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Systematic analysis of gut microbiota in pregnant women and
its correlations with individual heterogeneity
Hongling Yang1,8, Ruochun Guo2,8, Shaochuan Li2,8, Fang Liang2, Cheng Tian2, Xueqin Zhao1, Yan Long1, Fei Liu1, Min Jiang 1,
Yu Zhang2, Jun Ma3, Mengni Peng2, Siyi Zhang2, Weitao Ye3, Qiangsheng Gan3, Fangling Zeng4, Shanliang Mao5, Qihua Liang1,
Xiaodong Ma4, Mengru Han1, Fei Gao1, Rentao Yang2, Cheng Zhang6, Lulu Xiao7, Junjie Qin2, Shenghui Li 2✉ and Chunyan Zhu 3✉

The woman’s gut microbiota during pregnancy may support nutrient acquisition, is associated with diseases, and has been linked
to infant health. However, there is limited information on gut microbial characteristics and dependence in pregnant women. In this
study, we provide a comprehensive overview of the gut microbial characteristics of 1479 pregnant women using 16S rRNA gene
sequencing of fecal samples. We identify a core microbiota of pregnant women, which displays a similar overall structure to that of
age-matched nonpregnant women. Our data show that the gestational age-associated variation in the gut microbiota, from the
ninth week of gestation to antepartum, is relatively limited. Building upon rich metadata, we reveal a set of exogenous and intrinsic
host factors that are highly correlated with the variation in gut microbial community composition and function. These microbiota
covariates are concentrated in basic host properties (e.g., age and residency status) and blood clinical parameters, suggesting that
individual heterogeneity is the major force shaping the gut microbiome during pregnancy. Moreover, we identify microbial and
functional markers that are associated with age, pre-pregnancy body mass index, residency status, and pre-pregnancy and
gestational diseases. The gut microbiota during pregnancy is also different between women with high or low gestational weight
gain. Our study demonstrates the structure, gestational age-associated variation, and associations with host factors of the gut
microbiota during pregnancy and strengthens the understanding of microbe–host interactions. The results from this study offer
new materials and prospects for gut microbiome research in clinical and diagnostic fields.
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INTRODUCTION
The gut microbiota has been associated with wellness and disease1.
The woman’s gut microbiota is essential during pregnancy2,3 due to
its crucial roles in nutrient acquisition4, immune remodeling5, and
protection against infection6. In recent years, many studies have
investigated the temporal variation in the gut microbiota in
pregnant women and revealed a dramatically altered structure of
the gut microbiota at different stages of pregnancy7,8 or,
conversely, a relatively stable gut microbial profile during
pregnancy9. The inconsistent observations of these studies could
be due to the complexity and mutability of the gut microbiota and
the limited sample sizes. In addition, a range of parameters in
women, including their physical condition before and during
pregnancy (e.g., pre-pregnancy weight, hormone levels)10,11 and
psychological (e.g., stress)12 and environmental factors (e.g., dietary
habits)13, affect their gut microbiota over the course of pregnancy.
In turn, alterations in the gut microbiota may have subsequent
impacts on the occurrence of gestational diseases14,15, fetal status,
pregnancy outcomes16, and even the immune development of the
offspring17,18. A series of gut microbes have been identified as
participators in these processes. For example, an anti-inflammatory
commensal Faecalibacterium is negatively correlated with gut
permeability during pregnancy19, decreased in women with
gestational diabetes mellitus (GDM)20, and involved in infant gut
microbial maturation21. Based on the current status of research,
however, these findings have not always been validated by related

studies15,18. Therefore, it is still necessary to extensively investigate
the dynamics of the gut microbiota during normal pregnancies and
to quantitatively assess bacterial-level variations resulting in host
heterogeneity, especially in a large cohort-based study.
In the current study, we performed a population-level investiga-

tion of the gut microbiotas of 1479 pregnant women of Chinese
origin, with a broad range of gestational ages, from the 9th week
of gestation to antepartum (>36th week). We used 16S rRNA gene
sequencing technology and bioinformatic analyses to identify
microbial diversity and compositional and functional characteristics
across pregnancy. Integrative analyses of 132 host parameters
were also performed to investigate microbe–host associations.

RESULTS
Description of the study cohort
The study cohort consisted of 1479 pregnant women with a mean
age of 30.6 ± 4.3 years (mean ± SD, range 18–45 years). All
participants were recruited from the Guangzhou Women and
Children’s Medical Center in Guangzhou, a large modern city
located in Guangdong Province in South China. The exclusion
criteria included participants who had taken antibiotic treatment
or probiotic supplements in the 4 weeks prior to sample
collection, strict vegetarians, and individuals with alcoholism or
with other unusual dietary habits. The basic characteristics of all
participants are summarized in Table 1. The cohort was comprised

1Department of Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, 510623 Guangzhou, China. 2Promegene Institute, 518110
Shenzhen, China. 3School of Public Health, Guangzhou Medical University, 511436 Guangzhou, China. 4Department of Gynaecology and Obstetrics, Guangzhou Women and
Children’s Medical Center, Guangzhou Medical University, 510623 Guangzhou, China. 5Loudi Health Center for Women and Children, 417000 Loudi, China. 6Department of
Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, 510275 Guangzhou, China. 7Nanfang Hospital,
Southern Medical University, 510515 Guangzhou, China. 8These authors contributed equally: Hongling Yang, Ruochun Guo, Shaochuan Li. ✉email: lsh2@qq.com; zchyan@163.com

www.nature.com/npjbiofilms

Published in partnership with Nanyang Technological University

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41522-020-00142-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41522-020-00142-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41522-020-00142-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41522-020-00142-y&domain=pdf
http://orcid.org/0000-0002-4646-0067
http://orcid.org/0000-0002-4646-0067
http://orcid.org/0000-0002-4646-0067
http://orcid.org/0000-0002-4646-0067
http://orcid.org/0000-0002-4646-0067
http://orcid.org/0000-0003-1071-8510
http://orcid.org/0000-0003-1071-8510
http://orcid.org/0000-0003-1071-8510
http://orcid.org/0000-0003-1071-8510
http://orcid.org/0000-0003-1071-8510
http://orcid.org/0000-0001-8294-0458
http://orcid.org/0000-0001-8294-0458
http://orcid.org/0000-0001-8294-0458
http://orcid.org/0000-0001-8294-0458
http://orcid.org/0000-0001-8294-0458
https://doi.org/10.1038/s41522-020-00142-y
mailto:lsh2@qq.com
mailto:zchyan@163.com
www.nature.com/npjbiofilms


of the predominant gestational stages from the first pregnancy
examination (usually the ninth gestational week or later) to the
antepartum period. Notably, to increase the representativeness of
the whole population, pregnant women were randomly selected
in the recruiting process, which led to a uniform distribution
between the 13th and 36th gestational week (per 4-week stage,
n= 204 ± 95) but few participants in the first trimester (9th–12th
week, n= 50) and at the antenatal period (≥37th week, n= 30).
To investigate the host variables that are associated with the

microbiota during pregnancy, we analyzed 132 exogenous and
intrinsic host factors of the participants, including 22 intrinsic host
properties, 63 biomedical indices (52 blood parameters and 11
urine parameters), 20 self-reported or clinically diagnosed
diseases, 7 hepatitis virus infection statuses, and 20 parameters
of pregnancy outcome and neonatal information (a full list of
these factors is shown in Supplementary Data 1). A total of 72.5%
of the women were native residents, and the others were
immigrants who had lived in Guangzhou for at least 1 year.
Before pregnancy, 14% of the women were lean (body mass index
[BMI] < 18 kg/m2) and 7% of the women were overweight/obese
(BMI ≥ 25 kg/m2). A total of 36.8% (934/1479) of the women had at
least one disease before or during pregnancy; in particular, 18% of
the women had GDM.

Gut microbiome landscape during pregnancy
The gut microbiotas of 1479 fecal samples of pregnant women
were characterized by sequencing the V4 variable region of the
bacterial 16S rRNA gene, generating a total of 75.8 million high-
quality sequences (51,251 ± 12,403 sequences per sample; mini-
mum 27,883). A total of 7701 operational taxonomic units (OTUs)
were identified and taxonomically annotated based on an open
source, universal microbiome bioinformatics platform (QIIME2)22.
Of these OTUs, 32.5% could be robustly annotated into a known
species (representing 62.9% of the total sequences), and 86%
could be annotated into a genus or a family (representing 96.9%
of the total sequences).

Comprehensively, we noted that the gut microbiota of pregnant
women was dominated by two major bacterial phyla, Firmicutes
(accounting for 78.8% of total sequences) and Bacteroidetes
(11.9%) (Supplementary Fig. 1), followed by Actinobacteria (5.6%),
Proteobacteria (1.8%), Verrucomicrobia (0.7%), and Euryarchaeota
(an archaeal phylum, 0.6%). This compositional pattern of bacterial
phyla is generally seen in the human gut microbiota and is widely
observed in normal nonpregnant adult populations23,24, despite
the occasional perturbance of the low-abundance phyla25. To test
whether the compositional pattern of pregnant women is stable
at lower taxonomic levels, we then compared our cohort to the
Guangdong Gut Microbiome Project (GGMP) cohort26 (consisting
of 7009 healthy adults enrolled from 14 districts in Guangdong
Province) at the bacterial genus level. In the GGMP cohort, there
were 1048 nonpregnant women (age 18–44 years) included in the
current comparison. The pregnant women yielded 29 dominant
genera with a mean relative abundance >0.5%, and 25 (86.2%) of
these genera were also presented among the 32 dominant genera
in the GGMP nonpregnant women (Fig. 1a and Supplementary
Data 2 and 3). These results highlight the compositional
similarities at lower taxonomic levels between nonpregnant and
pregnant women, despite differences in sample preparation and
DNA extraction approaches.
The primary structure of the human gut microbiome is

described by enterotype27. As expected, pregnant women
exhibited consistent enterotype patterns with normal adults,
which were clearly driven by the abundance of several dominant
genera, such as Bacteroides, Prevotella, and Ruminococcus (Fig. 1b).
This enterotype composition was relatively stable across all
gestational stages (P > 0.05, analysis of variance [ANOVA] test),
with a slight reduction in Ruminococcus-type in the last stage of
pregnancy.
To provide a systematic view of the human gut microbiota

across pregnancy, we portrayed the overall landscape of all fecal
samples based on 489 core OTUs (mean relative abundance across
all samples, >0.01%; Fig. 1c and Supplementary Data 4). A total of
345 (70.6%) OTUs were members of Firmicutes, while 87 (17.8%)

Table 1. Basic characteristics of the 1479 pregnant women in this study.

Gest. age stages
(# of samples)

Descriptive measurement
of pregnant women

Biochemistry index at
sampling

Disease information
(% of individuals)

9–12 weeks 52 Age (years) 30.6 ± 4.2 ALT (mmol/L) 17.7 ± 17.3 GDM 18%

13–16 weeks 303 Residency status (% native) 72.5 AST (mmol/L) 18.2 ± 6.8 Gest. hypertension 1.8%

17–20 weeks 298 Pre-pregnancy weight (kg) 52.5 ± 7.2 GLU (mmol/L) 4.3 ± 0.5 Gest. infection 4.3%

21–24 weeks 207 Pre-pregnancy BMI (kg/m2) 20.7 ± 2.7 HbA1c (%) 5.2 ± 0.3 Thalassemia 5.8%

25–28 weeks 171 SBP (mmHg) 107 ± 12 UA (mmol/L) 252 ± 62 Hepatopathy 7.3%

29–32 weeks 256 DBP (mmHg) 60 ± 8 Urea (mmol/L) 2.7 ± 0.6 Hypothyroidism 5.1%

33–36 weeks 162 Weight at delivery (kg) 65.7 ± 7.9 γGT (mmol/L) 12 ± 6 Hysteromyoma 3.2%

≥37 weeks 30 Gest. age at delivery (days) 275 ± 10 A/G 1.3 ± 2 Breast disease 0.7%

Preterm birth (% individuals) 4.7 PT (s) 12.3 ± 0.5 Scar uterus 16.6%

GWG (kg) 13.2 ± 4.5 INR 0.93 ± 0.05 Ovarian disease 1.3%

GLU 0min (mmol/L)a 4.4 ± 0.3 TBIL (μmol/L) 7.3 ± 2.4

GLU 60min (mmol/L) 7.8 ± 1.6 TBA (μmol/L) 1.9 ± 2

GLU 120min (mmol/L) 6.9 ± 1.4 RBC (blood) 4 ± 0.4

WBC (blood) 10 ± 2.2

WBC (urine) 33.6 ± 79.2

pH (urine) 6.4 ± 0.6

The data are presented as the mean ± SD.
BMI body mass index, SBP systolic blood pressure, DBP diastolic blood pressure, GWG gestational weight gain, GLU blood glucose, ALT alanine transaminase,
AST glutamic oxaloacetic transaminase, UA uric acid, A/G albumin/globulin, PT prothrombin time, INR international normalized ratio, TBIL total bilirubin, TBA
total bile acids, RBC red blood cells, WBC white blood cells.
aThe blood glucose levels were detected by a 75 g oral glucose tolerance test (OGTT) at the 23th–29th gestational week for the diagnosis of GDM.
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Fig. 1 Gut microbiome landscape during pregnancy. a Comparison of core genera (mean relative abundance >0.5%) between the pregnant
women and the GGMP nonpregnant women. Twenty-five genera marked in red were dominant genera of both the pregnant women and
GGMP nonpregnant women. b The enterotype analysis based on Jensen–Shannon divergence of the genus profile. The scatter plot shows
that the pregnant women are split into three enterotypes, and the arrows indicate the top eight contributors to compositional variation. The
bar chart shows the percentage of enterotype at each stage of pregnancy. c The overall landscape of all fecal samples from the pregnant
women based on 489 core OTUs. Colored blocks of the circle nearest phylogenetic tree indicate genera and of the outermost circle indicate
phyla. The heat map shows the mean relative abundance of each OTU in different stages of pregnancy. Blank asterisks indicate significantly at
P ≤ 0.05 between the eight groups, and black asterisks indicate significantly at P ≤ 0.01 (one-way ANOVA test).

H. Yang et al.

3

Published in partnership with Nanyang Technological University npj Biofilms and Microbiomes (2020)    32 



OTUs were members of Bacteroidetes; this finding was in
agreement with previous reports showing the highest taxonomic
diversity of these two phyla in the human gut23. These 489 OTUs
comprised 95.2% of the total abundance (for each individual,
range from 95% to 95.4%) during different gestational stages,
representing a relatively stable “core microbiota” across preg-
nancy. Notably, only 1.2% (6/489) of these OTUs were significantly
different (q ≤ 0.05, ANOVA test) when comparing different
gestational stages (Supplementary Data 4), including 1 Bacter-
oidetes OTU that showed increased abundance in the first
trimester (9th–12th week) and the antepartum month (≥37 weeks)
and 5 Firmicutes OTUs that showed various trends during
pregnancy (Supplementary Fig. 2). Increasing the mean relative
abundance cutoff to 0.1% reduced the core microbiota to 129
OTUs, representing 82.2–84.1% of the total abundance at different
gestational stages (Supplementary Data 4), while only 1 OTU
(F0112, assigned to unclassified Peptostreptococcaceae) was
associated with gestational stage.
In terms of microbial function, the pregnant women’s functional

microbiome was composed of 5790 Kyoto Encyclopedia of Genes
and Genomes (KEGG) orthologs (KOs), which were further
integrated into 525 modules (representing 67.4% of total KO
abundance). Of these, 1517 KOs and 272 modules were core
functions with a mean relative abundance cutoff of 0.01%,
representing 94.3% and 66.9% of the total abundance, respec-
tively (Supplementary Data 5). The pregnant women’s microbial
functional composition revealed high coherence compared with
their phylogenetic composition (Supplementary Fig. 3a, Procrustes
M2= 0.661, P ≤ 0.001) and was also markedly separated among
individuals with three enterotypes (Supplementary Fig. 3b). In
addition, similar to the phylogenetic composition, the core
functional microbiome of the pregnant women was very similar
to that of nonpregnant women (Supplementary Fig. 3c).

Evidence of gut microbial alterations associated with
gestational age
To investigate differences in the gut microbiota at different stages
of pregnancy across their subjects, we first assessed the microbial
α (within-sample) and β (between-sample) diversity in terms of the
OTU profiles. No significant differences in α diversity were
detected during the pregnancy period (ANOVA P > 0.05 for all
four estimators of α diversity, Supplementary Fig. 4); likewise, the β
diversity between different gestational stages did not differ
significantly (P > 0.05 for all 4 estimators).
We then tested whether gestational age was associated with

the community structure over the entire cohort. Gestational age
accounted for 0.12% (adonis q= 0.026) and 0.14% (adonis q=
0.049) of the gut microbiota variance at the OTU and genus levels,
respectively. This effect size was significant but quite smaller than
that of the enterotype stratification and was relatively smaller than
those of other host parameters (see sections below). Uncon-
strained redundancy analysis based on Bray–Curtis distance
between microbial genera did not show any trends across
gestational age (Supplementary Fig. 5a), while gestational age-
constrained redundancy analysis captured visible effects on the
overall gut microbiota that approached significance (P= 0.06;
explainable proportion of variance in the top two constrained
axes, 0.2% and 0.1%, respectively; Supplementary Fig. 5b). Several
genera, including Ruminococcus, Dialister, Bifidobacterium, Blautia,
and Lachnospiraceae-[Ruminococcus] (abbreviated to [Ruminococ-
cus] in later sections), represented the major contributors to the
gestational age-constrained axes (Supplementary Fig. 5b); the
abundance of these genera changed throughout pregnancy.
These data together suggest that the influence of gestational age
on women’s gut microbiota is limited, but considerable.
We produced the correlation network of 29 dominant genera

based on the relative abundance in subjects at different stages of

pregnancy (Fig. 2 and Supplementary Data 2). These genera were
tightly correlated among all individuals and even in subsets of
individuals at each gestational stage (Supplementary Fig. 6),
indicating that a strongly shared relationship among the gut
microbes existed throughout pregnancy. Four genera, [Ruminococ-
cus], Collinsella, Megamonas, and unclassified-Erysipelotrichaceae,
increased continuously with gestational age, whereas Ruminococ-
cus, Dialister, and unclassified-Lachnospiraceae decreased continu-
ously. Parallelly, Streptococcus, Megasphaera, unclassified-
Clostridiales, and Bacteroides seemed to be the most common taxa
in midtrimester. Streptococcus and Megasphaera were enriched at
21–28 weeks of pregnancy, unclassified-Clostridiales was enriched at
17–24 weeks, and Bacteroides was reduced at 21–28 weeks. The
combination of these 11 gestational-age-associated genera
revealed a moderate performance in predicting gestational age
(Supplementary Fig. 7, Spearman’s ρ= 0.14, P= 7.4e−6), suggest-
ing that these genera may be potential microbial markers.

Host properties and blood parameters are more strongly
associated with microbial community composition than
gestational age
We identified 25 host parameters (19% of all collected parameters)
that significantly correlated with overall microbial community
variation at the OTU level (minimum R2= 0.11%, q ≤ 0.05; Fig. 3a
and Supplementary Data 6). These parameters included 8 basic
host properties, 10 blood clinical parameters, 4 parameters
associated with neonate and pregnancy outcomes, and 3
parameters of gestational age. The weight-associated parameters
of both pregnant women (weight at delivery, pre-pregnancy
weight, pre-pregnancy body mass index [PBMI], and gestational
weight gain [GWG]) and their infants (adjusted infant weight,
infant weight, and low birth weight) were the most significant.
Importantly, all 8 host properties, including residency status,
height, age, and the 5 maternal weight parameters, explained a
combination of 1.02% gut microbial variation (Fig. 3b), while the
combination of 10 blood parameters explained 1.03% of the
variation. As a comparison, the 3 gestational age parameters
explained a total of only 0.24% of the variation. Unsurprisingly,
analysis of individuals at each gestational stage also revealed that
the explicable variations in host properties and blood parameters
were 3–5-fold larger than the variations in gestational age
(Supplementary Fig. 8). Thus these results indicated that, other
than gestational age, host heterogeneity is associated with the gut
microbiota throughout pregnancy.
The half (52%) of these parameters were also validated at the

genus level of microbial composition at q ≤ 0.05; however, only 6
parameters were correlated with the functional profiles at a milder
condition of q ≤ 0.3 (P ≤ 0.05, Fig. 3a). Noticeably, the effect sizes of
the pregnant women’s age (R2= 0.29%, adonis P= 0.002, q=
0.089) and residency status (R2= 0.21%, adonis P= 0.001, q=
0.089) were most prominent in the functional profiles, confirming
that the effect of host heterogeneity on gut microbial functions is
notable. Likewise, the combination of 6 function-correlated
parameters explained 1.46% of the gut functional variation,
similar to the scale of the variation at the OTU and genus levels.
We performed multivariate analysis by linear models (MaAsLin)28,

which allowed us to capture the correlations between each
parameter and microbial genus by deconfounding the effects of
other unrelated parameters. We identified 137 significant inter-
associations (q ≤ 0.20, corresponding to P < 0.008) between the
host parameters and microbial genera (Fig. 4 and Supplementary
Data 7). The basic host properties (residency status, age, height, and
weight parameters; number of associations: n= 35) and blood
parameters (n= 38) composed the major percentage of these
associations, followed by the gestational age parameters (n= 19).
One parameter, the pregnant women’s residency status, correlated
with the largest number of genera including several important
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members of Lachnospiraceae (e.g., [Ruminococcus], Dorea). Our
population-level data validated the previous observation of a
potential correlation between host parameters and gestational gut
microbial composition in small datasets (see “Discussion”) and
found novel associations such as the negative correlation between
PBMI and Bifidobacterium (Supplementary Fig. 9).

Women’s age, PBMI, and residency status describe the gestational
microbial composition and function
To identify the host property-associated OTUs that could play an
exact role in shaping the gestational gut microbiome, we
compared the gut microbial community compositions and
functions of pregnant women between the top 75% and bottom
25% of individuals in terms of age (older group: ≥34 years, n=
369; younger group: ≤27 years, n= 359) and PBMI (obese group:
>22.1, n= 368; lean group: <18.8, n= 368), as well as compared
their types of residency (native residents, n= 966; immigrants, n
= 407). Among these groups, the older and obese women, as well

as the younger and lean women, were statistically overlapped
(chi-squared test χ2= 68, P < 2.2e–16), in agreement with the
previous population study showing that the BMI of reproductive
age women is continuing to increase with age29.

Age. Twenty-four core OTUs (4.9%) were associated with age, of
which 11 were enriched in older women and 13 were enriched in
younger women (Wilcoxon rank-sum test P ≤ 0.01, corresponding
to q < 0.173; Fig. 5a and Supplementary Data 8). The older-
enriched OTUs belonged to Ruminococcaceae (F0039 and F0396),
Blautia (F0021 and F0022), Dialister (F0194 and F0285), Mogibac-
teriaceae (F0308), Oscillospira (F0147), Clostridiales (F0323),
Faecalibacterium prausnitzii (F0008), and Prevotella copri (F0293),
while the younger-enriched OTUs included Veillonella (F0075,
F0169 and F0400), P. copri (F0011 and F0329), Enterobacteriaceae
(F0048), Haemophilus parainfluenzae (F0082), Bacteroidales_S24-7
(F0349), Clostridium perfringens (F0216), Dialister (F0369), Lactoba-
cillus (F0426), Rothia mucilaginosa (F0230), and Turicibacter
(F0179). The negative correlation of Enterobacteriaceae with
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women’s age was in agreement with the observation at the genus
level (Fig. 4). Of note, two older-enriched OTUs, F0008 (F.
prausnitzii) and F0021/F0022 (Blautia obeum) and one younger-
enriched OTU F0011 (P. copri), were dominated in their abundance
(>1%) in the women’s gut microbiota (Supplementary Fig. 10);
these OTUs may be signature taxa for pregnant women’s age.
Functionally, 89 core KEGG modules were age associated (P ≤ 0.01,
corresponding to q < 0.011; Fig. 5b and Supplementary Data 8),
including 35 that were enriched in older women and 54 that were
enriched in younger women.

Pre-pregnancy body mass index. Twenty core OTUs (4.1%) were
associated with PBMI, including 12 that were enriched in obese
women and 8 that were enriched in lean women (Wilcoxon rank-
sum test P ≤ 0.01, corresponding to q < 0.166; Fig. 5c and
Supplementary Data 9). The obese-enriched OTUs were assigned
to Lachnospiraceae (F0091, F0127 and F0221), Ruminococcaceae
(F0079 and F0289), Clostridiales (F0156, F0160 and F0174), F.
prausnitzii (F0008), Roseburia faecis (F0017), Adlercreutzia (F0103),
and Anaerostipes (F0189), while the lean-enriched OTUs included
Oscillospira (F0199 and F0263), Ruminococcaceae (F0111 and
F0334), [Ruminococcus] gnavus (F0020), Clostridium ramosum

(F0185), Bifidobacterium (F0033), and Streptococcus (F0051). The
negative correlation between Bifidobacterium and PBMI was
consistent with the observation at the genus level. Three
dominant OTUs with a minimum mean abundance >1% in all
individuals were F0008 (F. prausnitzii), F0017 (R. faeces), and F0020
([Ruminococcus] gnavus) (Supplementary Fig. 11). Functionally, 12
core KEGG modules were PBMI associated (P ≤ 0.01, corresponding
to q < 0.128; Fig. 5d and Supplementary Data 9), including 6 that
were enriched in lean women and 6 that were enriched in
obese women.

Residency status. A total of 103 core OTUs (21.1%) were
associated with women’s type of residency, including 43 that
were enriched in native women and 60 that were enriched in
immigrants (Wilcoxon rank-sum test P ≤ 0.01, corresponding to q
< 0.023; Fig. 5e and Supplementary Data 10). Several native-
enriched OTUs, including [Ruminococcus] gnavus (F0020), Mega-
monas (F0001), Blautia (F0012), Lachnospiraceae (F0007), and
Clostridium (F0023), as well as several immigrant-enriched OTUs,
including F. prausnitzii (F0004), Gemmiger formicilis (F0006), P. copri
(F0011 and F0031) and Ruminococcus bromii (F0025), were of the
dominant taxa (>1%) in the women’s gut microbiota. Functionally,
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81 core KEGG modules were associated with residency status (P ≤
0.001, corresponding to q < 0.01; Fig. 5f and Supplementary Data
10), including 38 that were enriched in native individuals and 45
that were enriched in immigrants.
Using the random forest model, the 24 age-associated OTUs

achieved an area under the curve (AUC) of 0.67 for the classification
of older and younger women in our cohort (Fig. 5g), and the 20
PBMI-associated OTUs and 103 residency-status-associated OTUs
achieved a similar AUC for distinguishing obese vs. lean individuals
and native residents vs. immigrants, respectively.

The gut microbiota composition is different in women with high
or low GWG
Women’s GWG is an important indicator for estimating nutrient
absorption during pregnancy30. GWG was positively associated with
two important short chain fatty acid (SCFA) producers31,32,
Faecalibacterium and Roseburia (Fig. 4), in the human gut microbiota;
this finding is in agreement with previous studies which showed
that SCFAs are enhanced in the context of weight gain33. We tried to
use the relative abundance of all OTUs to train a random forest
model for the identification of extreme GWG individuals and
obtained an AUC of 0.76 for distinguishing women with the lowest
10% GWG (132 individuals with GWG ≤7.9 kg) and an AUC of 0.75
for women with the highest 10% GWG (136 individuals with GWG
≥18.6 kg; Fig. 6a). In addition, random forest regression based on
continuous GWG also revealed high consistency between the gut
microbiota-predicted value and the measured GWG of all pregnant
women (Supplementary Data 11), especially for women at the
gestational stages of 13–16 weeks (Spearman’s ρ= 0.16, q= 0.017)
and 29–32 weeks (Spearman’s ρ= 0.24, q < 0.001). These results
suggested that the gut microbial composition may be a good
indicator for the weight status of pregnant women. Noticeably,
adding the PBMI to the regression model increased its predictive
power (Supplementary Data 11), particularly PBMI was more efficient
for distinguishing low GWG women (AUC= 0.84; Fig. 6a).
We then compared the gut microbial community compositions

and functions of pregnant women between the women in the top
75% (GWG ≥16.5 kg, n= 324) and the bottom 25% (GWG ≤10 kg, n
= 352) of GWG. Only 8 OTUs were associated with GWG at P ≤ 0.01
(corresponding to q < 0.366; Fig. 6b and Supplementary Data 12).
The lowest-GWG-individual-enriched OTUs belonged to Bacteroides
uniformis (F0049), Dialister (F0204), and Clostridium (F0165), while
the highest-GWG-individual-enriched OTUs were Clostridiales
(F0160 and F0176), R. faecis (F0003), Paraprevotella (F0432), and
Lachnospiraceae (F0406). Noticeably, lowest-GWG-individual-
enriched OTU F0049 and the highest-GWG-individual-enriched
OTU F0003 were also determined as important features in the

random forest regression model based on continuous GWG
mentioned above (Supplementary Data 13). Functionally, 7 core
KEGG modules were GWG associated (P ≤ 0.01, corresponding to
q < 0.168; Fig. 6c), including 3 that were enriched in the lowest
GWG women and 4 that were enriched in the highest
GWG women.

Pre-pregnancy and gestational diseases correlate with gestational
gut microbiota
Pre-pregnancy and gestational diseases are clinically significant for
maternal and fetal health during pregnancy34; however, in our
cohort, the disease-involved parameters explained only minor
variations (all <0.2%, Supplementary Data 6) in the gut
microbiome in our dataset, mostly because of the fact that the
women recruited for the study were relatively healthy adults and
did not have certain severe diseases (see “Methods”). To
investigate the detailed influence of the gestational gut micro-
biota on women’s health, three pre-pregnancy diseases (hepato-
pathy, hypothyroidism, and thalassemia) and gestational GDM
with >5% morbidity in our cohort were analyzed.

Gestational diabetes mellitus. Eleven core OTUs (2.2%) were
associated with GDM, including 3 that were enriched in GDM
women and 8 that were enriched in non-GDM women (Wilcoxon
rank-sum test P ≤ 0.01, corresponding to q < 0.362; Fig. 7a and
Supplementary Data 14). The GDM-enriched OTUs were assigned
to B. uniformis (F0352), Methanobrevibacter (F0286), and Blautia
(F0333), while the GDM-depleted OTUs included Streptococcus
(F0010 and F0051), Lactobacillus (F0426), Turicibacter (F0179),
Peptostreptococcaceae (F0043), Lactococcus (F0282), Ruminococ-
caceae (F0101), and Lachnospiraceae (F0261). The Streptococcus
genus was the signature taxa that was lower in GDM patients
(Supplementary Fig. 12).

Hepatopathy. Eight core OTUs (1.6%), including P. copri (F0011,
F0031, and F0418), F. prausnitzii (F0321), Roseburia (F0272), Rumino-
coccaceae (F0080), Dialister (F0285), and Clostridiales (F0259), were
associated with hepatopathy, all of which were enriched in women
with hepatopathy (Wilcoxon rank-sum test P≤ 0.01, corresponding to
q< 0.433; Fig. 7b and Supplementary Data 14).

Thalassemia. Five core OTUs were identified at P ≤ 0.01;
however, none of these OTUs passed the multiple test
correction (Fig. 7c and Supplementary Data 14). Two of the
potential thalassemia-associated OTUs, R. bromii (F0108) and
Anaerostipes (F0102), were disease enriched, while 3 control-
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enriched OTUs were Bilophila (F0122), Streptophyta (F0374), and
Clostridiales (F0176).

Hypothyroidism. Nine core OTUs (1.8%) were associated with
hypothyroidism, including 7 that were enriched in women with
the disease and 2 that were enriched in non-hypothyroidism
women (Wilcoxon rank-sum test P ≤ 0.01, corresponding to q <
0.336; Fig. 7d and Supplementary Data 14). The hypothyroidism-
enriched OTUs were assigned to Coprococcus (F0059 and F0195),
Oscillospira (F0314), Ruminococcaceae (F0326 and F0334), Lach-
nospiraceae (F0370), and Clostridiales (F0156), while the control-
enriched OTUs were two Bacteroides (F0053 and F0089) members.
Functionally, no significant modules were found in regard to

GDM, hepatopathy, or thalassemia (Supplementary Fig. 13 and
Supplementary Data 14). In contrast, 15 hypothyroidism-
associated modules were identified (Wilcoxon rank-sum test P ≤
0.01, corresponding to q < 0.09; Fig. 7e). In addition, the disease-
associated OTUs achieved a relatively smaller AUC for the
discrimination of corresponding diseases suffered by individuals
from the cohort (AUC 0.57–0.63 for four diseases; Fig. 7f).

DISCUSSION
Pregnancy is a complex physiological process that involves various
changes to organs, nutrition metabolism, and immune and
hormonal regulation to adapt to the needs of fetal growth and
development. Although it is believed that the symbiotic micro-
biota plays a fundamental role in regulating host metabolism and
responding to the environment, there are still limited data on the
ensemble characteristics of the gut microbiota during normal
pregnancy. This study is a large population-level survey of the gut
microbiota that included 1479 pregnant women. The gut

microbiomic repertoire of pregnant women provides insights into
microbial structure specificity, gestational age-associated varia-
tion, and host dependence during this critical time.
In our data, the overall gut microbial structure, characterized by

enterotypes, dominant taxonomic, and functional composition, of
pregnant women was similar to that of age-matched nonpregnant
women. The core gut microbiota is consistent in multiple healthy
cohorts24, but its abundance profiles are usually stratified by
ethnicity and region26,35. Our findings extended this observation
in Chinese pregnant women. Further study was proposed to
comprehensively investigate the gut microbial differences
between two cohorts, especially the patterns that are specifically
associated with gestation.
Alterations in the gut microbiota across pregnant stages have

been of special concern. The current study is in agreement with a
previous longitudinal study9 that also demonstrated a relatively
stable microbiota throughout gestation, while in challenge to
other finding36 that the gut microbiota is dramatically altered
during pregnancy. As shown in previous study37, the gut
microbiota shows relative stability during pregnancy within
subjects but high inter-individual variability, so we suggest that
individual heterogeneity make comparison of the gut microbiota
during gestation less noticeable. In addition, dramatic changes in
gut microbial composition have been observed in pregnant
women after dietary intervention7. The dietary patterns of
pregnant women largely impact their GWG as well as infant birth
weight38,39. In our samples, however, the stability of the gut
microbiota could be partly explained by the fact that the women’s
dietary patterns rarely changed during normal pregnancy. Never-
theless, our results also demonstrated that changes in other
pregnancy-associated physiological processes have a limited
effect on the gut microbiota.
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Previous population-based reports had estimated the effect size
of host factors on healthy gut microbiota and explained a
considerable proportion of microbial variation based on their
collected parameters24,40. Similarly, in the current study, we
strengthened the importance of host heterogeneity on pregnant
women’s gut microbiota and identified a set of parameters that
were strongly correlated with the variation in gut microbiota. We
also identified associations between host parameters and gut
microbes. Some of these associations were previously inferred,
including (1) the negative association between blood thrombin
time (a coagulation indicator) and Bacteroides, which can be
explained by Bacteroides (e.g., B. fragilis) being the main producer
of an important blood-clotting factor, vitamin K2, in the human
body41,42; and (2) the frequent associations between blood total
bile acid or uric acid (UA) and gut microbial members (including
Bacteroides, Faecalibacterium, and Ruminococcaceae), facilitated
by the fact that many gut microbes are important participates in
host bile acid and UA metabolism43. Intriguingly, some associa-
tions such as the negative correlation between PBMI and
Bifidobacterium have not been previously reported. In addition
to these examples, there were many correlations among the
considerable unexplained variance between host parameters and
the gut microbiome, requiring further study to understand their
significance.
Our comprehensive data on the gut microbiome of pregnant

women enabled us to identify the taxonomic and functional
signatures of age, PBMI, and residency status, as well as pre-
pregnant and gestational diseases in a sufficient number of
samples. For example, in older pregnant women, the OTUs of F.
prausnitzii and B. obeum were enriched and those of P. copri were
diminished. An increase in F. prausnitzii is beneficial for gut health,
mostly due to its functions in butyrate production and anti-
inflammatory effects31,44,45, while gut P. copri can induce insulin
resistance by producing branched-chain amino acids46. Faecali-
bacterium was also positively correlated with GWG in our cohort.
In addition, in this cohort, only 11 OTUs and no functional
modules were altered between pregnant women with GDM and
normoglycemic pregnant women. Rare gut taxonomic and
functional variations in GDM have also been reported in women
in the third trimester of pregnancy20. Consistently, the enrichment
of Blautia OTUs was identified in both the previous report and our
cohort, suggesting their potential role in GDM development.
In our cohort, the large difference of pregnant women’s gut

microbiota between native residents and immigrants may be
contributed by numerous factors, such as lifestyle, economic level,
education, and disease epidemiology. As reported in a recent
study26, in south Chinese population, the host location was the
strongest associations with gut microbiota variations comparing
with other phenotypes. Our result thus suggested that the effect
of host location on gut microbiota can partly be retained in
immigrants. This strong “ethnic origin” effect on gut microbiota
was also widely observed in European35 and first-generation
American immigrants47.
The association between weight-associated parameters and the

gut microbiota is of particular interest. In our cohort, several
parameters, including women’s weight before pregnancy and at
delivery, GWG, and infant weight parameters, were associated
with the overall gut microbiota as well as some gut microbes. The
correlation of some bacteria with GWG, e.g., a negative correlation
between Paraprevotella/Lachnospiraceae and GWG, partly over-
lapped with the observations in previous studies10. Moreover,
there was significant correlation between the observed and the
predicted values for GWG regression models based on samples at
two gestational stages (13–16 and 29–32 weeks), but not the
others. This suggested a good potential of the gut microbiota for
the prediction of the energy and nutrient metabolism of women
at particular gestational age. Noticeably, PBMI may be necessary

for building more accurate GWG prediction models based on
microbiome composition.
Because our study design was limited in that each participant

provided one fecal sample for analysis, we lacked longitudinal
data to fully determine the dynamic variation in each pregnant
woman throughout gestation. In addition, the current study does
not provide any mechanistic explanation for the variation in host
heterogeneity and gut microbiota.

METHODS
Study design and sample collection
This study received approval from the Ethics Committee of Guangzhou
Women and Children’s Medical Center (No. 2018030306). Written informed
consent was obtained from all participants, and no financial compensation
was provided. The methods were carried out in accordance with the
approved guidelines. All pregnant women who visited the prenatal clinics
at Guangzhou Women and Children’s Medical Center from January 2017 to
September 2017 were asked to participate in our study. The recruited
pregnant women were invited to fill in a questionnaire, including their
basic information (age, birthplace, living area, gravidity, parity, etc.),
lifestyle data, medical history, and a self-administered food frequency
questionnaire. Our exclusion criteria included (1) usage of the following
drugs in the previous 6 months: systemic antibiotics, corticosterone,
cytokines, methotrexate or other immunotoxic drugs, hormonal contra-
ceptives, and high dose of commercial probiotics; (2) presence of risky
diseases: serious cardiovascular disease, inflammatory bowel disease,
irritable bowel syndrome, and celiac disease; (3) human immunodeficiency
virus infection; (4) intestinal surgery within 5 years; (5) chronic diarrhea
caused by Clostridium difficile or an unknown agent; (6) chronic
constipation; (7) unusual dietary habits such as individuals with alcoholism
and strict vegetarians; and (8) conventional antibiotic treatment or
probiotic supplement in the preceding 4 weeks. Fecal samples were
obtained from participants by using a sterile toilet and a fecal collection
bag (including three sterile fecal collection boxes and collection spoons)
during the hospital stay. For each participant, 3 parallel samples were
subpackaged and frozen in −80 °C freezers within 30min of collection.

Medical information collection
Blood and urine samples were obtained from the pregnant women on the
same day as the fecal sample collection, and the blood and urine
parameters were measured by standard procedures and obtained from
hospital records. Except that the blood glucose parameters BS (fasting
blood glucose), BS60 (1 h blood glucose), and BS120 (2 h blood glucose)
were obtained by a standard 2-h 75 g oral glucose tolerance test between
23 and 29 weeks of gestation for GDM diagnosis. Based on the criteria48,
pregnant women were diagnosed with GDM if ≥1 of the following criteria
were met: BS ≥ 5.1 mmol/L, BS60 ≥ 10.0 mmol/L, or BS120 ≥ 8.5 mmol/L.
Pre-pregnancy weight was based on pregnant women’s self-report at the
first clinic visit (usually 9–12 weeks of gestation). Pregnant women’s body
measurement index (height, prenatal weight, blood pressure, etc.),
gestational disease status, hepatitis virus infection, pregnancy outcomes,
and neonatal information were documented from hospital records.

DNA extraction and sequencing
Total bacterial DNA was extracted from the fecal samples using the MOBIO
PowerSoil® DNA Isolation Kit 12888-100 protocol and stored at −80 °C in
Tris-EDTA buffer solution before use. We amplified the V4 region of the 16S
rRNA gene using the universal 515F (5’-GTGYCAGCMGCCGCGGTAA-3’) and
806R (5’-GGACTACNVGGGTWTCTAAT-3’) primers, along with barcode
sequences for each sample. Each reaction mixture contained 10 μM each
of forward and reverse primers, 1000 ng of template DNA, 200 μM of
dNTPs, 5 μL of 10× EasyPfu Buffer, and 2.5 units Easy Pfu DNA Polymerase
in 50 μL reaction. The PCR conditions were as follows: 95 °C for 5 min
followed by 30 cycles of 94 °C for 30 s, 60 °C for 30 s, and 72 °C for 40 s, and
a final extension step at 72 °C for 4 min. PCR products were separated by
agarose gel electrophoresis, and the expected band size for 515F–806F
was approximately 300–350 bp. DNA quantification was conducted using a
Quant-iT PicoGreen dsDNA Assay Kit (ThermoFisher/Invitrogen cat. no.
P11496) following the manufacturer’s instructions. The amplicon library
was combined in equimolar amounts and subsequently quantified (KAPA
Library Quantification Kit KK4824) according to the manufacturer’s
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instructions. In addition, 150 bp paired-end sequencing was performed on
the Illumina MiniSeq platform at Promegene Co. Ltd. (Shenzhen, China).

Bioinformatic analyses
16S rRNA sequencing analysis. 16S rRNA amplicon sequences were
processed using QIIME249. All reads were truncated at the 150th base
with a median Q score >20 to avoid sequencing errors at the end of the
reads. Noisy sequences, chimeric sequences, and singletons in the
sequence data were removed by DATA250. Denoised paired-end reads
were joined, setting a maximum mismatch parameter of two bases. The
representative sequences (i.e., the features) were defined at 100% similar
merged sequences. We used the term “operational taxonomic unit (OTU)”
instead of “feature” in the whole article for convenience. Then the
taxonomy of the features was identified using the classify-sklearn
classification methods based on the Greengenes 13.8 database (https://
data.qiime2.org/2018.11/common/gg-13-8-99-515-806-nb-classifier.qza)
via the q2-feature-classifier plugin. The phylogenetic analysis was
performed in QIIME2 with “qiime alignment mafft,” “qiime alignment
mask,” and “qiime phylogeny fasttree” commands, based on the tutorials
at https://docs.qiime2.org/2019.1/tutorials/moving-pictures/. The phyloge-
netic tree of the core OTUs was visualized using iTOL v451. To measure the
gut microbiota diversity (including alpha and beta diversity) and quantify
the taxonomic composition of the samples, all samples were rarefied to an
even sampling depth of 20,000 sequences.

Public dataset. To compare the gut microbiota of pregnant women with
that of nonpregnant women, we downloaded the raw 16S rRNA gene
sequencing data of the GGMP project26 from the European Nucleotide
Archive database (accession no. PRJEB18535). Only data from nonpregnant
women aged 18–44 years were included. Data were processed using the
same method as mentioned above.

Alpha and beta diversity. Alpha and beta diversities were calculated in the
QIIME2 platform with the “qiime diversity core-metrics-phylogenetic”
command. The Shannon’s diversity index, observed OTUs, Faith’s
phylogenetic diversity (a qualitative measure of community richness that
incorporates phylogenetic relationships between the OTUs), and Pielou’s
evenness were used to reflect community richness and evenness. The
Jaccard distance, Bray–Curtis distance, and unweighted and weighted
UniFrac distances were implemented to assess the similarity or dissimilarity
between individuals.

Enterotype analysis. Enterotype assignment was performed based on the
published tutorial (http://enterotype.embl.de/enterotypes.html)27. Fecal
samples were delineated into three enterotypes based on their genus-
level relative abundance profiles using the Jensen–Shannon divergence
and reference-based alignment algorithm.

Functional annotation and analysis. Functional profiling of the samples
was performed using the PICRUSt2 algorithm52. For each sample, the
composition of KOs53 was predicted based on the functional information
of the reference OTUs. KEGG module and pathway composition was
generated according to the assignment of KOs at https://www.kegg.jp/.

Statistical analyses
Statistical analyses were implemented at the R v3.4.2 platform (https://
www.r-project.org/).

Multivariate statistics. Principal coordinate analysis (PCoA) was carried out
using the ape package in R. In the PCoA analysis, the between-sample
Bray–Curtis distance was implemented for compositional data (including
OTU, genus, and KO profiles) and was calculated using the vegdist function
in the vegan package. Distance-based redundancy analysis (dbRDA) was
performed on OTUs and taxonomic composition profiles with the vegan
package, based on the Bray–Curtis distance, and visualized using the R
ade4 package. Procrustes analysis was used to determine similarity
between two multivariate axes (e.g., generated from the PCoA or dbRDA
analysis) and was performed with the R vegan package. The Procrustes P
value was generated based on 1000 permutations. MaAsLin28 analysis was
performed using default parameters (http://huttenhower.sph.harvard.edu/
maaslin).

Effect size analysis. We estimated the effect size of each variable (host
parameter) on microbiome variation using the adonis function within the R
vegan package. The combined effect size of multiple host parameters was
also calculated using the adonis function.

Prediction model. This analysis was carried out using the randomForest and
pROC packages in R. OTUs (or KOs) with significantly different abundances
between groups were selected to build the random forest model (n trees,
2000), and the performance of the model was assessed with leave-one-out
cross-validation. The AUC was calculated using the roc function.

Statistical test. All statistical tests, including Student’s t test, Wilcoxon rank-
sum test, and one-way ANOVA test, were performed on the R platform.
Spearman correlation test was assessed using the cor.test function with
“method=spearman” parameter. The q value was used to evaluate the false
discovery rate for correction of multiple comparisons and was calculated
based on the R fdrtool package. For a single test, P ≤ 0.05 was considered
statistically significant. For multiple test, unless otherwise mentioned, q ≤
0.05 was considered significant. For MaAsLin analysis, the threshold q ≤ 0.2
was considered significant54. For the association analyses between gut
microbial/functional compositions and host parameters (including age,
PBMI, residency status, GWG, and disease status), the threshold P ≤ 0.01 was
used for presenting the results, and simultaneously the corresponding
q-values was shown for estimating the significant level.

Reporting summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this article.
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