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Abstract

In this paper, we introduce sequence-based multiscale modeling for biomolecular data anal-

ysis. We employ spectral clustering method in our modeling and reveal the difference

between sequence-based global scale clustering and local scale clustering. Essentially, two

types of distances, i.e., Euclidean (or spatial) distance and genomic (or sequential) distance,

can be used in data clustering. Clusters from sequence-based global scale models optimize

spatial distances, meaning spatially adjacent loci are more likely to be assigned into the

same cluster. Sequence-based local scale models, on the other hand, result in clusters that

optimize genomic distances. That is to say, in these models, sequentially adjoining loci tend

to be cluster together. We propose two sequence-based multiscale models (SeqMMs) for

the study of chromosome hierarchical structures, including genomic compartments and

topological associated domains (TADs). We find that genomic compartments are deter-

mined only by global scale information in the Hi-C data. The removal of all the local interac-

tions within a band region as large as 10 Mb in genomic distance has almost no significant

influence on the final compartment results. Further, in TAD analysis, we find that when the

sequential scale is small, a tiny variation of diagonal band region in a contact map will result

in a great change in the predicted TAD boundaries. When the scale value is larger than a

threshold value, the TAD boundaries become very consistent. This threshold value is highly

related to TAD sizes. By the comparison of our results with those previously obtained using

a spectral clustering model, we find that our method is more robust and reliable. Finally, we

demonstrate that almost all TAD boundaries from both clustering methods are local mini-

mum of a TAD summation function.

Introduction

The chromosome, the physical realization of genetic information, is one of the most complex

and important cellular entities [1–7]. Over the past few decades, the significance of its three-

dimensional architecture for supporting essential biological functions, such as DNA
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replication, transcription, repair of DNA damage and chromosome translocation, has gradu-

ally been realized [8–11]. Chromosome conformations are found to be deeply involved in the

development of epigenetic organizations, the regulation of genome functions and the epige-

netic inheritance of various cell states [8]. A thorough understanding of the chromosome

three-dimensional structure is of fundamental importance to the decryption and interpreta-

tion of genetic information, and has become one of the most important topics in genomic and

epigenetic research. Chromosome conformation capture (3C) technique [12, 13] and its

derived methods, including chromosome conformation capture-on-chip (4C) [14, 15], chro-

mosome conformation capture carbon copy (5C) [16] and high-throughput chromosome con-

formation capture (Hi-C) [17], have been developed and begun to uncover general features of

genome organization [17–25].

Recent studies on Hi-C data have demonstrated the existence of two types of structures

known as topologically associating domains (TADs) [18, 19] and genomic compartments [17].

TADs are chromosome components that are about 200 kilobases(Kb) to 2 megabases(Mb).

They are originally found as the contiguous square regions along the diagonal Hi-C maps with

large contact values. More importantly, TADs are very consistent between different cell types

and species and their spatial distributions are highly correlated with many genomic features

such as histone modifications, coordinated gene expression, lamina and DNA replication tim-

ing. Through principle component analysis, two types of genomic compartments, i.e., A and

B, have been identified [17]. More specifically, the compartment B is more densely packed

with higher contact frequencies. On the contrary, the compartment A is chromosome regions

that are more open and accessible. It strongly correlates with the gene loci and higher gene

expression. More recently, analysis on the 1Kb resolution Hi-C data indicates the existence of

six different subcompartments [26].

Based on Hi-C data, various algorithms and models are proposed to study the hierarchical

structure of chromosomes [17, 18, 27–35]. Since TADs are essential to the understanding of

relationship between chromosome structure and gene transcription, developing efficient algo-

rithms to detect TADs is an important topic in Hi-C data analysis. Computationally, hidden

Markov models (HMMs) are the first method to identify TADs [18]. Based on the contacts

located 2Mb upstream and downstream, a directionality index of a locus is calculated in this

model and used to capture the sharp transitions at TADs boundaries. After that, the arrowhead

algorithm with a “corner score” is proposed [26]. This special score indicates the likelihood of

each locus to be at a TAD boundary and can be efficiently evaluated by using dynamic pro-

gramming. Meanwhile, a resolution parameter is considered to identify TADs at various

scales. This algorithm has been incorporated into the software Armatus [27]. Further, a block-

wise segmentation model called HiCseg [28] is proposed. This method reduces the problem of

maximizing the likelihood with respect to the block boundaries into a 1D segmentation prob-

lem, and then employ the standard dynamic programming. More recently, a spectral graph

theory based model is developed for the identification of TADs [36]. In this model, Laplacian

based graph segmentation is applied iteratively to obtain TADs at the given compactness level.

All the above mentioned methods can be roughly divided into two categories, optimization

based local models and graph based global models. In local models, TAD indicators, including

directionality index, corner score, likelihood of TAD boundaries, block-segmentation, are all

evaluated locally within a certain region. In global models, TAD indicators, including eigen-

vectors, within-cluster variance, cluster distances, among others, are all evaluated globally in

the whole domain of Hi-C data.

In this paper, two sequence-based multiscale models (SeqMMs) are introduced. Unlike pre-

vious clustering models, we measure the “similarity” of loci by not only their spatial distances

but also their sequential distances. With the combination of spectral graph method, we find
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that clusters from sequence-based global scale models optimize Euclidean distance relations,

and these models can be used in genomic compartment analysis. In contrast, clusters from

local scale models optimize genomic distance relations, and these models can be used in TAD

analysis. Essentially, our SeqMMs provide a way to explore the hierarchical structures of

chromosomes.

Mathematically, genomic compartments are defined from principal component analysis

[17], they are global structural features. The loci in the same genomic compartment are spa-

tially close to each other. But their sequential distances can be very large. Based on global scale

clustering, we design Type-1 SeqMM and use it for genomic compartment analysis. In con-

trast, TADs are local structural features. The loci in the same TAD are not only spatially close

to each other, but also sequentially adjacent to each other. Their sequential distances are usu-

ally within a certain genomic distance. Based on local scale clustering, we introduce Type-2

SeqMM and use it in TAD analysis.

Methods

As a discrete representation of geometries, manifolds, high-dimensional structures, abstract

relations and complicated subjects, point cloud data (PCD) are widely used in computer sci-

ence, engineering, scientific computing and data science. Particularly, PCD and PCD based

classification or clustering methods [37], including K-means, hierarchical clustering, spectral

clustering, modularity, graph centrality, network approaches, etc, have been constantly used in

biomolecular data analysis. However, as demonstrated in Fig 1, biomolecular structure data

are essentially different from the general PCD, as they incorporate a unique sequential infor-

mation. The simulated structure corresponds to chromosome 22 from Human ES Cell line

and is generated by using software shRec3D [33].

To have an intuitive understanding of the sequential information in PCD analysis, we con-

sider a DNA structure with PDB ID 1ZEW. Using atomic coordinates, a weight matrix is

Fig 1. The comparison between point cloud data and biomolecular data. The simulated configuration of Human ES Cell chromosome 22 are generated by using the

software shRec3D [33].

https://doi.org/10.1371/journal.pone.0191899.g001
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constructed. The weight values are defined by using the rigidity function [38],

M ¼ fMij ¼ e� ðrij=ZÞ2 j i ¼ 1; 2; . . . ;N; j ¼ 1; 2; . . .Ng; ð1Þ

where rij is the Euclidean distance between i-th and j-th atoms, N is the total number of atoms

and η is the scale parameter that controls the influence range of each atom. In this case, we

choose η = 8 Å. The weight matrix is illustrated in Fig 2(c2). Two more matrices are

Fig 2. The illustration of two essential different clustering approaches, local scale clustering and global scale clustering. The local scale clustering optimizes

sequential distances and is suitable for TAD analysis. The global scale clustering only considers spatial information and can be used in genomic compartment analysis.

https://doi.org/10.1371/journal.pone.0191899.g002

Sequence-based multiscale modeling for Hi-C data analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0191899 February 6, 2018 4 / 16

https://doi.org/10.1371/journal.pone.0191899.g002
https://doi.org/10.1371/journal.pone.0191899


constructed by dividing the weight matrix into a diagonal band region as in Fig 2(a2) and the

remaining off-diagonal regions as in Fig 2(b2). Based on these three matrices, we can decom-

pose the DNA structure into two parts using the spectral clustering method [37, 39]. Results

are illustrated in Fig 2(a1), 2(b1) and 2(c1). It can be seen that, if we only consider relations

between sequentially adjacent atoms, which are represented in the diagonal region, the DNA

structure will be clustered into two complementary helix chains. However, if we use the whole

matrix or only off-diagonal regions, the DNA structure will be divided in the middle region

with two chains in each cluster.

Generally speaking, Fig 2 demonstrates two types of sequence-based models, i.e.,

sequence-based local models and sequence-based global models. It can be seen that their

properties in structure decomposition differ greatly. In the first type, atoms with shorter

sequential distances are more likely to be grouped into the same cluster. In the second one,

spatially close atoms, i.e., atoms with large weight values, are more likely to be assigned to

the same cluster. Mathematically, the sequence-based local model optimizes sequential

distances, while the global model optimizes spatial distances or Euclidian distances. All

PCD based classification and clustering methods belong to the second type. Therefore,

the direct application of these methods in biomolecular data analysis may have some

limitations.

In Hi-C data analysis, sequential information is usually highly relevant. Fig 3 demonstrates

a potential problem for global scale clustering in TAD analysis. In this figure, genomic loci are

represented by red pentagons. It can be seen that the spatial distance between the two loci in

any red circle is much shorter than the one in green circles, while sequential distances are

exactly the opposite. If we use the traditional PCD based clustering methods, two loci in the

same red circle will always have priority to be clustered into the same TAD. Obviously, this

will cause serious interpretation problems, as the sequential distance between the two loci can

be much larger than the size of a TAD.

Sequence-based multiscale modeling

It should be noticed that two distance definitions, i.e., Euclidean distance and sequential dis-

tance, are greatly different and matter a lot in multiscale modeling. The Euclidean distance is

just the three dimensional distance between two elements. In Hi-C data, Euclidean distance

between genomic loci is inversely related to their contact frequencies [35]. In contrast, the

sequential distance is defined between two elements on chains or polymers. If sequential num-

bers are assigned to elements, a sequential distance is just the difference between these two

integers and it is always an integer. In Hi-C data, sequential distance between two loci is their

genomic distance.

Even though graph and network based multiscale models are widely used in biomolecular

structure and function analysis [40–49], the measurement defined in these models are in terms

of the Euclidean distance. To be more specific, when we discuss atomic scale, residue scale, sec-

ond structure scale, tertiary structure scale, etc, we are analyzing structural elements based on

their sizes measured in Euclidean distances.

In this section, the sequence-based multiscale modeling is proposed for biomolecular data

analysis, particularly for Hi-C data analysis. In our multiscale models, a scale parameter Nb is

defined not from the Euclidean distance but from the sequential distance. The parameter Nb

can be viewed as a cut-off sequential distance. In Hi-C matrices, the parameter Nb specifies the

size of the diagonal band region. Further, two sequence-based multiscale models are proposed

for analyzing chromosome genomic compartments and TADs. These two models, denoted as

Sequence-based multiscale modeling for Hi-C data analysis
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Type-1 SeqMM and Type-2 SeqMM, are derived from the perspective of local scale clustering

and global scale clustering, respectively.

Type-1 SeqMM. In Type-1 SeqMM, we remove sequentially short-range interactions by

changing the value of scale parameter Nb. More specifically, for a Hi-C matrix, a diagonal band

Fig 3. A potential problem for global scale clustering in TAD analysis. Each locus is represented by a red pentagon. Global scale clustering considers only spatial

relations, thus groups loci in each red dash circle as a cluster. Biologically, loci in each green circle are more favorable to be clustered into the same TAD, as their

sequential distances are much shorter. The missing of sequential information in global scale clustering will cause problems in the TAD analysis.

https://doi.org/10.1371/journal.pone.0191899.g003
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region with size Nb is systematically removed from the model, resulting a new Hi-C matrix as

following,

MSeq
ij ¼

Mij; ji � jj � Nb

0; ji � jj < Nb

:

(

ð2Þ

Here Mij can be the original or normalized contact frequencies. It can seen that our Type-1

SeqMM is defined by taking away the local interactions from the model and is designed for

global scale clustering. An example can be found in Fig 6(a) to 6(c). We suggest that it can be

used in chromosome genomic compartment analysis.

Type-2 SeqMM. In Type-1 SeqMM, when short-range interactions are systematically

removed from the biomolecular data, long-range interactions are preserved. Type-2 SeqMM is

designed in the exact opposite way,

MSeq
ij ¼

Mij; ji � jj > 0 and ji � jj⩽Nb

0; ji � jj > Nb

�
PN

i6¼j M
Seq
ij ; i ¼ j

:

8
>>><

>>>:

ð3Þ

The scale parameter Nb controls the size of the diagonal band region.

Mathematically, our SeqMM matrix in Eq (3) is a weighted Laplacian matrix, which plays

an important role in graph representation and spectral clustering [37, 39, 50]. The second

smallest eigenvalue and its associated eigenvector from the Laplacian matrix, are known as the

Fiedler value (or algebraic connectivity) and the Fiedler vector, respectively. The Fiedler value

is an important measurement of the general topological connectivity of a graph. The Fiedler

vector gives an optimized classification of a graph into two separated domains [39, 50]. In our

Type-2 SeqMM, the local interaction region can be systematically enlarged to model the differ-

ent scales of interactions.

Type-2 SeqMM is proposed for chromosome TAD analysis. After Hi-C data preprocessing,

a weighted Laplacian matrix can be generated by using a suitable scale value Nb. The TAD

number in the data is estimated based on size and resolution of the Hi-C matrix. We assume

the size of TAD to be around 2Mb, and TAD number Nc can be roughly calculated by dividing

the total length over 2Mb. The basic procedure is presented in Algorithm 1. It should be

noticed that the final number of TADs is usually larger than Nc. The Code is available at

S1 File.

Algorithm 1 Type-2 SeqMM for TAD analysis
Pre-processing: Remove all rows and columns, that summed together
equal to zero (or smaller than a pre-defined range); Transform the Hi-C
contact frequencies to spatial distances (default function f(x) = log
(1 + x));
Step 1: Choose a scale parameter Nb to construct a weighted Laplacian
matrix as in Eq 3;
Step 2: Calculate the first Nc eigenvectors. Here Nc is the estimated
number of TADs;
Step 3: Employ the K-means algorithm on the Nc eigenvectors to identify
Nc clusters;
Step 4: Subdivide each cluster into several TADs until the loci in each
TAD are sequentially contiguous.

Sequence-based multiscale modeling for Hi-C data analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0191899 February 6, 2018 7 / 16

https://doi.org/10.1371/journal.pone.0191899


Results

Genomic compartments

The genomic compartment is defined from the principal component analysis of Hi-C data.

Mathematically, the principal component captures the global shape of a structure. In Chen’s

spectral method [36], it shows that the genomic compartment results from the first principal

component (FPC) are identical to the predictions made from the lowest-frequency eigenvector

of weighted Laplacian matrices. More interesting, as proved in the elastic network model and

normal mode analysis, these lowest-frequency eigenvectors are uniquely determined by the

global geometric information of structures [51–54].

Since the FPC describes the global properties of a structure, we use the Type-1 SeqMM for

our genomic compartment analysis. We consider the GM06990 chromosome 14 data with res-

olution 100Kb. This is a classic example used for genomic compartment analysis [17]. Before

the principal component analysis (PCA), the chromosome 14 Hi-C matrix is processed. We

remove all columns and rows with all zero values and normalize the matrix using the Toeplitz

matrix [17]. After that, we construct a new matrix by removing the diagonal band region with

Nb = 60 from the normalized Hi-C matrix, and calculate its FPC. Further, we compare this

new FPC with the original one. Results are shown in Fig 4. The blue line represents the FPC

from the original Hi-C matrix and red line represents the FPC from the off-diagonal matrix. It

can be seen that they are almost identical to each other. Actually, the Pearson correlation coef-

ficient (PCC) between the two FPCs is as high as 0.991, meaning that the removal of the diago-

nal band region have almost no influence to the FPC.

To have a more quantitative understanding of the FPC and Hi-C diagonal regions, we con-

tinuously change the value of the scale parameter Nb to generate a series of Hi-C matrices at

different scales. Then we systematically calculate their FPCs and measure the similarity

between these FPCs with the original one by PCCs. Results are shown in Fig 5. It can be seen

that PCCs changes very slowly when scale parameter is smaller than 100, which is 10 Mb in

genomic distance. State differently, we can get almost the same genomic compartment even

when we remove all the Hi-C data within the 10 Mb band region. It should be noticed that

almost all the largest Hi-C value, i.e., contact frequencies, are located within this 10 Mb band.

These values, however, are irrelevant to the chromosome genomic compartment!

We further test our SeqMM on other GM06990 chromosomes. A very consistent pattern

can be observed. Results of chromosomes 1, 5, 9 and 13 are illustrated in Fig 6. It can be seen

that the shape decrease of PCCs is usually found at around 100 locus (10 Mb in genomic dis-

tance). This indicates a transition between local scales to global scales. Further studies are

needed to explain its biological implications.

Topological associated domain

Another very important finding in Hi-C data analysis is the topological associated domain.

TADs are megabase-sized local chromatin interaction domains. They have loop structures and

are highly stable and conserved across various cell types and species. TAD boundaries are

found to be enriched with the protein CTCF, housekeeping genes, transfer RNAs and short

interspersed element (SINE) retrotransposons [18, 23, 24, 26]. These components play impor-

tant roles in establishing and supporting TADs and other architectural structures of the chro-

mosome. Due to the structural and functional importance of TADs, various algorithms have

been proposed for the identification of TADs as stated in the introduction part. However, the

sequential information is not considered in any of these models.

Sequence-based multiscale modeling for Hi-C data analysis
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In this section, Type-2 SeqMM is used to study chromosome TADs. In our Type-2 SeqMM,

the clustering is done by using K-means method on eigenvectors from spectral graph model.

The basic procedure of the algorithm is illustrated in Algorithm 1. To explore the relation

between the band size and TAD boundaries from the clustering, we consider a 100Kb resolu-

tion Hi-C matrix for chromosome 22 from IMR90 cell line. We systematically change the

band size Nb from 20, 80, 140 to 200. The corresponding TAD boundaries are illustrated in Fig

7. It can be seen that the TAD regions evaluated from different scales are not exactly the same

and have some variations. Particularly when the band size Nb change from 20 to 80, the calcu-

lated TAD regions are quite different. Further, when the band size is larger than 80, although

the TAD boundaries are still not the same, they share more and more common values.

To have a more quantitative understanding of this, we systematically change the scale

parameter Nb from 2 to 351 (the size of the normalized Hi-C matrix) and calculate the TAD

boundaries. Results are shown in Fig 8. We can find that when the value of scale parameter Nb

is small, a tiny change of its value can result in huge variations of the predicted TAD bound-

aries. However, when the scale parameter is larger than a certain value, the fluctuations in the

Fig 4. The irrelevance of local interactions in genomic compartment analysis. (a) The 100Kb resolution Hi-C data for GM06990 chromosome 14. (b) The

chromosome 14 Hi-C data with zero contact frequencies in the diagonal band region. The band size, or scale parameter, Nb equal to 60, which amounts to 6 Mb

genomic distance. (c) The principal components from the two matrices, blue line for (a) and red line for (b), have almost the same behavior. The Pearson correlation

coefficient between these two first principal components is 0.991.

https://doi.org/10.1371/journal.pone.0191899.g004
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Fig 5. The Type-1 SeqMM for genomic compartment analysis of GM06990 chromosome 14. It is found that the local interactions within a band size around 10 Mb

genomic distance contribute very little to genomic compartments. (a)-(c) The illustration of the Hi-C matrices in Type-1 SeqMM. The sizes of the diagonal band

region removed from the Hi-C data go from Nb = 50, Nb = 150 to Nb = 250. (d) The PCCs between the first principal components from the original Hi-C matrix and

the Hi-C matrices from our Type-1 SeqMM. A high PCC value is observed when the band size is smaller than 10 Mb, meaning the removal of data in this band region

has almost no significant influence in the genomic compartments.

https://doi.org/10.1371/journal.pone.0191899.g005

Fig 6. The Type-1 SeqMM for genomic compartment analysis of GM06990 chromosomes 1, 5, 9 and 13. (a)-(d) The PCCs between the first principal components

from the original Hi-C matrix and the Hi-C matrices from our Type-1 SeqMM. Form (a) to (d), the PCC results are for GM06990 chromosomes 1, 5, 9 and 13,

respectively. A consistent behavior has been observed. High PCCs are obtained when band sizes are smaller than around 10 Mb genomic distance. The results confirm

our finding that local interactions within a special band region have very little contribution to genomic compartments.

https://doi.org/10.1371/journal.pone.0191899.g006

Fig 7. The illustration of TADs calculated for our Type-2 SeqMM. The 100Kb resolution Hi-C matrix for chromosome 22 from IMR90 cell line is considered. All

predicted TAD boundaries are marked by blue lines. From (a) to (d), the band sizes are Nb = 20, 80, 140 and 200, respectively. The predicted TAD boundaries are

relatively consistent when Nb is larger than 80. To facilitate a better visualization, the matrices values are correlation coefficients of the normalized Hi-C matrix [17].

https://doi.org/10.1371/journal.pone.0191899.g007
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predicted TAD boundaries are greatly reduced. The threshold value is roughly about 20, which

is 2 Mb in genomic distance.

We further apply the spectral approach used in Chen’s method [36] on the multiscale Lapla-

cian matrices in Eq (3). Results are shown in Fig 9. It can be seen that the variation of the pre-

dicted TAD boundaries by his method is much larger than that of our Type-2 SeqMM. More

interestingly, the amplitude of variation below the threshold (2 Mb) is much larger than the

one after the threshold, which is the same as in our model. Biologically, the threshold value

should be highly related to the TAD properties. This is because when the band sizes Nb of our

multiscale matrices are smaller than the size of TADs, local interactions within TADs are

removed from our models, resulting in a much larger variation in predicted TAD boundaries.

However, when the band size is larger than 2Mb, all TAD-related local interactions will be

considered, thus a much consistent TAD boundaries should be expected. Stated differently,

since TADs are mainly determined by local interactions within the 2Mb band region, the cal-

culated TAD boundaries should always be the same for multiscale matrices with Nb larger than

2Mb. In this sense, our Type-2 SeqMM is much more robust and reliable than Chen’s method

[36] as a much smaller variation is observed in our model when Nb is larger than 2Mb. Mathe-

matically, in Chen’s spectral method, the global scale clustering is iteratively used to subdivide

contact matrix or matrix region into two subregions until the algebraic connectivities within

the submatrices are all smaller than certain threshold. Therefore, this method optimizes only

spatial distances between different loci.

Fig 8. The illustration of TAD boundaries calculated by our Type-2 SeqMM. The 100Kb resolution Hi-C matrix for chromosome 22 from IMR90 cell line is

considered. All predicted TAD boundaries are marked by the blue color. It can be seen that, the predicted TAD boundaries are relatively consistent.

https://doi.org/10.1371/journal.pone.0191899.g008
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Further, even with the difference between the two models, both methods capture the local

minimum of a TAD summation function. We consider the 100Kb resolution Hi-C matrix for

chromosome 22 from IMR90 cell line. The band size Nb is chosen as 60, which is amount to 6

Mb in genomic sequence. We summarize the contact matric values along the direction that

is perpendicular to the matrix diagonal. Results are shown as the black lines in Fig 10(a) and

10(b). The TAD boundaries from Chen’s method and our Type-2 SeqMM are illustrated by

blue and red lines. It can be seen that nearly all of these lines are located at the local minima of

the summation function. More interestingly, the two methods share many common TAD

boundaries. This indicates that the situation illustrated in Fig 3 does not widely exist. This can

also be confirmed from the behavior of off-diagonal values. Usually, the off-diagonal values

decrease very quickly outside the TAD regions, meaning the distance between a locus from a

TAD and a locus outside this TAD is usually very large.

Conclusion

In this paper, we discuss a sequence-based multiscale clustering model for biomolecular data

analysis. Biomolecules and their complexes are hierarchical structures made from one or sev-

eral polymer chains. With the sequential information embedded in these polymer chains, bio-

molecular data are fundamentally different from the general point cloud data. Traditional

clustering methods derived from point cloud data, fall short when sequential information

Fig 9. The illustration of TAD boundaries calculated by Chen’s spectral method [36] for our Type-2 sequence-based Hi-C matrix models. The 100Kb resolution

Hi-C matrix for chromosome 22 from IMR90 cell line is considered. All predicted TAD boundaries are marked by the blue color. It can be seen that, the predicted

TAD boundaries have a much larger variation compared with our results in Fig 8.

https://doi.org/10.1371/journal.pone.0191899.g009
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matters. To overcome this problem, we propose a sequence-based multiscale model for biomo-

lecular structure analysis. We generate a series of structural matrices by gradually and system-

atically removing the short-range or long-range interactions. These new matrices focus on

different sequential scales and their clustering has different biological interpretations. Two

SeqMMs have been applied to Hi-C data analysis. We find that the genomic compartments

only relate to the global scale information. The removal of a diagonal band region as large as

10 Mb has very little influence to the finally compartment results. Further, we study TADs

with our local scale models. We find that when sequence scale is small, a tiny variation of its

value will result in great changes in TAD boundaries. However, when the scale value is larger

than a threshold value, the TAD boundaries become very consistent. This threshold value is

highly related to the sizes of TADs. Interestingly, our method is much more robust than a pre-

vious spectral clustering method in the TAD analysis.
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