds had an IC50 of 5 μM or lower (Table 1).

Twelve compounds originated from the Pathogen Box and one from the Stasis Box. The anti-

fungal agent amphotericin B, also present as a reference compound in the Pathogen Box, had

an IC50 of only 9.7 μM and was therefore excluded from further evaluation; this compound

had previously been demonstrated to be active against M. mycetomatis both in vitro [21] and

in vivo [26]. To determine if the 13 most potent compounds were also able to inhibit M. myce-
tomatis isolates with a different genetic background or origin, six other M. mycetomatis isolates

were selected based on their AFLP type or origin and MICs were determined for all 13 com-

pounds. The MIC was defined as the first concentration were a 80% reduction in fungal

growth was obtained. To determine the MIC50 for the seven tested isolates, the concentration

for which at least 50% of isolates was completely inhibited in growth was determined. As can

be seen in Table 1, Fig 3 and S1 Table, MMV688774 (posaconazole, a triazole-based drug

approved for the treatment of fungal infections in humans) was the most potent inhibitor of

M. mycetomatis growth with an MIC50 of<0.007 μM. Two azoles, MMV688942 (bitertanol)

and MMV688943 (difenoconazole), and two strobilurins, MMV021057 (azoxystrobin) and

MMV688754 (trifloxystrobin)—all 4 products being used as agrochemicals—also had strong

activity against M. mycetomatis with MIC50s ranging from 0.06 μM to 0.125 μM. The remain-

ing 8 hits—all part of the non-reference set of exploratory compounds—displayed lower

potencies against M. mycetomatis with MIC50 values ranging from 0.25 μM to 8 μM. Com-

pounds MMV006357 and MMV689244 were the most potent of these 8, displaying MIC50

values of 0.25 μM and 1 μM, respectively. Of note, compound MMV689244 is a fenarimol

Fig 2. Percentage growth at 100 μM (panel A) and IC50 (panel B) of selected compounds. A. The percentage growth at 100 μM was determined by the XTT

assay. Percentage growth was calculated using the following formula: (Esample-Enc)/(Egc-Enc)
�100%. Percentage growth for each compound in the Pathogen Box is

indicated with a red dot, and in the Stasis Box with a blue dot. Compounds with a growth reduction of more than 80% and thus a growth below 20% (black line)

were considered compounds able to inhibit M. mycetomatis growth. Of these compounds the IC50 was determined. B. The IC50 was defined as the concentration

of compound in μM were 50% reduction in fungal growth was obtained. The obtained IC50 for the 215 compounds analysed were indicated with a red dot

(Pathogen Box) or a blue dot (Stasis Box). Compounds with IC50s below 5 μM (black line) were the most potent compounds which were analysed further.

https://doi.org/10.1371/journal.pntd.0006437.g002
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Table 1. IC50 and MIC50 against M. mycetomatis of the 13 most active compounds identified in the Pathogen and Stasis Boxes.

Trivial name or

CHEMBL code

Class MoA use IC50 of strain

MM55

MIC50

MMV688774 Posaconazole Azoles CYP51 inhibitor antifungal (human) <0.10 <0.007

MMV688942 Bitertanol Azoles CYP51 inhibitor antifungal (agrochemical) <0.10 0.06

MMV688943 Difenoconazol Azoles CYP51 inhibitor antifungal (agrochemical) <0.10 0.06

MMV021057 Azoxystrobin Strobilurins Complex III mitochondrial electron

transport chain binder

antifungal (agrochemical) 0.60 0.06

MMV688754 Trifloxystrobin Strobilurins Complex III mitochondrial electron

transport chain binder

antifungal (agrochemical) 1.05 0.25

MMV006357 N/A 2-aminothiazole N/A N/A 0.40 0.25

MMV689244 EPL-BS1246 Fenarimols (non-

azoles)

CYP51 inhibitor antiprotozoal (Chagas disease

preclinical candidate)

1.35 1

MMV687807 N/A Benzamides N/A N/A 1.45 2

MMV675968 CHEMBL88430 Quinazolines Dihydrofolate reductase N/A 2.30 2

MMV022478 CHEMBL534797 Pyrazolo-

pyrimidines

N/A N/A 2.95 4

MMV002817 Iodoquinol Quinoline Unknown antiprotozoal (amoebiasis) 2.55 8

MMV1030799 N/A Benzimidazole

quinoline

N/A N/A 3.70 8

MMV659004 N/A Pyridyl-pyrimidine N/A N/A 5.10 8

https://doi.org/10.1371/journal.pntd.0006437.t001

Fig 3. MIC50 in micromolar obtained after testing each of the compounds against seven different M. mycetomatis isolates. In this figure the compounds are

depicted for which the MIC50s were determined. The MIC50 was defined as the concentration for which 50% of tested isolates were completely inhibited in growth.

The MIC50 in μM is depicted in orange, brown or green dependent on their activity. The lowest MIC50 was obtaiend for posaconazole, the highest for MMV1030799,

MMV659004 and MMV002817. In the blue box, the MIC50 of MMV689244, fenarimol analogue EPL-BS1246 is depicted. For this compound, its MIC ranged from

0.007 to 8 μM, with a MIC50 of 1 μM. Orange MIC50 values indicate low potency, brown MIC50 values indicate intermediate potency and green (<2 μM) indicates

high potency.

https://doi.org/10.1371/journal.pntd.0006437.g003
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analogue, identified as a potent inhibitor of Trypsonosoma cruzi during a targeted screening

exercise for new drugs for Chagas disease [27–29], during which over 800 fenarimol analogues

were synthesized (MMV689244 corresponds to EPL-BS1246 in this library) and addressing,

through chemical modification including scaffold-hopping, the few identified liabilities of the

fenarimol series notably low solubility, high in vitro metabolism and inhibition of cytochrome

P450 3A4/5 (CYP3A4/5). This work resulted in the identification of a couple of optimized

leads associated with a CYP51 selective profile (i.e. lacking cytochrome P450 3A4 inhibition)

with nanomolar in vitro potency vs. T. cruzi, excellent in vivo efficacy in an infected murine

model [27] and a lack of adverse events on extended dosing in murine exploratory toxicity

studies.

In vitro screening of the 35 MMV689244 analogues identifies four potent

fenarimol analogues

Due to the potent inhibition of M. mycetomatis by MMV689244, as well as the availability of

the compound collection to our screening program, an additional 35 diverse compounds from

the original 800 fenarimol analogue set were tested to determine their in vitro activity against

M. mycetomatis hyphae (S1 Table). These compounds were selected based on similarity to the

original hit whilst ensuring a diverse sampling of the various scaffold variation within the

chemical set. Analogues tested included variations of substituents around the fenarimol core

as well as compounds with closely related scaffolds, since MMV689244 itself is a scaffold vari-

ant of fenarimol. The diversity of this selection of compounds for screening was confirmed by

chemical space analysis using principal component analysis of both physicochemical and

chemical fingerprint evaluation of the library (Fig 4). Fenarimol analogues were tested for

potential inhibition of the growth of M. mycetomatis at both 100 and 25 μM and the most

potent compounds were then subjected to dose response determinations. Four of the

Fig 4. A) 2-D Chemical space representation of the 800 member fenarimol analogue library. X -axis represents a Principal Component Analysis of approximately 100

different physichochemical properties, Y-axis represents a Principal Component Analysis of 1024 Morgan chemical fingerprints (all calculations performed using

RDKit in KNIME)[52] Compounds chosen for test are represented by oversized points, and different core scaffolds represented by colour (Blue -scaffold A; green

scaffold B, red scaffold C, yellow scaffold D). B: % Growth inhibition by selected fenarimol analogues at 25 and 100 μM. Percentage growth was calculated using the

following formula: (Esample-Enc)/(Egc-Enc)
�100%.

https://doi.org/10.1371/journal.pntd.0006437.g004
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analogues demonstrated inhibition of growth at both concentrations (Fig 5, top): EPL-BS0495,

EPL-BS0800, EPL-BS1025 (racemate of EPL-BS1246) (all having MIC50 values of 4 μM) and

EPL-BS0178 (MIC50 of 8 μM) (Fig 5). Interestingly, the potency of these analogues was not

confined to a single scaffold type, with different representatives of the fenarimol core and

fenarimol inspired scaffold changes resulting in MIC50 values in the micromolar (2–8 μM)

range (Fig 5 and S1 Text). In addition, EPL-BS1025 demonstrated similar potency to its enan-

tiopure counterpart from the original assay (EPL-BS1246, MMV689244), validating this hit

from the original screen. Analysis of the data around these 35 selected fenarimol analogues

revealed few conclusive structure activity relationship (SAR) observations. We attribute this to

the diversity of the chemical space scanned, and further focused screening of the available ana-

logue chemical space is expected to reveal key SAR.

Resynthesis of the fenarimol analogs was achieved using methods largely based on proce-

dures found in the literature [27–29] as described in the supporting information (S2 Text),

and these compounds were validated as hits (Fig 5, bottom). The resynthesized EPL-BS0800

Fig 5. In vitro potency of the active compounds from the fenarimol library. Originally-evaluated samples (top); resynthesized samples and analogs (bottom). In this

figure, the IC50, IC90 and MIC50 are depicted in green, blue and black. The compound code is depicted in gray.

https://doi.org/10.1371/journal.pntd.0006437.g005
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and EPL-BS0495 showed potent in vitro activity, with a slightly higher IC50 for the resynthe-

sized EPL-BS0800 (0.85 vs 0.58) and a slightly higher IC50 for the resynthesized EPL-BS0495

(0.03 vs 0.28) compared to the original compounds. Several synthetic precursors and a novel

analog synthesized with minor changes in the pendant rings of EPL-BS0800 were also evalu-

ated. While the novel analog of EPL-BS0800 did not provide in vitro potency, the precursors to

EPL-BS0800 itself (containing a bromine atom in place of a cyano group) and to EPL-BS0495

(containing a Boc-protecting group rather than the ethyl carbamate) were active. These results

suggest that either the carbamate group in EPL-BS0495 is labile under the assay conditions or

there is room for tolerance to variation in this position on the molecule. The commercially

available anti-inflammatory compound cetirizine (Zyrtec), which possesses striking structural

similarity to the fenarimol analogs, was evaluated but found to be inactive.

In vivo tolerability of the 10 most potent compounds identified from the

Pathogen and Stasis Boxes

The 10 most potent hits resulting from screening the Pathogen and Stasis Boxes were further

evaluated in vivo using the G. mellonella larvae model. In this model, mycetoma grains are pro-

duced which resemble the grains present in human patients or mammalian models [24]. Fur-

thermore, the therapeutic efficacy obtained in this model with standard antifungal agents [30],

was comparable to that obtained in a mouse model [31]. Therefore this model was considered

a good screening model to assess in vivo activity of the hit compounds against M. mycetomatis
grains. A first requirement was to determine if these compounds displayed any toxicity to the

larvae. This was assessed by injecting a single dose of compound into the hemolymph of the

larvae. Survival was monitored for 10 days. At the highest concentration tested (20 μM/larvae),

none of the compounds displayed toxicity.

In vivo activity of the 10 most potent compounds identified from the

Pathogen and Stasis Boxes

Since none of the compounds were considered toxic (S3 Text), therapeutic efficacy was

determined in M. mycetomatis infected larvae. Of the reference compounds used, only

MMV688774 (posaconazole) (Log-Rank, p = 0.011) and MMV688942 (bitertanol) (Log-Rank,

p = 0.0178) prolonged survival in this model in a statistically significant manner (Fig 6A).

MMV688943 (difenconazole), MMV021057 (azoxystrobin) and MMV688754 (trifloxystrobin)

did not prolong larval survival (Fig 6A and 6B). Of the five other compounds tested, only

MMV006357 (Log-Rank, p = 0.0012), MMV675968 (p<0.0001) and MMV022478 (p =

0.0224) prolonged survival in a statistically significant manner (Fig 6C and 6D). The highest

overall survival was obtained with compound MMV006357, which resulted in an overall sur-

vival of 28.6%. Compounds MMV675968 and MMV022478 demonstrated a lower overall sur-

vival percentage, but prolonged survival more effectively at the beginning of the infection.

To determine if the compounds had any effect on the fungal burden 5 larvae from each

group were sacrificed at day 3 post infection and histology was performed. The total number

of grains per larvae and the size of the individual grains were assessed. As can be seen in Fig

7A, in PBS treated larvae a large number of grains can be seen and they vary in size ranging

from very large (L) to small (S). Grain appearance differed when larvae were treated with either

MMV688942 (bitertanol) (Fig 7B) or MMV689244 (EPL-BS1246) (Fig 7C). Both number and

size of grains appeared smaller. When the total number of grains (Fig 7D) and size of the

grains (Fig 7E) per group of larvae was assessed it appeared that there was both a significant

reduction in the number of grains and total size of grains per larvae when larvae were treated

with MMV688942 (bitertanol), MMV688943 (difenconazole), MMV688774 (posaconazole),
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MMV021057 (azoxystrobin), MMV688754 (trifloxystrobin)and MMV689244 (EPL-BS1246)

(Fig 7D and 7E). No difference in the distribution of large, medium and small grains was

noted for any of the groups, except for MMV688942 (bitertanol) treated larvae (Table 2). In

that group, a significantly lower number of large grains and a higher number of smaller grains

Fig 6. Survival curves of larvae infected with M. mycetomatis and treated with selected compounds. The black dashed line in all panels correspond to

larvae mock-inoculated with PBS and treated with PBS. The black line in all panels corresponds to M. mycetomatis infected larvae treated with PBS. These

are the control lines. In panel A, the survival of larvae treated with azoles MMV688942 (Bitertanol), MMV68893 (Difenconazole) and MMV688774

(Posaconazole) is displayed. In panel B, the survival of larvae treated with strobilurins MMV021057 (azoxystrobin) and MMV688754 (trifloxystrobin) is

displayed. In panels C and D, the survival of larvae treated with the MMV compounds is displayed. These include MMV006357, MMV6894244 (EPL-

BS1246), MMV675968, MMV687807 and MMV022478. Significant survival was displayed as � (0.01<p<0.05), �� (0.001<p<0.01) or ��� (0.001<p).

https://doi.org/10.1371/journal.pntd.0006437.g006
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was noted compared to the PBS treated larvae. Since for certain compounds a lower fungal

burden was obtained, it was hypothesized that this would also reflect in a difference in the

immune reaction of the larvae towards the fungi. Melanization of the haemolymph is part of

the immune system of G. mellonella larvae and it indicates the extent of the immune response

elucidated towards a pathogen. Therefore the melanisation of the hemolymph was measured

in the larvae (Fig 7F). A significant decrease in melanization was observed in MMV688943

(difenconazole) (Mann-Whitney, p = 0.047) treated larvae, whereas no significant difference

in melanization was observed with other compounds (Fig 7F).

In vivo activity of the fenarimol analogues

One of the five non-reference compounds, MMV689244 (EPL-BS1246), did not prolong larval

survival (Fig 8), although it was able to reduce the fungal burden (Fig 9D and 9E). The lack of

prolonged survival for MMV689244 (EPL-BS1246) was surprising since it was the compound

with the most potent in vitro activity after the reference compounds. Although overall survival

Fig 7. Fungal burden in G. mellonella larvae infected with M. mycetomatis and treated with selected compounds. In panels A, B and C, histopatholocial sections

of larvae are demonstrated which were treated with the different compounds and sacrificed 72h after inoculation. Histophatological sections are stained with Grocott

to demonstrate the presence of fungal grains (black stained) and indicated by arrows. Panel A, demonstrate a larvae treated with PBS as a control, for which both

large grains (L) and smaller grains (S) are visible. Panels B and C show G. mellonella infected with M. mycetomatis and treated with MMV688942 (Bitertanol)(B),

MMV689244 (EPL-BS1246)(C). The scale bar present on each image represents 500μm. By counting the grains on these histological sections of 3–5 larvae per group,

the number of grains (panel D) and the total grain size (panel E) per larvae per treated compound or PBS (control group) was determined. Melanisation of the larvae

was determined by measuring the OD405nm of the hemolymph in all groups (panel F). PBS in all panels corresponds to M. mycetomatis infected larvae, treated

with PBS. This is the control group. Significant differences determined using the Mann-Whitney U-test were displayed as � (0.01<p<0.05), �� (0.001<p<0.01), or
��� (p<0.001).

https://doi.org/10.1371/journal.pntd.0006437.g007
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was not prolonged, a reduction in grain number and grain size was obtained with

MMV689244 (EPL-BS1246). Since M. mycetomatis forms grains in vivo but not in vitro, we

therefore hypothesized that compound MMV689244 (EPL-BS1246) might not be able to reach

its target in the grain. We therefore tested the four fenarimol analogues with in vitro activity to

determine if any would have activity against M. mycetomatis grains in vivo. It appeared that

EPL-BS0178 (Log Rank p<0.0001), EPL-BS0495 (Log Rank, p = 0.0199) and EPL-BS1025 (Log

Rank, p = 0.0436) were all able to prolong larval survival in a statistically significant manner

(Fig 8A and 8B). The overall survival percentages of the three active fenarimol analogues were

compared; treatment with analogue EPL-BS0178 resulted in a survival percentage of 36.7%,

which was higher than that observed with analogues EPL-BS0495 (24.1%) and EPL-BS1025

(19.2%). Since EPL-BS1025 is the racemate of EPL-BS1246, it is surprising that EPL-BS1025

prolonged larval survival compared to PBS treated larvae whereas MMV689244 (EPL-

BS1246) did not. However, when survival curves of M. mycetomatis infected larvae treated

with MMV689244 (EPL-BS1246) were compared to those treated with EPL-BS1025, no signifi-

cant difference in larval survival was noted (Log Rank, p = 0.21) (Fig 8A and 8B).

The effect of the fenarimol analogues on the fungal burden was determined on 5 larvae

from each group at day 3 post infection. When compared to PBS treated larvae (Fig 9A),

EPL-BS0178 (Fig 9B) and EPL-BS0495 (Fig 9C) treated larvae had smaller grains. When

the complete treatment groups were compared it appeared that only fenarimol analogues

MMV689244 (EPL-BS1246) and EPL-BS0800 (median = 18 grains; Mann-Whitney, p = 0.019

and median = 0.044mm2; Mann-Whitney, p = 0.012) significantly lowered the total number of

grains and the total grain size (Fig 9D and 9E), the two analogues which did not demonstrate

Table 2. Statistical analysis of the total number of grains in larvae treated with the 14 compounds.

Compounds n Median Median of total grain

number

Total number p-value (Chi-

square)Large n

(STDEV)

Medium n

(STDEV)

Small n

(STDEV)

Large Medium Small

Control

PBS 9 2.8 (2.1) 8.5 (3.2) 21.8 (3.6) 31 32 68 185 -

Pathogen and Stasis Box

MMV688942 (Bitertanol) 5 1.5 (0.8) 3 (1.6) 12.5 (6.0) 18 8 17 62 0.547

MMV688943

(Difenconazole) �
5 1.5 (0.9) 2.8 (0.9) 15.5 (3.2) 20 6 15 76 0.047 �

MMV688774 (Posaconazole) 5 1.8 (1.5) 3.3 (1.9) 13.5 (4.5) 19 9 17 69 0.373

MMV021057 (Azoxystrobin) 5 1.8 (1.3) 4.5 (1.5) 10.3 (6.1) 17 10 23 65 0.953

MMV688754

(Trifloxystrobin)

5 0.3 (1.3) 2.3 (1.2) 10.3 (4.4) 15 5 11 46 0.373

MMV006357 5 3 (2) 6 (1.8) 22.5 (2.8) 33 15 33 117 0.425

MMV689244 (EPL-BS1246) 3 1.3 (1) 4.3 (1.5) 14 (5.7) 22 4 12 48 0.266

MMV675968 5 2 (2) 4.5 (2.4) 15.8 (2.6) 23 11 26 83 0.689

MMV687807 5 1.2 (1.9) 2.5 (3.7) 10.5 (9.1) 14 8 18 72 0.297

MMV022478 5 3 (0.9) 5.5 (1.2) 21 (5.7) 29 14 29 106 0.423

Fenarimol analogues

EPL-BS0178 5 1.3 (1) 7 (2.5) 15.8 (5.9) 26 7 32 96 0.127

EPL-BS0495 5 2.5 (1.8) 5 (2.1) 20.8 (7.9) 28 16 21 94 0.195

EPL-BS0800 5 1.3 (0.9) 2.5 (1.6) 12 (9.4) 18 5 14 68 0.062

EPL-BS1025 5 2.8 (1.6) 2.5 (4.5) 11.8 (7.3) 17 10 20 60 0.946

�Significant difference is displayed as (0.01<p<0.05)

https://doi.org/10.1371/journal.pntd.0006437.t002
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enhanced larval survival. EPL-BS0178, EPL-BS0495 and EPL-BS1025 did not significantly

lower the number of grains present in the infected larvae (Table 2, Fig 9D). For EPL-BS1025, a

significant reduction in total grain size produced was noted (Fig 9E; median mass: 0.046 mm2;

Mann-Whitney, p = 0.042).No difference in grain distribution (Table 2) or larvae melanization

was observed for any of the fenarimol analogues (Fig 9F).

To better understand the translation from in vitro activity to in vivo efficacy, physicochemi-

cal profiling of the ten compounds was performed. A correlation between the LogD at pH 7.4

(calculated using Stardrop [version 2017, Optibrium Ltd]), IC50 in vitro and percentage sur-

vival after 10 days was noted (Fig 10).

Discussion

In this study, the Pathogen and Stasis Boxes were screened to identify compounds with in
vitro antifungal activity against Madurella mycetomatis. Out of the 800 compounds tested, 13

compounds were associated with in vitro activity (determined as MIC50s) against M. myceto-
matis strain Mm55 ranging from nanomolar (<0.007 μM) to micromolar (8 μM) potencies

(S1 Table, Table 1, Fig 3). Of these 13 compounds, five are antifungal agents belonging either

to the azoles (posaconazole, bitertanol and difenoconazole) or the strobilurins (azoxystrobin

and trifloxystrobin), two are antiprotozoal agents (iodoquinol being an approved drug for

the treatment of amoebiasis and MMV689244 a preclinical candidate for the treatment of

Chagas disease) while the other five compounds had not previously been associated with any

antifungal properties, being upstream exploratory molecules. Interestingly, when the Patho-

gen Box was screened with planktonic cells of other fungal species, such as Candida albicans
[32] and Cryptococcus neoformans [32] MMV688934 (tolfenpyrad) and MMV688271 were

also identified as antifungal agents [32], yet in our study MMV688934 did not inhibit M.

Fig 8. Survival curves of larvae infected with M. mycetomatis and treated with fenarimol analogues. The black dashed line in all panels correspond

to larvae mock-inoculated with PBS and treated with PBS. The black line in all panels corresponds to M. mycetomatis infected larvae treated with PBS.

These are the control lines. In panels A and B, the fenarimol analogues MMV689244 (EPL-BS1246), EPL-BS0178, EPL-BS0495, EPL-BS0800 and

EPL-BS1025 are displayed. Significant survival was displayed as � (0.01<p<0.05), �� (0.001<p<0.01) or ��� (0.001<p).

https://doi.org/10.1371/journal.pntd.0006437.g008
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mycetomatis growth at all, and MMV688271 only did so with an IC50 of 61.7 μM. In the

same study, only six compounds were found to be able to inhibit C. albicans biofilm forma-

tion [33]. Among these compounds, amphotericin B, MMV687807, MMV687273 and

MMV688768 were identified [33]. In our assay, amphotericin B had an IC50 of 9.7 μM and

was therefore excluded from further evaluation, while MMV687807 was one of the 10 com-

pounds with the highest in vitro activity.

To assess the in vivo activity of the selected compounds we made use of the previously

established G. mellonella grain model [24]. This model was chosen as it produces grains which

resemble grains found in human and it has been demonstrated to predict the in vivo activity of

antifungal agents in mammalian models. Itraconazole and amphotericin B were evaluated for

activity in both G. mellonella and mouse models of M. mycetomatis mycetoma. It appeared that

at human pharmacokinetic equivalent dosages the itraconazole did not prolong larval survival

but amphotericin B did [30]. In mice, amphotericin B was able to prevent grain formation, but

itraconazole was not [31]. Therefore, the G. mellonella model was found to be a good indicator

for in vivo activity in mammalian models. In the current study, we determined the in vivo

Fig 9. Fungal burden in G. mellonella larvae infected with M. mycetomatis and treated with fenarimol analogues. In panels A, B and C, histopatholocial

sections of larvae are demonstrated which were treated with the different compounds and sacrificed 72h after inoculation. Histophatological sections are stained

with Grocott to demonstrate the presence of fungal grains (black stained) and indicated by arrows. Panel A, demonstrate a larvae treated with PBS as a control, for

which both large grains (L) and smaller grains (S) are visible. Panels B and C show G. mellonella infected with M. mycetomatis and treated with EPL-BS0178 (B) and

EPL-BS0495(C). The scale bar present on each image represents 500μm. By counting the grains on these histological sections of 3–5 larvae per group, the number

of grains (panel D) and the total grain size (panel E) per larvae per treated fenarimol analogue or PBS (control group) was determined. Melanisation of the larvae

was determined by measuring the OD405nm of the hemolymph in all groups (panel F). PBS in all panels corresponds to M. mycetomatis infected larvae, treated

with PBS. This is the control group. Significant differences determined using the Mann-Whitney U-test were displayed as � (0.01<p<0.05), �� (0.001<p<0.01), or
��� (p<0.001).

https://doi.org/10.1371/journal.pntd.0006437.g009
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activity of 10 of the most promising compounds obtained from the Pathogen and Stasis Boxes,

five showed enhanced survival with the Log-Rank test (Fig 6). Of these compounds, only posa-

conazole had previously been tested in this larval model; larvae were treated with 5.7 mg/kg

posaconazole, a dose similar to the one used in the treatment of human fungal infections, but

this did not lead to any enhancement of larval survival [26]. In the current study, enhanced

survival was noted when larvae were treated with 20 μM/larva which is comparable to 14 mg/

kg of posaconazole.

The compounds with the most potent in vivo activity were MMV006357, MMV675968 and

MMV022478. MMV006357 was obtained from the Stasis Box and is a 2-aminothiazole deriva-

tive that was originally identified as a molecule with anti-mycobacterial activity [34, 35]. It has

been demonstrated to be active against replicating and non-replicating mycobacteria and even

had sterilizing activity against the latter [34], a property possessed by no other class of anti-

mycobacterial compound. Furthermore, several of its analogues also had activity against drug-

resistant isolates of M. tuberculosis [36]. MMV675968 is a 2-4-diaminoquinazoline derivative

active against Cryptosporidium parvum while MMV022478 is a pyrazolopyrimidine previously

Fig 10. logD pH 7.4 versus in vivo larvae survival after 10 days.

https://doi.org/10.1371/journal.pntd.0006437.g010
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described as active in vitro against the asexual blood stage of Plasmodium falciparum as well as

against Plasmodium berghei sporozoites (https://www.pathogenbox.org/).

By comparing the in vitro and in vivo activity data, it appears that the compounds with the

highest in vitro activity are usually not the ones with the best in vivo activity. This lack of asso-

ciation has been observed in the past, notably with respect to azoles. In vitro, M. mycetomatis
was indeed shown to be most susceptible towards the azoles [21, 37] and less susceptible

towards the polyene amphotericin B [37]. However, only amphotericin B [21]was able to pro-

long G. mellonella larval survival or able to inhibit grain formation in mice [26] [38]. A lack of

translation of activity from in vitro to in vivo could be due to pharmacodynamic considerations

or due to the difference in morphological organization of the fungus inside the host. Azole

antifungal agents are known to be more active on quickly dividing and faster growing fungi. In
vitro, M. mycetomatis is metabolically active and visible growth is seen within days, while in
vivo, grains are formed. Their metabolic activity is not currently known, but since no expan-

sion of the grains is noted in tissue sections, it is envisioned that the grain itself is less metaboli-

cally active. Although lower metabolic activity within the grain might be one reason, it cannot

be the only one. In earlier experiments performed by Murray, it was demonstrated that even

100 μg/mL of the fungicidal drug amphotericin B was not able to prevent M. mycetomatis
growth when freshly isolated M. mycetomatis grains from infected mice were immersed in

melted agar, while 8 μg/mL was enough to inhibit the growth of M. mycetomatis cultured

mycelia [39, 40].

Although the grain itself is a key feature of mycetoma, little is known about its constituents

or metabolic activity. In the 1970s some attempts were made by Findlay and Vismer to identify

the constituents, but since then little progress has been made [41–43]. Findlay showed that the

grain owed its existence and its toughness to a tanning of the structural and inflammatory pro-

teins of the host by a diffusible melanin-type pigment synthesized and secreted by the fungus

[41]. When this melanin was isolated and added to our in vitro susceptibility assay, MICs for

ketoconazole and itraconazole were elevated 32 times [44]. Within the grain, intrahyphal

growth is observed [43] and the hyphae themselves are embedded in cement material, which

makes it difficult for each drug to reach the metabolically active part of the fungus. Although

the exact constituents of this cement material are still unknown, chitin [45] and beta-glucan

[46] are known to be involved. These constituents are implicated in the reduced antifungal sus-

ceptibility of fungal biofilms [47]. In addition, the grain itself is surrounded by a collagen cap-

sule, which also makes it more difficult for the drug to reach the grain itself [48].

We postulated that the activity against the fungal grain of the hits identified via in vitro and

in vivo screening might be enhanced by chemical modification of the original hit structure.

This hypothesis was first validated with respect to hit MMV689244 (EPL-BS1246), one of the

most potent in vitro hits identified during screening of the Pathogen Box but which did not,

however, significantly enhance survival when evaluated in the G. mellonella larvae model. The

Indeed, when four fenarimol analogues with in vitro activity against M. mycetomatis (EPL-

BS0178, EPL-BS0495, EPL-BS0800 and EPLB-BS1025) were screened in vivo, it appeared that

three of these fenarimol analogues (EPL-BS0178, EPL-BS0495 and EPL-BS1025) showed

potent in vivo activity. Of these fenarimol analogues, EPL-BS0178 appeared to be the most

potent. Interestingly, there appears to be a correlation between the polarity (expressed as logD

at pH 7.4, see Fig 10) of the hit compounds and the prolongation of survival in the G. mello-
nella larval assay: across the few chemotypes investigated, those compounds with logD

values>2.5 were the best performers in this in vivo assay model. Correlation between physico-

chemical properties including polarity, and permeability and tissue distribution in vivo are

well recognized as a fundamental element of drug discovery [49]. We postulated that the

unique nature and structure of the M. mycetomatis infection, in particular the grain structure,
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could pose a challenge to drug access which may be regulated by such physiocochemical prop-

erties. The inability to create viable grain structures in an in vitro setting led us to evaluate this

hypothesis in vivo. From our data set it appears that polarity and charge may play a role in the

ability for a compound to access the fungus in the in vivo setting, as shown by the trend (not

statistically evaluated) in Fig 10. It is therefore proposed that potency against M. mycetomatis
in vivo may be determined by a play off between the general antifungal activity and the physi-

cochemical properties of the compound, and that this needs to be taken into consideration

when seeking future analogues and antifungal agents against M. mycetomatis [50].

In light of these findings, it would be interesting to determine if other fenarimol analogues

or analogues of 2-aminothiazole increase the therapeutic efficacy against M. mycetomatis
grains in vitro and eventually in vivo. At present, over 765 of the original fenarimol analogues

and a number of 2-aminothiazole analogues series synthesized by other groups have yet to be

screened [35, 36]. With these important new results in hand, we propose opening the next

stages of this project up to the wider community by adopting an Open Source approach that

has previously resulted in effective research consortia in antimalarial drug discovery [51]. We

have deposited the data associated with this work in an online database (http://tinyurl.com/

MycetomaMols), have started an online discussion area on two websites to gather community

expertise (https://github.com/OpenSourceMycetoma and https://www.reddit.com/r/

OpenSourceMycetoma/), have opened up the electronic laboratory notebook associated with

the chemical resynthesis of fenarimol analogs and have started a social media account for com-

munity use and outreach (https://twitter.com/MycetOS). We have used these sites to clarify

the current needs of the community, which are i) samples of analogs of the most promising

compounds described in this paper and ii) advice on which of the existing compounds to

which we have access should next be evaluated in vitro and in vivo; some directions in the

fenarimol library have been suggested (Fig 11). Gathered together, these resources constitute

Open Source Mycetoma (MycetOS), a project that will adhere to six basic laws of open source

research, most importantly that all data and ideas are freely shared, that anyone may partici-

pate and that there will be no patents [51]. The authors of this paper, and DNDi itself, are part-

ners in such an approach, but any other member of the community is free to participate and

contribute as an equal partner provided the principle of open work is upheld. We hope that

this initiative, coupled with the promising new hits we have reported, will lead to progress in

drug discovery for this most neglected of neglected tropical diseases.

Fig 11. Summary of inactive motifs discovered by screening compounds from the Epichem library (A) and potential motifs for future exploration by the open

source community (B).

https://doi.org/10.1371/journal.pntd.0006437.g011
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