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Pseudomonas aeruginosa is a key pathogen of chronic infections in the lungs of cystic
fibrosis patients and in patients suffering from chronic wounds of diverse etiology. In these
infections the bacteria congregate in biofilms and cannot be eradicated by standard
antibiotic treatment or host immune responses. The persistent biofilms induce a hyper
inflammatory state that results in collateral damage of the adjacent host tissue. The host
fails to eradicate the biofilm infection, resulting in hindered remodeling and healing. In the
present review we describe our current understanding of innate and adaptive immune
responses elicited by P. aeruginosa biofilms in cystic fibrosis lung infections and chronic
wounds. This includes the mechanisms that are involved in the activation of the immune
responses, as well as the effector functions, the antimicrobial components and the
associated tissue destruction. The mechanisms by which the biofilms evade immune
responses, and potential treatment targets of the immune response are also discussed.

Keywords: biofilm infections, Pseudomonas aeruginosa, innate immune response, adaptive immune response,
novel treatment possibilities
INTRODUCTION

Biofilms consist of microbes located in densely packed slow growing microcolonies embedded in a
self-produced protective biopolymer matrix. In this life-mode, the microbes attain the highest levels
of resistance to our present assortment of antibiotics and the immune system (1, 2). Accordingly,
biofilms are a common cause of persistent infections (3), and biofilm-based infections are a major
socio-economic burden implicating hospitalization, patient suffering, reduced life quality, increased
mortality risk and lost employment. It is estimated that about 60%–70% of hospital acquired
infections are caused by microbial biofilms (4). The immune response to biofilms results in
collateral damage of adjacent tissues and therefore is an important aspect of biofilm infection
pathology (5).

The vast majority of studies of the immune response against bacteria have focused on infections
caused by bacteria in the planktonic state. Accordingly, considerably less is known about the
immune response to bacteria growing in biofilm-based infections. However, recent in vivo and in
vitro studies have begun to reveal the nature of both the innate and adaptive immune responses to
biofilms (5, 6).
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Planktonic bacteria are recognized by the innate immune
systems pathogen recognition receptors (PRRs) through
interaction with pathogen-associated molecular patterns
(PAMPs), such as the flagellum and lipopolysaccharide (LPS)
recognized via Toll-like receptor 5 and 4, respectively (7).
Basically, biofilm growing bacteria activate the immune system
through the same pathways as planktonic growing bacteria (5, 6).
However, when residing in a biofilm the bacteria are embedded
in extracellular polymeric substances and the classical PAMPs
are less exposed to the immune system. In addition, PAMPs can
be down-regulated in biofilm growing bacteria, as has been
shown for flagella in P. aeruginosa (8, 9). Thus, in the case of
biofilm infections the extracellular matrix components of the
biofilms play an important role for the immune response
(5, 6, 10).

The inflammatory state induced by biofilm unusually involves
activation of both the innate and the adaptative immune
response due to the chronic nature of biofilm-associated
infections. Neither immune response is capable of eradicating
biofilm, but they instead lead to extensive secondary damage.

The present review is focused on interactions between P.
aeruginosa biofilms and the immune system (Figure 1). P.
aeruginosa is involved in several persistent biofilm infections,
including cystic fibrosis (CF) lung infections, chronic wound
infections, urinary tract infections with or without catheters, and
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tracheal tube related ventilator-associated pneumonia (11–13).
These infections are difficult or impossible to eradicate with
antibiotics alone due to the special physiological state of bacteria
in biofilms (2). The immune response has detrimental effects, as
it causes destruction of the lungs of CF patients and maintains
the inflammatory state of chronic wounds (11, 14). Knowledge
about the mechanisms involved in activation, regulation, and
evasion of the immune responses, as well as the nature of the
antimicrobial components produced by the immune cells, and
the associated tissue destruction has increased in recent years
and will be discussed in the present review. Organ-system
specific immune responses can differ substantially due to
significant differences in tissue anatomy and physiology and is
discussed when appropriate. Measurement of adaptive immune
response during chronic persistent infections has proven an
important clinical tool and will be described. Even though the
role of the adaptive immune response has long been well
recognized as being crucial during healing of wounds and in
particular in inflammatory skin disease, the study of the role of
the adaptive immune response in chronic wounds with P.
aeruginosa biofilm infection has only just recently taken off
(15, 16). Therefore, we have not included a detailed description
of P. aeruginosa biofilm in chronic wound infections in the
section of adaptive immune response. The understanding of all
these components of host responses during biofilm infections
FIGURE 1 | Schematic presentation of biofilm stages and host response. Applies for non-foreign body-related biofilm infections, which is the main focus of the
present review. Modified from Moser et al. (5) with permission from John Wiley & Sons, Inc.
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may eventually form a basis for development of new and effective
treatments against biofilm-based infections.
BIOFILM FORMATION OF P. aeruginosa
DURING CHRONIC INFECTION

Biofilm formation by P. aeruginosa occur along with the
production of several extracellular matrix components such as
type IV pili (17–19), Cup fimbria (20), exopolysaccharides (21–
23), CdrA adhesin (24), extracellular DNA (25), LecA/LecB lectins
(26, 27) and Fap amyloids (28). The selection during chronic
infection of P. aeruginosa variants that over-produce some of these
biofilm matrix components is strong evidence for the involvement
of biofilms in chronic infections (9, 29–32). Moreover, the
presence of biofilms in CF lungs and chronic wounds has been
demonstrated by microscopy (33, 34). P. aeruginosa can
synthesize three different exopolysaccharides designated Pel, Psl,
and alginate, although some strains only produce a subset of these
exopolymers (21–23, 35). Overproduction of alginate enables
mucoid P. aeruginosa strains to form persistent infections in the
lungs of cystic fibrosis (CF) patients (29). Moreover, P. aeruginosa
rugose small colony variants that overproduce Psl and Pel
exopolysaccharide show enhanced persistence in CF lungs (9,
30, 31), and in chronic wounds (32). Evidence has been presented
that Psl protects P. aeruginosa from host defenses in the initial
phase of infection of the CF lung (36). Thus, it is possible that an
extracellular biofilm matrix dominated by Psl is important in the
initial stage of chronic lung infection before the bacteria mutate to
produce a biofilm matrix dominated by alginate.

The host immune response plays an important role in the course
of biofilm infections, and substantially affects the environment faced
by the bacteria. The initial response to the presence of pathogens is
an accumulation of activated neutrophils that may reduce the local
O2 concentration due to O2 consumption accelerated by the
respiratory burst and the production of reactive O2 species (ROS)
and nitric oxide (NO) (37–39). Thus, O2 consumption by the
neutrophils may result in O2 depletion in infected parts of the
body (40). The restricted O2 availability accelerates stratified growth
in P. aeruginosa biofilms, resulting in low metabolic activity in the
center of biofilm as a consequence of nutrient depletion. However,
micro-oxic conditions are sufficient to support growth of P.
aeruginosa due to a highly flexible respiratory apparatus (41, 42)
Moreover, bacteria may obtain energy under the anaerobic
conditions prevalent in biofilm infections via anaerobic
respiration or fermentation (43). Anaerobic respiration can occur
by denitrification, where nitrogen oxides are utilized as alternative
terminal electron acceptors (44, 45). The source of these N-oxides is
suggested to originate from the rapid reaction of NO and O2

produced by activated neutrophils (44) resulting in the formation
of peroxynitrite (ONOO-) (46), which may dismutate to nitrate (N
O3− ) and nitrite (NO2− ) (47). The concentration of NO3− and NO2−

in CF sputum (43, 48–50) may support P. aeruginosa growth at
rates similar to those found in CF pulmonary biofilm (45). These
findings suggest that the growth rate of P. aeruginosa during chronic
CF lung infection is determined primarily by the number of
Frontiers in Immunology | www.frontiersin.org 3
surrounding neutrophils (51) which deplete O2 and produce N
O3− and NO2− which can be used by the bacteria for anaerobic
respiration. As biofilm formation, neutrophil accumulation and O2

depletion are common factors in multiple chronic infections, this
interaction between host cells and pathogen is likely to occur also in
other infections (44).
INNATE IMMUNE RESPONSES DURING
P. aeruginosa BIOFILM INFECTIONS

Innate immunity fights infections from the moment of first
contact and is composed of germline-encoded, non-clonal
cellular and humoral mechanisms. These mechanisms enable
nonspecific defense against pathogens without former
interactions with infectious microbial invaders (52). The main
components of the innate immune response engaged in response
to P. aeruginosa biofilm include neutrophils, macrophages,
dendritic cells, NK cells, and the complement system.

The most solid demonstration of a role of innate immune
responses to bacterial biofilm has been obtained by introducing
human neutrophils and macrophages to P. aeruginosa biofilms
devoid of planktonic bacteria (53–56). The observed response
comprises neutrophil accumulation, respiratory burst,
penetration, phagocytosis, production of cytokines and
eradication of the biofilm bacteria. In addition, P. aeruginosa
cultures with increased bacterial aggregation induced stronger
respiratory burst by neutrophils and cytokine release by
macrophages (57).

Likewise, early sampling of mouse lungs challenged with P.
aeruginosa biofilms has shown that the innate immune response
involves intense accumulation of activated neutrophils in the
airways (54, 56, 58–60). Early accumulation of neutrophils at the
site of P. aeruginosa biofilm infection is also evident from
experimentally infected chronic wounds in mice (14).
INNATE IMMUNE RESPONSE IN CF
PATIENTS WITH CHRONIC P. aeruginosa
LUNG INFECTION

The innate immune response has gained particular attention in
patients with CF and chronic P. aeruginosa lung infection, due to
the association between accumulation of neutrophils in
endobronchial secretions and reduced functionality of the
lungs (61). The recruited endobronchial neutrophils display
inflammatory activity as indicated by continuing respiratory
burst (37, 62) and generation of nitric oxide (44). Accordingly,
destruction of the lung tissue has been correlated with oxidative
and proteolytic lesions of endobronchial neutrophil activity (63,
64). Chronic lung infections in CF patients are associated with
defective apical ion transport due to mutations in the gene
encoding the cystic fibrosis transmembrane conductance
regulator (CFTR) (65). Infected CF lungs are dominated by P.
aeruginosa growing as endobronchial biofilms surrounded by
February 2021 | Volume 12 | Article 625597
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numerous neutrophils (33) and scarce planktonic bacteria, which
are subject to phagocytosis by neutrophils (33, 37). The
neutrophil response in infected endobronchial secretions in CF
resembles the response in experimental in vitro and in vivo
biofilms, where high numbers of neutrophils accumulate close to
the biofilm (33) and depletion of molecular oxygen (O2) is
accelerated (37). This is caused by the reduction of O2 to
superoxide (O2− ) during the neutrophils’ active respiratory
burst (66). Thus, the response of neutrophils to biofilms during
chronic lung infection in CF may contribute considerably to the
O2-depletion in infected CF lungs (40). Furthermore, as active
neutrophils primarily rely on ATP generated by anaerobic
glycolysis (67), the high intake of glucose by neutrophils in CF
lungs (68) as well as the enhanced level of L-lactate in sputum
from CF patients with chronic P. aeruginosa lung infection (69),
is in agreement with a high activity of neutrophils during biofilm
infection in CF lungs. The neutrophil response to planktonic P.
aeruginosa likewise includes stimulation of the respiratory burst
(37), suggesting that neutrophil activation may also include a
response to planktonic P. aeruginosa in infected CF lungs.
Moreover, activation of neutrophils in infected CF airways may
be triggered by alginate (70), LPS or immune complexes (71).
The intensity of the neutrophil response may be enhanced by
priming with LPS (72) and soluble factors of the innate immune
response, such as platelet-activating factor, TNF-a, IL-8 and
leukotriene B4 (73–77). Additionally, the migration through
inflamed tissue may lead to stimulation of neutrophils due to
multiple engagements of integrins and inflammatory cytokines
(78). The presence of infectious agents is actually not needed to
stimulate the respiratory burst, as seen in response to injury of
the intestine in mice (79). The apparent lack of significantly
disturbed capacity of neutrophils in CF patients (76) suggests
that the reaction of neutrophils to P. aeruginosa biofilms seen in
CF patients may also apply to infectious P. aeruginosa biofilms in
non-CF patients. Accordingly, biopsies from chronic wounds
have revealed biofilm surrounded by high numbers of
neutrophils (60, 80–82). Similarly, neutrophils accumulate in
high numbers at infectious biofilm in prosthetic knees (83, 84),
and the accumulation of neutrophils was intensified and
prolonged by P. aeruginosa biofilms in experimental chronic
wounds and peritoneal infection (14). Thus, the induction of the
biofilm life style observed during interaction between P.
aeruginosa and neutrophils in vitro (85–87) may be highly
relevant for the formation of biofilm in vivo.

The capability of the innate immune system to recognize
invading microorganisms is aided by PRRs that recognize and
bind to conserved microbial PAMPs leading to stimulation of the
host response. Numerous varieties of PRRs, and their matching
ligands are known, but PRRs reacting with PAMPs specifically
expressed in microbial biofilm have not been described. PRRs
may exist as intra- and extra-cellular membrane-bound
receptors, cytoplasmic receptors, or soluble receptors. Since
their discovery Toll-like receptors (TLRs) have advanced to
become a very well-known family of PRRs. One group of TLRs
is expressed on the surface of host cells where they mainly
recognize microbial membrane components including
Frontiers in Immunology | www.frontiersin.org 4
lipoproteins, proteins and lipids, while other TLRs are
intracellular and recognize microbial nucleic acids (88).

In the airways of chronically infected CF patients, TLR5 was
the only MyD88-dependent TLR that was increased on
neutrophils (89). This increased expression is possibly facilitated
by G-CSF, IL-8 and TNF-a, and by the interaction of bacterial
lipoprotein with TLR2 and TLR1 (88). TLR5 is a flagellin receptor
(90) and its augmented expression on neutrophils in CF lungs is
challenging to explain since flagella are lacking in mucoid biofilms
P. aeruginosa isolated from CF lungs (91). The absence of flagella
in nonmucoid biofilms, however, intensifies the bactericidal
activity of neutrophils in vitro due to release of bactericidal
amounts of lactoferrin (92), which may prevent biofilm
formation (93, 94). Even though the significance of TLR5
expression for the outcome of biofilm infections is unclear, it
may reinforce phagocytosis of planktonic, flagellin-intact P.
aeruginosa subpopulations in the CF lungs (94). In support of
this, neutrophils only ingested planktonic bacteria in infected
airways of CF patients (33, 37), and P. aeruginosa with
dysfunctional flagella survived for longer time during lung
infection in mice (95). The capability of planktonic P.
aeruginosa to provoke a stronger TLR-mediated response than
biofilm P. aeruginosa has also been observed for the expression of
IL-8 by epithelial cell lines (96). Bacterial eDNA, which is a matrix
constituent of biofilms (25, 97), may stimulate neutrophils without
involving TLR9 resulting in increased IL-8 production and
intracellular signaling (98, 99). Alginate is an abundant
component of the matrix in biofilm formed by mucoid P.
aeruginosa, and is regarded as the strongest virulence factor in
chronic lung infection in CF patients (100). Alginate may increase
the respiratory burst of neutrophils (101), and monocytes may
respond to alginate by initiating the production of cytokines (102).
The activation of monocytes by alginate generated by P.
aeruginosa may be mediated by TLR2 and TLR4 (103), while
the PRRs involved in the activation of neutrophils remain elusive.
The matrix of P. aeruginosa biofilms may contain other
polysaccharide components, such as Psl and Pel, which may
stimulate an innate response to biofilm (104). Recent evidence
suggests that the specific exopolysaccharide composition of P.
aeruginosa biofilms is a determinant of the neutrophil response
(10). A biofilm with a matrix composed primarily of Psl and
alginate polysaccharides was found to be particularly efficient in
activating neutrophils (10). It remains, however, to be determined
if the innate response against exopolysaccharide expression in
biofilm is distinctly stronger than the innate response against
exopolysaccharide expression in planktonic cells. In that case, we
suggest considering exopolysaccharide as a subgroup of PAMPs
termed “biofilm associated molecular patterns” (BAMPs)
(Figure 2).

Although the soluble and the membrane-bound receptors of
the complement system are among the most studied PRRs, a
pivotal role of the complement system for the outcome of biofilm
infections remains to be firmly established. Infectious biofilm
may establish in spite of complement activation even in patients
with intact complement systems. In this respect, P. aeruginosa
may secrete elastase and alkaline protease that inactivate the
February 2021 | Volume 12 | Article 625597
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complement system (105). Further protectionmay be provided by
alginate with O acetylation which prevents complement
opsonization of mucoid P. aeruginosa biofilms (106). The
involvement of the complement system in CF lung infections
has been demonstrated by the frequent isolation of activated
complement (C3c) in the sputum from chronically infected CF
patients (107). Furthermore, the matrix polysaccharide, Psl,
protects mucoid bacteria from opsonization and killing by
complement components in human serum (108). However,
whether complement activation requires biofilm formation is
unlikely since planktonic bacteria induce stronger activation of
the complement system (109). However, P. aeruginosa isolated
from CF sputum may escape activated complement system (110).

The intense buildup of neutrophils associated to P. aeruginosa
biofilm infections in CF, chronic wounds and implanted devices,
would be anticipated to eliminate the biofilm. However, specific
defects may weaken the immune defense. Thus, as a consequence
of the basic defect in CFTR, both neutrophils and macrophages
in the CF lungs exhibit blunted phagocytic capacity that could
contribute to poor bacterial clearance and altered efferocytosis
(111, 112). Moreover, the failing bactericidal activity of the
summoned neutrophils may rely on rhamnolipids produced by
P. aeruginosa (56). Synthesis of rhamnolipid depends on quorum
Frontiers in Immunology | www.frontiersin.org 5
sensing (QS) (60) indicating the ability of P. aeruginosa biofilm
to contain bacterial densities necessary to achieve the quora
required to activate QS-dependent rhamnolipid production (56,
59, 60) in chronic wounds (81) and lungs of infected CF patients
(33). Rhamnolipids protects the biofilm against approaching
functional neutrophils by inducing cellular necrosis (60).
Intriguingly, the molecule OdDHL may attract neutrophils
(113) and may thus attract and lure the neutrophils to the site
of infection where they are killed by rhamnolipids. The QS-
regulated attenuation of the host response may facilitate the
initial establishment of biofilm infection (6). However,
succeeding lung infection in CF patients involves extensive
genetic adaptions with frequent mutations, e.g. in the QS
regulator gene lasR (114). Dysfunctional QS of the lasR
mutants may result in defective proteolytic neutralization of
chemotactic cytokines allowing the pro-inflammatory cytokines
to attract increased numbers of neutrophils to the lungs leading
to intensified pulmonary inflammation (115). The size of
bacterial aggregates may also contribute to the protection of
bacteria against the immune response offered from biofilm
formation. In fact, when the size of aggregated P. aeruginosa
with deficient QS exceeded diameters of 5 µm, phagocytosis by
human neutrophils was inhibited (116).
FIGURE 2 | Local immune response to infectious P. aeruginosa biofilm. The innate immune response recognizes pathogen associated molecular patterns (PAMPs)
expressed on P. aeruginosa, and biofilm-associated molecular patterns (BAMPs) present in the biofilm matrix. Detection of BAMPs and PAMPs by PMNs and
macrophages is mediated by pattern recognition receptors (PRRs). Binding of BAMPs and PAMPs to PRRs stimulates the PMNs and macrophages resulting in
consumption of O2 for liberation of tissue-toxic reactive oxygen species (ROS) and nitric oxide (NO). Additional responses by the PMNs include secretion of
proteases that may cause proteolytic tissue lesions while the macrophage may further enhance the inflammation by emitting pro-inflammatory cytokines such as
TNF-a, Il-1, IL-6, IL-8, and IL-12. The effector cells of the adaptive immune response mainly reside distantly such as the T-cells and the B-cells in the secondary
lymphoid organs and the plasma cells in the bone marrow. Activated T-cells may release cytokines that further reinforces the inflammation by stimulating the
accumulation and activation of PMNs and production of IgG. The contribution of the increased accumulation of activated PMNs to the local inflammation is further
accelerated by binding of antigens to IgG, leading to immune complex mediated stimulation of the PMNs and activation of the classical complement pathway.
February 2021 | Volume 12 | Article 625597
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P. aeruginosa in biofilms can produce additional virulence
factors, such as pyocyanin, that may cause cellular damage and
immune modulations in cystic fibrosis lungs (117). Pyocyanin
has been associated to broader functions, such as impairment of
ciliary beat frequency and mucin hypersecretion, which in turn
create a positive loop for biofilm formation and dysregulated
immune responses in the CF lung (118).

It may be expected that the infectious biofilm in CF lungs
would succumb due to the potent antibiofilm activity of
antimicrobial peptides produced by neutrophils and lung
epithelial cells (119). However, the low pH in CF lungs may
impair the antimicrobial activity of antimicrobial peptides (120,
121). In addition, the defective distribution of salts in CF lung
may have crucial effect on the optimal functionality of some
antimicrobial peptides (122). Other environmental conditions in
CF lungs may contribute significantly to the reduced activity of
antimicrobial peptides. These conditions include proteolytic
degradation of antimicrobial peptides by bacterial proteases
(123) and by host proteases (124) and inhibition of
antimicrobial peptides by binding to complexes of LPS, F-
actin, mucins, and host derived DNA (125).
INNATE IMMUNE RESPONSE TO
P. aeruginosa INFECTION IN
CHRONIC WOUNDS

Whereas the majority of our knowledge on immune responses to
P. aeruginosa biofilms comes from studies of CF lung infections,
studies of chronic wound infections has recently shed additional
light on the topic. The prevalence of recalcitrant wounds is
expanding epidemically alongside with obesity and lifestyle
diseases. The host response to bacterial intruders in chronic
wounds is hallmarked by a persistent inflammatory phase. This
phase comprises continuous oxidative damage, senescence of
fibroblasts and skewing of constructive growth factors required
for tissue resolution. The pathoetiology also includes low
mitogenic-activity, high protease combined with low inhibitor-
activity, microbiota changes, the etiology behind the original
insult and the specific invading pathogen. Accumulating
evidence emphasizes the paramount impact of infectious
bacterial biofilm on the host response in the wound and the
implication for recovery.

Unfortunately, it is challenging to achieve appropriate
numbers of participants for conducting randomized studies on
intervention in patients with recalcitrant wounds due to different
chronicity definitions and patient heterogeneity. In addition, it is
not feasible to extrapolate the results from chronic wounds of
one etiology to another since many patients may suffer from
several diseases (126).

The impact of infection with P. aeruginosa on wound
chronicity is well described in clinical settings and experimental
models (80, 81, 127). The presence of biofilm is now commonly
recognized as a leading cause of chronic infections with persisting
pathology despite antibacterial therapy and continuous induction
of the host response (128). Certain components of P. aeruginosa
Frontiers in Immunology | www.frontiersin.org 6
biofilms, such as rhamnolipids, are likely playing important roles
for persistence of infection as it causes cellular necrosis and killing
of neutrophils (56, 59, 60). Other studies support the capability of
P. aeruginosa to attenuate bactericidal components of the host
defense (53, 129)

The endogenous antimicrobial peptides (AMPs) are
phylogenetically ancient and constitute a crucial part of the
skin’s innate defense to infection (130). AMPs may be made by
keratinocytes and infiltrating granulocytes and macrophages in
response to infection, wound healing, trauma, or chronic
inflammation. In addition, AMPs possess regenerative properties
(131). AMPs are amphipathic molecules (132), which enables
interaction with phospholipids of microbial membranes leading to
pore formation and bactericidal cell lysis (133). The endogenous
antimicrobial host defense protein S100A8/A9 belongs to the
alarmin group and displays various activities. S100A8/A9 is
expressed in actively healing wounds in human and murines
(134, 135), but S100A8/A9 is absent in chronic, colonized
venous leg ulcers in humans (136, 137) possibly resulting from
the distorted local host response. This is suspected to cause
deterioration of wound healing.

Relevant animal models are valuable tools for obtaining
knowledge on the interplay between host and pathogen.
Accordingly, animal models have enabled detailed descriptions
of disposing factors, infectious agents and host response to
infection. There are obvious limitations when comparing
murine to humane wound healing and regeneration. Mice heal
with predominantly contraction in a looser attached skin with
higher hair density and thinner dermis versus the humane
granulation healing. There are also significant differences in the
immune response, with more neutrophils in the humane
circulating blood versus a higher number of lymphocytes in
mouse blood in addition to substantial differences with regards to
the antimicrobial peptides. Despite this, mice represent a
generally accepted experimental animal of choice.

To study the interaction between biofilm and the host
response, we have established a chronic wound model which
enables examinations of P. aeruginosa biofilm-infected wound
closure in two mouse strains. One strain is relatively resistant to
P. aeruginosa infection and consists of C3H/HeN mice. The
other strain is made up of BALB/c mice which are susceptible to
the infection (14, 138). The C3H/HeNmice have Th1-dominated
response towards the infectious agents Leishmania major and
Candida species. On the contrary, the response of the BALB/c
mice against these agents is Th2-dominated. The direction of the
Th response has essential effects on mortality rates and clearance
of infection (138). A dichotomized early response in the mouse
model of chronic wounds has been indicated by the attenuated
local IL-1b inflammatory response to P. aeruginosa biofilm
during the first 5 days of infection in C3H/HeN mice as
compared to the BALB/c mice (14). Furthermore, our group
recently demonstrated that P. aeruginosa biofilm may decrease
the intensity of local neutrophil response in several murine
wounds which may compromise the control of infection. The
connection between the slow healing and the genotype in BALB/c
mice has been confirmed by another group (198), which makes this
February 2021 | Volume 12 | Article 625597
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strain of mice an excellent choice of animal model for wound
healing. In this context, comparing the spontaneous healing of P.
aeruginosa biofilm infected wounds in C3H/HeN and BALB/c
mice with the S100A8/A9 expression, could be highly valuable
for further evaluation of the significance of S100A8/A9.
ADAPTIVE IMMUNE RESPONSES DURING
P. aeruginosa BIOFILM INFECTIONS

The adaptive immune system discriminates the host proteins and
other potential antigens from foreign molecules, to ensure that the
lymphocytic and humoral antibody mediated effector functions do
not result in excessive damage to the infected organism. However,
the adaptive immune reaction is extensively superior in the
specific response, as compared to the innate responses.
Furthermore, recognition of the identical or similar pathogen
upon reinfection by the adaptive immune system advances rapid
clonal expansion of up to a 1000-fold antigen specific effector and
central memory cells at subsequent exposures. The developed
memory is the premise for immunity to subsequent infections.
Compared to innate responses, which cannot discriminate
between primary and secondary responses, the secondary
responses of the adaptive immune system is substantially faster,
more potent and with enhanced affinity as compared to primary
exposure (139, 140). Activation of the adaptive immune system
often results in clearance of the infection by planktonic bacteria,
due to the combined activity of the innate and adaptive immune
systems augmenting both the immune reactions. However, in the
case of chronic biofilm infections the pathogens are not
eliminated. Instead, the synergy of the innate and adaptive
immune mechanisms, the latter with inertia at first encounter, is
a central component of biofilm pathogenesis (5, 141–143).

Activation of the adaptive host responses is facilitated
through dendritic cells (DC) required for sufficient activation
at the first pathogen encounter and macrophages (Mj) (144).
Immature DCs in the peripheral tissue are effective in antigen
uptake and are especially abundant at pathogen exposed regions,
as the mucosal surfaces and in the secondary lymphoid tissue
(145, 146). DCs mature following antigen uptake, and from
inflammatory cytokine impact, into mature DCs dedicated in
antigen processing and presentation (145, 146). Therefore, the
DCs are essential in linking the innate and adaptive immune
systems, and have the exclusive capacity to prime naïve T-cells
into subsequent Th1, Th2, or Th17 cells and responses (145–
147). Due to the limited presence of DCs in tissues, isolation is
highly challenging, especially in human studies. Our own studies
using a chronic P. aeruginosa lung infection model revealed
commitment of pulmonary DCs during the infection (148).
Pulmonary DCs was demonstrated as early as 2 days of
initiation onset (148). Interestingly, an increased number of
DCs in the regional lymph node was not detected until day 7
(148). The fraction of activated pulmonary DCs increased during
the 10-day observation period, when demonstrated by CD80 and
CD86 expression (148). In contrast, the percentage of activated
DCs in the lymph node decreased at day 10 (148). The cytokine
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release of the DCs from the lung and lymph node were in general
paralleled. Interestingly however, the initial release of the pro-
inflammatory cytokines IL-6 and IL-12 reached a maximum at
days 2–3, followed by an increased IL-10 production at day 7
(148). This observation, likely represents an essential controlling
role of the DCs in induction of the adaptive immune system
effector functions, impacted by the adjacent innate responses
(148). This is supported by observations from another study,
where P. aeruginosa QS signal molecules diminished the murine
DC IL-12 production, while the IL-10 release remained. In
addition, antigen specific T-cell proliferation was down
regulated by QS exposed DCs. These results indicates that DCs
are inhibited in T-cell stimulation by the P. aeruginosa QS
signals, and by this mechanism contribute to the P. aeruginosa
biofilm pathology (6, 149).

From previous observations of GM-CSF and G-CSF on DCs,
we hypothesized that the increased G-CSF would impact the DC
response in chronically pulmonary P. aeruginosa infected CF
patients, besides recruiting PMNs from the bone marrow (150).
Indeed, the GM-CSF/G-CSF ratio and the IFN-g response
correlated, and interestingly also correlated to a better lung
function. In contrast, IL-3 and IFN-g responses correlated
inversely (150–156). DCs seem to impact host responses in
biofilm infections and represent a potential therapeutic target.

As mentioned above, the innate and adaptive immune
effector elements function in collaboration. As a consequence
of the persistent biofilm infection, the adjacent tissue is impacted
by the injurious oxidative radicals and enzymes originating from
the inflammatory cells. Besides the pathogen related virulence
factors, elastases, proteases, and other exoenzymes resulting from
the inflammation expedites degradation of crucial surface
molecules of the immune cell, further adding to impaired anti-
biofilm mechanisms of the host responses (107, 157–160). The
ineffective host response is considered the key basis of the biofilm
related pathology, since antibodies against several bacterial
virulence factors, such as elastase, lipopolysaccharide, and
flagella have been reported, which presumable should improve
biofilm outcome (161–163). However, these virulence factors are
considered to be involved in pathogenesis, predominantly during
the initial phases and to support development from microbial
colonization to infection per se. Although, the bacterial virulence
factors are less involved in the direct chronic biofilm pathology,
the antibody mediated precipitation of virulence factors and
other microbe antigens results in formation of immune
complexes deposited in the tissues. Since, this leads to
activation of the complement system and PMN opsonization,
tissue damage is the consequence (100).

A special situation of the adaptive immune response and
chronic P. aeruginosa infection of airways is the induction of a
mucosal antibody response represented by specific secretory IgA
(sIgA). The IgG responses can be regarded as an element of the
systemic immune response, and primarily get access to mucosal
surfaces through inflamed epithelium. In contrast, sIgA is the
primary antibody of mucosal surfaces, and it is produced in
double the amount of IgG, and is secreted to the mucosal surfaces
as dimeric sIgA bound to the secretory component (164). At the
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surfaces, sIgA functions through immune exclusion by binding
to the pathogen and its PAMPs without activation of
complement and opsonization. In CF sIgA has been found in
sinuses and correlating to chronic sinusitis, whereas IgG
dominates in the lower airways, where it correlates to
inflammation of the respiratory airways (165). sIgA was also
found to correlate to an early detection of P. aeruginosa of the
lower airways of CF patients (165).
T-CELL RESPONSE AND CLINICAL
OUTCOME IN CF PATIENTS WITH
CHRONIC P. aeruginosa
LUNG INFECTION

The biofilm infection and host response interplay has been best
characterized for CF patients with pulmonary chronic P.
aeruginosa biofilm infections (6). Early intensive antibiotic
therapy, maintenance antibiotic treatment strategy between
exacerbations, and planned elective intravenous antibiotic
courses has become standard of care in CF (11). However, the
natural course of the pulmonary chronic P. aeruginosa infection
revealed a dichotomized outcome. A poor outcome, and a
pronounced or rapid escalation in antibody response, was
reported for most CF patients (166). However, for a small
group of CF patients the humoral response was modest and
these patients had a beneficial outcome (166). In addition, the
intensified antibiotic treatment strategy in CF, resulting in
significantly superior outcomes correlates to less pronounced
antibody responses in CF (167).

By investigating specific cytokine release from re-stimulated
peripheral blood mononuclear cells (PBMCs), and later on
cytokine measurements from unspecific stimulated T cells, a
Th1/Th2 cytokine dichotomy in chronically infected CF patients
was revealed (168, 169). Chronically infected CF patients had a
Th2 dominated cytokine response with increased IL-4 (and IL-5,
IL-10) production and diminished IFN-g production. In
addition, a similar Th1/Th2 cytokine dichotomy was later
demonstrated in bronchoalveolar lavage fluid from subgroups
of CF patients (170, 171). Interestingly, IFN-g release from
PBMCs correlated to an improved lung function, suggesting a
potential beneficial effect of IFN-g (168). Inbred mouse strains
with chronic P. aeruginosa lung infection showed a pronounced
pulmonary IFN-g level in the relatively resistant C3H/HeN
mouse (138, 172). Reinfection of the susceptible BALB/c mice
resulted in a pulmonary Th1 response similar to the C3H/HeN
mice and resembled the course of a primary infection in the
C3H/HeN mice (173).

The explanation for the improved outcome of a Th1
dominated response in CF patients with chronic P. aeruginosa
lung infection is incomplete, especially since the Th1 dominated
response would be more appropriate towards intracellular
pathogens. However, phagocytosis of apoptotic PMNs by
alveolar macrophages before the PMNs progress into necrosis
and thereby increase inflammation, is believed to be involved
(174). Reduction of IL-8, the most important PMN
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chemoattractant is another likely mechanism (175, 176). A
diminished Th2 response would presumably result in a
reduced antibody response, due to reduced B and plasma-cell
stimulation, and subsequently decreased immune complex
formation and tissue damage.

Additional T cell subsets have been described, including the
Th17 subset, characterized by production of IL-17 and
sometimes IL-22 (177). Th17 cells are induced by TGF-b (178)
and may be of interest in CF, since IL-17 induces the PMN
mobiliser G-CSF and chemoattractant IL-8 (179, 180). In this
way, Th17 may add to pulmonary pathology of chronic P.
aeruginosa lung infections (179, 180). In sputum from stable
CF patients and in chronically infected CF patients, IL-17 and IL-
23, was increased as compared to CF patients without chronic P.
aeruginosa lung infections (179). Interestingly, such difference
was not observed in CF patients infected with Staphylococcus
aureus (179). A substantially decreased fraction of peripheral
Th17 cells in CF patients has been reported, and interpreted as
augmented homing of the cells to the lungs, increasing the
pulmonary inflammation (181). Determinations of cytokines
related to Th subsets were conducted in children with CF, and
demonstrated increase of both IL-17A and the Th2 related
cytokines IL-5 and IL-13 in children with symptoms (180). In
contrast, such relationship was not observed for Th1 related
cytokines, indicating a correlation between Th2 and Th17
subsets in CF (180). Such a Th2-Th17 axis could dispose for P.
aeruginosa lung infections, but this has not been clarified yet
(171, 180, 182). Interestingly, T cell suppressive neutrophil
myeloid-derived suppressor cells (MDSCs) has recently been
reported in CF (183, 184). The presence of neutrophil MDSCs in
peripheral blood correlated to improved lung function in CF in
contrast to what would be expected (183). Down regulation of
the harmful and dominating Th2 and Th17 response axis, could
be the mechanism behind this observation.

The role of regulatory T cells (Treg), Th22, and additional T
cell subsets has only been sparsely studied in biofilm infections.
However, decreased levels and reduced functions of these
immune cells in CF patients have been suggested and may
result in augmented IL-17 and IL-8 production (182, 185).
NOVEL POTENTIAL TREATMENT
OPTIONS TOWARDS P. aeruginosa
BIOFILM INFECTIONS

The administration of preformed antibodies or immunoglobulins
to treat various infectious diseases is known as passive
immunization therapy. Passive immunotherapy using avian IgY
immunoglobulins (yolk) targeting P. aeruginosa represents an
alternative to conventional antibiotic therapeutics. IgY is the
predominant serum antibody in chickens and is the avian
homologue of mammalian IgG (186). It accumulates in the egg
yolk from the blood and provides the offspring with humoral
immunity. Hyperimmunization of chickens with specific antigens,
provides high yields of specific IgY antibodies in the egg yolk
(187). In vitro studies with IgY targeting P. aeruginosa showed
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firm binding to flagella and interference with the adhesion of
bacteria to epithelial cells (188). Potentially, such effect could
prevent bacteria from colonizing the respiratory tract.
Additionally, our group has also observed promising effects of
anti-P. aeruginosa IgY. In in vitro studies, respiratory PMN burst
and bacterial killing of P. aeruginosa were shown to be
significantly increased in the presence of anti-P. aeruginosa IgY
(189). Anti-P. aeruginosa IgY seems to affect aggregation of
bacteria resulting in immobilization and increased surface
hydrophobicity, enhancing non-Fc receptor mediated
phagocytosis (190). The observed in vitro effects of anti-P.
aeruginosa IgY, were in accordance with in vivo observations in
an acute murine pneumonia model, where we demonstrated a 2-
log reduction in pulmonary bacteria, which was paralleled by
decreased inflammation in the airways of anti-P. aeruginosa IgY
treated mice as compared tomice receiving non-specific IgY (191).

Potentially, anti-bacterial immunotherapies by means of
pathogen specific IgY augments PMN mediated phagocytic
effects and reduce the level of airway colonization in CF and
may even potentiate the action of anti-pseudomonal antibiotics
(192). Moreover, a clinical study examining the effects of oral
prophylactic immunotherapy with anti-P. aeruginosa IgY in
non-chronically infected CF patients has shown promising
results (193).

Recombinant S100A8/A9 also show promising therapeutic
properties. Our group found that immune modulation of P.
aeruginosa-biofilm infected wounds on BALB/c mice by 4-days
local application of recombinant S100A8/A9, combined with
systemically administered ciprofloxacin, significantly reduced
the bacterial load of the wounds (194). Since in vitro
synergistic effect between S100A8/A9 and ciprofloxacin was
not observed, the effect is highly dependent on host cells (194).
Human studies and animal experiments indicate impairment of
the S100A8/A9 response and that the level of S100A8/A9 is
inappropriate in non-healing wounds. We are currently
investigating this area to improve the understanding of the
pathophysiological multifaceted role of S100A8/A9 in biofilm-
infected wounds.

In adjunctive therapies of non-healing wounds with an
inappropriate anti-biofilm host response, autologous fibrin rich
patches containing thrombocytes and leucocytes are a promising
treatment strategy (195). A three layered 3C patch, is produced
by centrifugation of the patient’s whole blood in a specially
developed device (195). The 3C patch is subsequently applied to
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the chronic wound (196). In an open study on chronic wounds of
various backgrounds, an accelerated healing with 3C patches was
revealed in the majority of the patients (197). The effect is most
likely caused by production of healing growth factors and
cytokines, e.g. PDGF-bb, from thrombocytes (195). In support
of these observations, a substantial PMN activity was observed
inside 3C patches in terms of respiratory burst, PMN
phagocytosis activity and anti-biofilm action (196).
CONCLUSIONS AND PERSPECTIVES

Knowledge of the immune responses and bacterial defense
mechanisms under conditions of biofilm infections is important
as it constitutes an important part of the pathology of biofilm
infections. As documented in the present review, our knowledge of
immune responses to biofilm infections has increased
considerably in recent years and is likely to provide important
treatment tools against biofilm infections in the future. We may
eventually be able to damping harmful immune system activities,
or to activate parts of the immune system that can eradicate
biofilm infections without causing detrimental collateral damage.
In addition, antibiotic augmenting effects of the immune system
could be identified. Alternatively, we may be able to manipulate
the bacteria and down-regulate or eliminate the components of
biofilms that are responsible for the recalcitrance towards immune
system activities.
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