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Abstract

Dermal wound healing is a complex process which requires the interaction of many cell

types and mediators in a highly sophisticated temporal sequence. Myeloid cells which com-

pose of a significant proportion of the inflammatory cells infiltrate to the to a wound site

where they play important roles in clearance of damaged tissue and microorganisms. Mye-

loid cells have the capacity to be converted into fibroblast-like cells and endothelial cells dur-

ing wound healing process. However, whether myeloid cells in wounds can convert into

epithelial cells where they contribute to healing process is not clear. In this study, we per-

formed double immunofluorescent staining with antibodies for hematopoietic cells and kera-

tinocytes as well as cell tracing technique to investigate hematopoietic cell conversion. The

result showed that during the healing process, some of the CD45-positive hematopoietic

cells also expressed keratin 14, a marker for keratinocytes. Further, double immunofluores-

cent staining in dermal wounds, using CD11b and K14 antibodies indicated that CD11b-pos-

itive myeloid cells were the origin of newly generated epithelial cells. Through tracing

injected labeled splenocyte-derived myeloid cells in skin, we confirmed that myeloid cells

were able to convert into keratinocytes in repaired skin. Furthermore, our results from in vivo

experiments provided new information on contribution of myeloid cells in hair follicle regen-

eration. In conclusion, this work highlights the myeloid cell contributions in wound repair and

hair follicle regeneration through conversion of M-CSF-stimulated CD11b-positive myeloid

cells into epithelial cells in a murine model.

Introduction

Dermal wound healing is a dynamic process involving the coordination of epidermal keratino-

cytes, dermal fibroblasts, endothelial cells and infiltrated hematopoietic cells. After injury, it is

thought that fibroblasts residing in the reticular dermis of wound edge contribute to the der-

mis replacement while basal keratinocytes and epithelial stem cells accomplish the re-epitheli-

alization through cell migration and proliferation [1]. It may be true for the healing of a small

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0262060 June 23, 2022 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Li Y, Alnojeidi H, Kilani RT, Ghahary A

(2022) M-CSF-stimulated myeloid cells can

convert into epithelial cells to participate in re-

epithelialization and hair follicle regeneration during

dermal wound healing. PLoS ONE 17(6):

e0262060. https://doi.org/10.1371/journal.

pone.0262060

Editor: Kanhaiya Singh, Indiana University Purdue

University at Indianapolis, UNITED STATES

Received: December 15, 2021

Accepted: March 31, 2022

Published: June 23, 2022

Copyright: © 2022 Li et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting information

files.

Funding: This work was supported by The

Canadian Institute of Health Research (CIHR, FRN

# 136945, awarded to AG).

Competing interests: The authors have declared

that Aziz Ghahary is the leading inventor of a

disclosure innovation entitled” A novel cell therapy

in reversing the progression of auto-immune

https://orcid.org/0000-0002-3631-6715
https://orcid.org/0000-0002-6108-7686
https://doi.org/10.1371/journal.pone.0262060
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0262060&domain=pdf&date_stamp=2022-06-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0262060&domain=pdf&date_stamp=2022-06-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0262060&domain=pdf&date_stamp=2022-06-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0262060&domain=pdf&date_stamp=2022-06-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0262060&domain=pdf&date_stamp=2022-06-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0262060&domain=pdf&date_stamp=2022-06-23
https://doi.org/10.1371/journal.pone.0262060
https://doi.org/10.1371/journal.pone.0262060
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


skin wound. However, a large full-thickness wound is unlikely to heal solely just through

migration and proliferation of skin cells resided at the wound edge. Last few years, we have

proposed and begun to investigate whether a subset of infiltrated hematopoietic cells have a

capacity to convert into skin cells or stem cells and thereby contributing to skin wound heal-

ing. In fact, in a previous publication, our result showed that injection of M-CSF-cultured

adherent hematopoietic cells to skin could accelerate skin wound healing [2]. Other studies

demonstrated that in addition to fibroblasts migrated from the wound edges, monocyte-

derived fibrocytes from circulation [3] and residing macrophages could convert to fibroblast-

like cells and contribute to dermal tissue repair [4].

During the healing process in different tissues, it has been noticed that hematopoietic stem

cells or hematopoietic cells have the capacity to be transdifferentiated into tissue specific cells

such as neuronal cells, endothelium, skeletal muscle, hepatocytes and epithelial cells [5–9]. The

capacity of hematopoietic stem cell or hematopoietic cell transdifferentiation has been ques-

tioned by some studies indicating cell fusion of hematopoietic cells with other cells rather than

transdifferentiation in vivo, and mimic appearance of transdifferentiation from grafted

hematopoietic cells after transplantation [10–12]. However, new evidence from recent study

by using cell tracing technique and single cell sequencing strongly support that hematopoietic

cell specifically myeloid cells can convert to solid organ specific cells. For example, myeloid

cells in wound bed have been demonstrated to convert to fibroblast-like cells [4] while csf1r-

expressing erythro-myeloid progenitors can convert to endothelial cells in blood vessels during

embryo development and in adult [13].

To further assess whether infiltrated hematopoietic cells in wound bed can convert to epi-

thelial cells, contribute to epithelialization and skin hair follicle regeneration, here, we used

antibodies for hematopoietic cells and keratinocytes for double immunofluorescent staining as

well as cell tracing approach to address this question. The result showed that infiltrated mye-

loid cells could not only convert to keratinocytes for repairing damaged skin but also contrib-

ute to hair follicle regeneration in a mouse skin wound healing model.

Materials and methods

Mice

Balb/C and C57BL/6 were purchased from The Jackson Laboratory (Bar Harbor, Maine). All

experimental procedures were approved by the University of British Columbia Animal Care

Committee. The methods were carried out in accordance with the approved guidelines. All

mice were euthanized by carbon dioxide gas after anesthesia by isoflurane inhalation, accord-

ing to the recommendation by Animal Care Committee, at indicated time points. Tissues were

collected for histological analyses after euthanasia.

Skin wound model

Two eight-millimeter punch biopsy excisional wounds were created on the dorsal skin of

mouse after mouse was anesthetized by isoflurane inhalation. To prevent contraction of

wounds, silicon splints were used to allow wounds to heal through granulation and re-

epithelialization.

Immunofluorescent staining

Skin samples were fixed with 10% formalin. About 5 μm thick sections were cut and used for

immunofluorescent staining. Following deparaffinizing and antigen retrieval, skin sections

were incubated overnight with primary antibody after blocking non-specific binding with
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blocking solution containing 5% bovine serum albumin for one hour. For cell staining, cells

were fixed with 10% formalin, blocked with blocking solution and incubated with primary

antibody overnight without performing antigen retrieval. After washing three times with phos-

phate buffered saline (PBS) or PBS-T (0.1% Triton X-100 in PBS) at room temperature, sec-

tions or cells were incubated with secondary, fluorescein-conjugated antibodies for another

one hour. After washing three times, cells (or sections) were stained with 1.5% Vectashield

mounting medium containing DAPI (Vector Laboratories, Burlington, ON, Canada). Images

were captured using a Zeiss Axioplan 2 fluorescence microscope and AxioVision image analy-

sis software. The primary and secondary antibodies used in this study were listed in S1 Table.

Isolating and culturing cells from mouse skin

Mouse skin was harvested and washed three times with PBS containing three folds of antibi-

otic-antimycotic (Invitrogen Life Technologies, Carlsbad, CA). Skin was minced into small

pieces (about 2–3 mm × 2–3 mm) and digested by incubation with 1 mg/mL collagenase V

(Millipore Sigma, Oakville, ON, Canada) in PBS for one hour with shaking (250 rpm). The col-

lagenase was then neutralized by adding an equal volume of Dulbecco’s Modified Eagle

Medium (DMEM, Invitrogen Life Technologies) with 10% fetal bovine serum (FBS, Invitrogen

Life Technologies). Cells were filtered through a 70 μm cell strainer and washed twice with

DMEM containing 10% FBS. Cells were cultured in DMEM with 2% FBS for further

experiments.

Culturing myeloid cells

Splenocytes were isolated from either Balb/C or C57BL/6-Tg (UBC-GFP) mice. GFP mice

were kindly provided by Mr. Darrel Trendall at Jack Bell research Centre, University of British

Columbia. After mice were euthanized by carbon dioxide gas after anesthesia, mice spleens

were taken and splenocyte-derived myeloid cells were generated by culturing them in a

medium containing 5 ng/ml M-CSF using a previously reported method [2]. Cells in passage

two were used for cell injection to the mice.

Labeling cells in vitro by 1,1’-dioctadecyl-3,3,3’,3’-

tetramethylindocarbocyanine perchlorate (Dil) prior to injection

Splenocyte-derived, M-CSF-cultured myeloid cells at passage 1–2 were used for this experi-

ment. Cells were detached by trypsin-EDTA, spun down and then re-suspended in 1 mL PBS

containing 20 μg/mL Dil (Invitrogen Life Technologies) and incubated for 15 minutes at room

temperature. Unbound Dil was then saturated with 1 mL of FBS and removed by centrifuga-

tion and washing three-times with cell culture medium. Dil-labeled cells in PBS were ready for

injection.

Intradermal injection of myeloid cells to the healthy skin of wounded mice

When excisional wounds were created by punch biopsy in mice under the anesthesia, one mil-

lion Dil-labeled or GFP expressing myeloid cells in 100 μL PBS were intradermally injected

simultaneously at one spot on the dorsal healthy skin, one centimeter far from the edge of

wounds.
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Statistical analysis

All data were presented as the mean ± standard deviation. Statistical analyses were performed

with GraphPad inStat software. P values were calculated using two-tailed unpaired student’s t

test. A p value of<0.05 was considered as statistically significant.

Results

Distributions of hematopoietic cells in healed skin wounds

It is well known that hematopoietic cells such as neutrophils, lymphocytes and monocytes can

infiltrate to the wound sites during the healing course after skin injury [14]. We first investi-

gated whether hematopoietic cells are still present in the wounded skin after wounds were

completely healed. To do this, we created dermal wounds by an eight-millimeter size punch

biopsy at dorsal skin of mice (Total 16 wounds were created from 8 Balb/C mice), used silicon

splint to prevent wound contraction, and collected skin samples at day 14 (wounds were closed

around day 10–12). As shown in Fig 1A, using an antibody for hematopoietic cell marker,

CD45 to perform immunofluorescent staining in wounded skin of mice, a large population

CD45-positive cells were revealed at not only dermis but also epidermis of 3 of 16 complete

epithelialized wounds. To compare the difference of CD45-positive cell number in normal

skin and wounded skin of mice, five normal and five wounded skin samples were tested by an

immunofluorescent staining with CD45 and the ratio of CD45-positive cell number and the

total cell number (DAPI stain, blue) were calculated. A markedly higher number of CD45-po-

sitive cells in wounded skin was found as compared to that in uninjured normal skin

(55.6 ± 12.3% vs 4.5 ± 1.3%; wounded skin vs Normal skin, n = 5) (Fig 1B).

Conversion of hematopoietic cells to keratinocytes in repaired epidermis of

skin

As shown in Fig 1A, some of CD45 positive hematopoietic cells were distributed at epithelial-

ized epidermis. Here, we further investigated whether infiltrated hematopoietic cells were also

able to convert to keratinocytes or keratinocyte-like cells. To address this question, tissue sec-

tions from healed skin wounds and normal skin of mice were stained with antibodies for

CD45 and keratinocyte marker, keratin 14 (K14). The result showed that some double positive

cells were found at the basal layer of re-epithelialization part of epidermis while none of double

positive cells was found in uninjured normal skin (Fig 2A). To confirm this result, we further

isolated skin cells from wounded skin by collagenase digestion, cultured for 48 hours and per-

formed a double immunofluorescent staining with antibodies for CD45 and K14. As shown in

Fig 2B, in consistence with the result shown in Fig 2A, some of the K14 positive keratinocytes

were also positive for CD45, suggesting that some of CD45-positive hematopoietic cells con-

vert to epithelial cells and contribute to epithelialization after injury.

Myeloid cells are the cellular origin of hematopoietic cells converting to

keratinocytes in wounded skin of mice

As myeloid cells have been suggested to be the cellular origin of converted fibrocytes [3], fibro-

blast-like cells [4] and endothelial cells [13], here, we examined whether keratinocytes con-

verted from infiltrated CD45-positive hematopoietic cells were originated from myeloid cells.

By using double immunofluorescent staining with antibodies CD45 and myeloid cell marker

CD11b to detect wounded skin of mice, we found the most of CD45-positive cells distributed

in repaired epidermis were also positive for CD11b (Fig 3A). We then performed a double

immunofluorescent staining with CD11b and K14 antibodies in wounded mouse skin. The
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result showed that some of CD11b-positive cells located near basal membrane layer of epider-

mis were also stained K14 (Fig 3B). A similar result was obtained in cultured skin cells from

wounded skin of mice (Fig 3C). These results suggest that CD11b-positive myeloid cells are

the origin of keratinocytes generated from hematopoietic cells.

To provide evidence that M-CSF-cultured myeloid cells have the capacity to convert to ker-

atinocytes in vivo, splenocytes from normal Balb/C mice were isolated, cultured in M-CSF

Fig 1. CD45-positive hematopoietic cells in skin wounds of mice. (A) Immunofluorescent staining in normal and

wounded skin of mice with CD45 antibody. Balb/C mice with eight-millimeter punch biopsy excisional wounds for 14

days were euthanized and wounded skin and normal dorsal skin were harvested and fixed. Skin sections were prepared

for immunofluorescent staining with CD45 antibody (green). DAPI (blue) was used as a nuclear counterstain. Scale

bars in all images was 50 μm. A representative of wounded skin of 16 wounds from 8 mice was shown. (B) The

statistical analysis of CD45 positive cell percentage in skin sections is depicted. Ten HPF of five normal and five

wounded skin were counted (n = 5).

https://doi.org/10.1371/journal.pone.0262060.g001
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Fig 2. Conversion of CD45-positive hematopoietic cells to keratinocytes in re-epithelialization skin of mice. (A) Double

immunofluorescent staining with keratin-14 (K14) and CD45 antibodies in normal skin (Top panels) and wounded skin (Bottom panels) of

Balb/C mice. Wounded skin was taken from mice with 8 mm punch biopsy of excisional wounds after wounding for 14 days. (B) Double

immunofluorescent staining with K14 and CD45 antibodies in cultured skin cells isolated from wound edge of Balb/C mouse skin. Skin cells

were isolated from the edge of wounded skin of mice by collagenase digestion. Cells were cultured for 48 hours before fixation and

performing an immunofluorescent staining. DAPI (blue) was used as a nuclear counterstain. Scale bars in all images was 50 μm.

https://doi.org/10.1371/journal.pone.0262060.g002
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medium and adherent cells were labeled with Dil. We also used a similar approach to culture

myeloid cells from UBC-GFP transgenic mice but without Dil labelling. More than 94% cells

cultured in this condition were CD11b positive while none of adherent cells were positive for

Pro-col (fibroblasts) or K14 (keratinocytes) (S1 Fig). One million of either Dil-labeled or GFP-

expressing syngeneic myeloid cells were then intradermally injected to the normal skin one-

centimeter from the edge of wounds which were generated by eight-millimeter punch biopsy

on the dorsal skin of either the Balb/C or C57BL/6 mice, respectively (Fig 4A). Similar wounds

were generated on the same strain of mice without cell injection as controls. Skin samples

from healed wounds were collected after 14 days when mice were euthanized. Skin sections

Fig 3. Myeloid cells are the cellular origin of hematopoietic cell-converting keratinocytes. (A) Double immunofluorescent staining

with antibodies of CD45 and myeloid cell marker CD11b in wounded skin of mice. (B) Double immunofluorescent staining with

antibodies of CD11b and K14 in wounded skin of mice. (C) Double immunofluorescent staining with antibodies of CD11b and K14 in

cultured skin cells. Skin cells were isolated by collagenase digestion from wounded edge skin of Balb/C mice after injury for 14 days and

cultured for 48 hours in vitro before fixation and staining. DAPI (blue) was used as a nuclear counterstain. Scale bars in all images was

50 μm.

https://doi.org/10.1371/journal.pone.0262060.g003
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Fig 4. Distribution of injected splenocyte-derived myeloid cells in healed mouse skin. (A) Schematic figure of Dil-labeled or GFP-

expressing mouse myeloid cell lineage tracing experiments. Splenocytes were isolated from spleens of Balb/C or C57BL/6-Tg (UBC-GFP) mice

and cultured in a medium containing 5 ng/ml of M-CSF to generate myeloid cells. One million labeled cells were dermally injected into the

healthy skin at one spot where was one centimeter far from the edge of wounds at the same time of skin injury. (B) Dil-labeled cells in

wounded skin of mice received nothing (Left) or one million Dil-labeled splenocyte-derived myeloid cells (Right). (C) GFP-positive cells in

wounded skin of mice received nothing (Left) or one million GFP-expressing splenocyte-derived myeloid cells (Right). Skins were stained

with GFP antibody (green). DAPI (blue) was used as a nuclear counterstain. Scale bars in all images were 100 μm.

https://doi.org/10.1371/journal.pone.0262060.g004
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were examined via immunofluorescent staining with anti-GFP antibody (only for skin of

C57BL mice). As shown in Fig 4B, Dil-labeled myeloid cells (red color under the fluorescent

microscope) migrated to the dermis and epidermis of epithelialized wounds but not in mice

without cell injection. A similar result was obtained in C57BL/6 mice received GFP-expressing

myeloid cells (Fig 4C).

To further confirm that injected myeloid cells converted to skin keratinocytes, we per-

formed double immunofluorescent staining with GFP and K14 antibodies in healed wounds

of C57/BL mice which have received GFP-expressing splenocyte-derived myeloid cells. As

shown in Fig 5A, result revealed that some of K14 positive keratinocytes were also GFP-posi-

tive, suggesting that the origin of these skin cells were from myeloid cell conversion. Further-

more, a similar result was obtained in cultured skin cells from wounded skin of mice which

received GFP-expressed, M-CSF-cultured myeloid cells for 14 days (Fig 5B).

Myeloid cells contribute to hair follicle regeneration in re-epithelialized

mouse skin

Previous studies have demonstrated that skin injury could induce hair follicle regeneration in

some types of adult mice when the size of skin wound is more than one centimeter [15–17].

We have also noticed that many CD45-posiitve cells were found in the hair follicles at the edge

of wounds and some follicle-like structures were formed in healed skin (S2 Fig). Since we have

demonstrated that myeloid cells are able to convert into keratinocytes, here, we were interested

to further investigate whether myeloid cells participate in regeneration of hair follicles in adult

C57BL/6 mice after skin injury. To address this question, two wounds with eight-millimeter

diameter were created by punch biopsy on dorsal skin of each C57BL/6 mouse (total of 5

mice). At the same time of wounding, those mice were dermally injected one million GFP-

expressing splenocyte-derived myeloid cells cultured by M-CSF medium at one centimeter

away from the edge of wounds. A silicone wound splint was used on the top of each wound to

prevent contraction during the healing. After 4 weeks (a time line for hair follicle regeneration,

indicated by previous studies [15–17], wounded skin was collected for histological examina-

tion. We also collected wounded skin to isolate skin cells and hair follicles by collagenase diges-

tion. As shown in Fig 6A, new hair follicle-like structures with green fluorescence in wounded

skin were revealed but not in the normal skin from the same mice after 4 weeks post injury.

This result was further supported by H & E staining showing new hair follicle-like structures

formed in healed wounds (Fig 6B). To examine whether these hair follicle-like structures were

hair follicles and whether these new hair follicles were regenerated from myeloid cells which

were derived from splenocytes of GFP mice, we stained wounded skin with CD45 or GFP. The

result shown in S3 and S4 Figs demonstrated that many cells from hair follicle-like structures

of healed wounds were either CD45-positive or GFP-positive, suggesting myeloid cells con-

tribute to hair follicle regeneration. We then performed double immunofluorescent staining

with anti-GFP and K14 antibodies. As shown in Fig 7A, some cells in hair follicle-like struc-

tures shown in H & E stain (Fig 6B, wound 1) were positive for both GFP and K14, further sug-

gesting that GFP-positive splenocyte-derived myeloid cells were involved in new hair follicle

regeneration. Moreover, isolated hair follicles from wounded skin of mice by collagenase were

also double positive for GFP and K14 (Fig 7B). These data demonstrated that myeloid cells are

able to regenerate hair follicles in wounded skin of mice.

Discussion

In this study, by using double immunofluorescent staining with antibodies for hematopoietic

cells, myeloid cells and differentiated keratinocytes as well as cell tracing approach, we
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Fig 5. Conversion of GFP-expressing myeloid cells to keratinocytes in re-epithelialized wounded skin. (A) Double immunofluorescent

staining with antibodies of GFP (green) and K14 (red) in healed skin from wounds of C57BL/6 mice received one million GFP-expressing

splenocyte-derived myeloid cells. (B) Double immunofluorescent staining with K14 (red) and GFP (green) antibodies in cultured skin cells. Skin

cells were isolated from wound edge of mice received GFP-expressing myeloid cells and injury for 14 days. Cells were cultured for 48 hours before

fixation and staining. DAPI (blue) was used as a nuclear counterstain. Scale bars in all images was 50 μm.

https://doi.org/10.1371/journal.pone.0262060.g005
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Fig 6. Hair follicle-like structures are seen in wounded skin of mice received GFP-expressing myeloid cells for 4 weeks. Eight millimeters punch

biopsies of excisional wounds were created in C57BL/6 mice received one million GFP-expressed splenocyte-derived myeloid cells simultaneously.

Four weeks after wounding, mice were euthanized, wounded skin were collected for examination of new hair follicle regeneration. (A) Images were

taken under the fluorescent microscope in normal and wounded skin of the same mice received one million cells for 4 weeks. (B) H & E staining in

wounded skin of mice received one million cells for 4 weeks. Arrows indicate wounding area. Top panels, magnification of 20 ×; Low panels,

magnification of 100 ×. Scale bars, 100 μm.

https://doi.org/10.1371/journal.pone.0262060.g006
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Fig 7. Detection of GFP-expressing myeloid cells in new forming hair follicle in wounded skin of mice. (A) Double immunofluorescent

staining with keratin-14 (K14) (red) and GFP (green) antibodies in wounded skin of mice which received one million GFP-expressing

splenocyte-derived myeloid cells for 4 weeks. (B) Double immunofluorescent staining with keratin-14 (K14) (red) and GFP (green) antibodies

in cultured hair follicles isolated from the edge of wounds in mice received one million GFP-expressing myeloid cells for 4 weeks. DAPI (blue)

was used as a nuclear counterstain. Scale bars in all images was 50 μm.

https://doi.org/10.1371/journal.pone.0262060.g007
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demonstrated that myeloid cells are able to convert to skin keratinocytes and participate in

hair follicle regeneration. Our data further support previous observations that tissue injury

could induce hematopoietic cells to transdifferentiate into solid organ-specific cells [4–9].

However, the current study hasn’t deeply investigated what factors and mechanism are

involved in myeloid cell conversion into keratinocytes during healing of wounded skin.

It has long been known that myeloid cells such as neutrophils, monocytes and macro-

phages can be recruited to the wound site and play a critical role in wound healing [18–20].

Wounds in mice expressing the human diphtheria toxin (DT) receptor under the control of

the CD11b promoter and treated with DT to deplete CD11b-positive monocytes/macro-

phages, result in stalled healing [21]. Similarly, when mice expressing DT receptor under the

control of a myeloid cell-specific lysozyme M promoter were wounded and depleted myeloid

cells in different phase of healing by DT treatment, the granulation formation and epitheliali-

zation were delayed or healing stopped [22]. Further, experimental evidence show that appli-

cation of autologous monocytes/macrophages can significantly improve wound healing

through the stimulation of angiogenesis and re-epithelialization in diabetic wounds in rats

[23]. The mechanisms that myeloid cells improve wound healing are thought to be related to

their scavenger ability, cytokines, chemokines, proteases and growth factors, released from

these myeloid cells. However, here, our data strongly suggest a new mechanism of these mye-

loid cells in wound healing, in which myeloid cells may also improve wound healing via cell

conversion.

The capacity of myeloid cells converting into endothelial cells, white adipocytes, osteoclasts

and fibroblasts in vivo and in vitro has been documented [4, 24–27]. Here we found that mye-

loid cells could also convert to keratinocytes, under the condition of skin injury. It is under-

standable that cells such as endothelial cells, adipocytes and fibroblasts can be converted from

myeloid cells as they are from the same germ layer, mesoderm. Surprisingly, here we found

that myeloid cells could also convert to keratinocytes. Myeloid cells need to cross the germline

barrier to convert into keratinocytes which are from the ectoderm. The possible explanation

for this type of conversion is dedifferentiation of myeloid cells into multipotent stem cells

before conversion to keratinocytes. Indeed, we and others have previously demonstrated that

hematopoietic cells could be dedifferentiated into stage specific embryonic antigen (SSEA)-1

and -3 positive multipotent stem cells when hematopoietic cells are cultured in a medium con-

taining M-CSF [28–30]. We also reported that hematopoietic cell-derived SSEA-1 and SSEA-3

positive multipotent stem cells are transiently present at skin wound bed of mice [2]. After

injury, recruited myeloid cells in the wound bed can be induced to be dedifferentiation by

M-CSF released from proliferating skin cells in injured skin. We have also showed that topical

application of M-CSF or its antibody on skin wounds can increase or delay healing process [2].

Therefore, it is likely that infiltrated myeloid cells are dedifferentiated into SSEA-positive mul-

tipotent stem cells induced by M-CSF and then myeloid cell-derived multipotent stem cells in

wound beds further differentiated into skin fibroblasts, keratinocytes and other types of cells

to contribute wound repair and skin appendage regeneration.

Hair follicles are thought to form only during development [31]. Loss of hair follicles are

considered permanent. However, studies have shown that the hair follicles in some types of

adult mice can be efficiently regenerated after skin injury [15, 16]. The types of cells to regener-

ate new hair follicles are still unclear. One study suggested that cells from the outside of hair

follicle stem cells may be the cellular origin of new regenerated hair follicles [15]. Macrophages

have been shown to be involved in promoting hair follicle regeneration [17]. In a recent study,

using CD11b-DT receptor transgenic mice, Rahman and colleagues reported that wound-

induced hair follicle regeneration is dependent on CD11b-positive F4/80-positive cells [32].

Here, we provide further evidence to support that CD11b-positive myeloid cells are the cellular
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origin of converting keratinocytes and involved in wound-induced hair follicle regeneration.

We have noticed that CD45-posiitve cells are dominant in new forming hair follicles. Further-

more, by injection of GFP-labeled splenocyte-derived myeloid cells to normal skin adjacent to

injury site, we clearly showed that GFP-positive cells are dominant in new forming hair folli-

cles. Taken together, our data strongly support that myeloid cells are at least one type of cells

contributing to hair follicle regeneration after skin injury.

In summary, this study provides a new mechanism regarding to skin wound healing. We

demonstrate that myeloid cells were involved in skin tissue repair and hair follicle regeneration

through their conversion to skin keratinocytes. Our data also provided supporting evidence

for a previous controversial topic, injury-induced hematopoietic stem cell transdifferentiation.

The information obtained from this study not only clarifies the fundamental cellular and

molecular mechanism of tissue repair and regeneration, it may also provide new therapeutic

options for treatments for chronic wounds via myeloid cell conversion.

Supporting information

S1 Fig. M-CSF-induced, splenocyte-derived adherent cells are CD11b-positive. Mouse sple-

nocytes were cultured in a medium containing 5 ng/ml of M-CSF for 3 days and then sus-

pended cells were removed by three time washing with PBS. Culture medium containing 5 ng/

ml of M-CSF was changed daily. After 10 day culture, cells were examined by immunofluores-

cent staining and FACS analysis. (A) immunofluorescent staining with indicated antibody.

DAPI (blue) was used as a nuclear counterstain. Scale bars in all images were 50 μm. (B).

Adherent cells were harvested, fixed with fixation solution, stained with indicated antibody

and analyzed by FACS.

(PPTX)

S2 Fig. CD45-positive cells are present in hair follicle-like structures at the edge of healed

dermal wounds of mice. Dermal sections of mouse wounds on day 14 post injury were stained

with CD45 antibody (green). DAPI (blue) was used as a nuclear counterstain. Scale bars in all

images were 50 μm.

(PPTX)

S3 Fig. CD45-positive cells are present within wounded skin of mice received GFP-labeled,

M-CSF-cultured myeloid cells. Dermal sections from the wounds of mice received M-CSF-

cultured myeloid cells 4 weeks post injury, were stained with CD45 antibody (red). DAPI

(blue) was used as a nuclear counterstain. Scale bars in all images were 50 μm. Squares at left

bottom panel were magnified and shown on the middle and right bottom panels.

(PPTX)

S4 Fig. Cell tracing experiment demonstrates GFP-positive M-CSF-cultured myeloid cells

in hair follicle-like structures in wounded skin of mice. Mice received dermal injection of

one million GFP-positive, M-CSF-cultured myeloid cells were created excisional dermal

wounds by punch biopsy. Mice were euthanized after 4 weeks and skin was collected and

immunofluorescent stained for detection of GFP (green). DAPI (blue) was used as a nuclear

counterstain. Scale bars in all images were 50 μm.

(PPTX)

S1 Table. Source and concentration of primary and secondary antibodies.

(DOCX)

PLOS ONE Conversion of M-CSF-stimulated myeloid cells to epithelial Cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0262060 June 23, 2022 14 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0262060.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0262060.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0262060.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0262060.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0262060.s005
https://doi.org/10.1371/journal.pone.0262060


Acknowledgments

We thank Mr. Darrel Trendall for his kindly providing us euthanized C57BL/6-Tg (UBC-

GFP) mice and Dr. Reza B Jalili for his help in manuscript writing and experimental support.

Author Contributions

Conceptualization: Yunyuan Li, Aziz Ghahary.

Data curation: Yunyuan Li, Hatem Alnojeidi, Ruhangiz T. Kilani.

Formal analysis: Yunyuan Li.

Funding acquisition: Aziz Ghahary.

Investigation: Yunyuan Li, Aziz Ghahary.

Methodology: Yunyuan Li, Hatem Alnojeidi, Ruhangiz T. Kilani.

Software: Yunyuan Li.

Supervision: Aziz Ghahary.

Validation: Yunyuan Li.

Writing – original draft: Yunyuan Li.

Writing – review & editing: Aziz Ghahary.

References
1. Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling and trans-

lation. Sci Transl Med 2014; 6: 265sr6. https://doi.org/10.1126/scitranslmed.3009337 PMID: 25473038

2. Li Y, Jalili RB, Ghahary A. Accelerating skin wound healing by M-CSF through generating SSEA-1 and

-3 stem cells in the injured sites. Sci Rep 2016; 6: 68979. https://doi.org/10.1038/srep28979 PMID:

27363517

3. Kao HK, Chen B, Murphy GF, et al. Peripheral blood fibrocytes: enhancement of wound healing by cell

proliferation, re-epithelialization, contraction, and angiogenesis. Ann Surg 2011; 254: 1066–74. https://

doi.org/10.1097/SLA.0b013e3182251559 PMID: 21832942

4. Sinha M, Sen CK, Singh K, et al. Direct conversion of injury-site myeloid cells to fibroblast-like cells of

granulation tissue. Nat Commun 2018; 9: 936. https://doi.org/10.1038/s41467-018-03208-w PMID:

29507336

5. Koshizuk S, Okada S, Okawa A, et al. Transplanted hematopoietic stem cells from bone marrow differ-

entiate into neural lineage cells and promote functional recovery after spinal cord injury in mice. J Neuro-

path Exp Neurol 2004; 63: 64–74. https://doi.org/10.1093/jnen/63.1.64 PMID: 14748562

6. Doyonnas R, LaBarge MA, Sacco A, et al. Hematopoietic contribution to skeletal muscle regeneration

by myelomonocytic precursors. Proc Natl Acad Sci USA 2004; 101: 13507–13512. https://doi.org/10.

1073/pnas.0405361101 PMID: 15353585

7. Jiang S, Walker L, Afentoulis M, et al. Transplanted human bone marrow contributes to vascular endo-

thelium. Proc Natl Acad Sci USA. 2004; 101: 16891–16896. https://doi.org/10.1073/pnas.0404398101

PMID: 15548607

8. Korbling M, Katz RL, Khanna A, et al. Hepatocytes and epithelial cells of donor origin in recipients of

peripheral-blood stem cells. N Eng J Med 2002; 346: 738–746. https://doi.org/10.1056/

NEJMoa3461002 PMID: 11882729

9. Krause DS, Theise ND, Collector MI, et al. Multi-organ, multi-lineage engraftment by a single bone mar-

row-derived stem cell. Cell 2001; 105: 369–377. https://doi.org/10.1016/s0092-8674(01)00328-2

PMID: 11348593

10. Zhang S, Wang D, Estrov Z, et al. Both cell fusion and transdifferentiation account for the transformation

of human peripheral blood CD34-positive cells into cardiomyocytes in vivo. Circulation 2004; 110:

3803–3807. https://doi.org/10.1161/01.CIR.0000150796.18473.8E PMID: 15596566

PLOS ONE Conversion of M-CSF-stimulated myeloid cells to epithelial Cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0262060 June 23, 2022 15 / 16

https://doi.org/10.1126/scitranslmed.3009337
http://www.ncbi.nlm.nih.gov/pubmed/25473038
https://doi.org/10.1038/srep28979
http://www.ncbi.nlm.nih.gov/pubmed/27363517
https://doi.org/10.1097/SLA.0b013e3182251559
https://doi.org/10.1097/SLA.0b013e3182251559
http://www.ncbi.nlm.nih.gov/pubmed/21832942
https://doi.org/10.1038/s41467-018-03208-w
http://www.ncbi.nlm.nih.gov/pubmed/29507336
https://doi.org/10.1093/jnen/63.1.64
http://www.ncbi.nlm.nih.gov/pubmed/14748562
https://doi.org/10.1073/pnas.0405361101
https://doi.org/10.1073/pnas.0405361101
http://www.ncbi.nlm.nih.gov/pubmed/15353585
https://doi.org/10.1073/pnas.0404398101
http://www.ncbi.nlm.nih.gov/pubmed/15548607
https://doi.org/10.1056/NEJMoa3461002
https://doi.org/10.1056/NEJMoa3461002
http://www.ncbi.nlm.nih.gov/pubmed/11882729
https://doi.org/10.1016/s0092-8674%2801%2900328-2
http://www.ncbi.nlm.nih.gov/pubmed/11348593
https://doi.org/10.1161/01.CIR.0000150796.18473.8E
http://www.ncbi.nlm.nih.gov/pubmed/15596566
https://doi.org/10.1371/journal.pone.0262060


11. Nygren JM, Jovinge S, Breitbach M, et al. Bone marrow-derived hematopoietic cells generate cardio-

myocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med 2004; 10: 494–

501. https://doi.org/10.1038/nm1040 PMID: 15107841

12. Butler AE, Huang A, Rao PN, et al. Hematopoietic stem cells derived from adult donors are not a source

of pancreatic β-cells in adult nondiabetic humans. Diabetes 2007; 56: 1810–1816. https://doi.org/10.

2337/db06-1385 PMID: 17456852

13. Plein A, Fantin A, Denti L, et al. Erythro-myeloid progenitors contribute endothelial cells to blood ves-

sels. Nature 2018; 562: 223–228. https://doi.org/10.1038/s41586-018-0552-x PMID: 30258231

14. Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanisms. J

Invest Dermatol 2007; 127: 514–525. https://doi.org/10.1038/sj.jid.5700701 PMID: 17299434

15. Ito M, Yang Z, Andi T, et al. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after

wounding. Nature 2007; 447: 316–20. https://doi.org/10.1038/nature05766 PMID: 17507982

16. Wang X, His TC, Guerrero-Juarez CF, et al. Principles and mechanisms of regeneration in the mouse

model for wound-induced hair follicle neogenesis. Regeneration (Oxf) 2015; 2: 169–81. https://doi.org/

10.1002/reg2.38 PMID: 26504521

17. Wang X, Chen H, Tian R, et al. Macrophages induced Akt/β-catenin dependent Lgr5+ stem cell activa-

tion and hair follicle regeneration through TNF. Nat Commun 2017; 8: 14091. https://doi.org/10.1038/

ncomms14091 PMID: 28345588

18. Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease.

Nature 2013; 496: 445–455. https://doi.org/10.1038/nature12034 PMID: 23619691

19. Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 2016; 44:

450–62. https://doi.org/10.1016/j.immuni.2016.02.015 PMID: 26982353

20. Das A, Sinha M, Datta S, et al. Monocyte and macrophage plasticity in tissue repair and regeneration.

Am J Pathol 2015; 185: 2596–2606. https://doi.org/10.1016/j.ajpath.2015.06.001 PMID: 26118749

21. Mirza R, DiPietra LA, Koh TJ. Selective and specific macrophage ablation is detrimental to wound heal-

ing in mice. Am J Pathol 2009; 175: 2454–62. https://doi.org/10.2353/ajpath.2009.090248 PMID:

19850888

22. Lucas T, Waisman A, Ranjan R, et al. Differential roles of macrophages in diverse phases of skin repair.

J Immunol 2010; 184: 3964–77. https://doi.org/10.4049/jimmunol.0903356 PMID: 20176743

23. Gu Y, Shen SE, Huang CF, et al. Effect of activated autologous monocytes/macrophages on wound

healing in a rodent model of experimental diabetes. Diabetes Res Clin Pract 2013; 102: 53–9. https://

doi.org/10.1016/j.diabres.2013.08.004 PMID: 24011427

24. Balley AS, Willenbring H, Jiang S, et al. Myeloid lineage progenitors give rise to vascular endothelium.

Proc Natl Acad Sci USA 2006; 103: 13156–61. https://doi.org/10.1073/pnas.0604203103 PMID:

16920790

25. Majka SM, Fox KE, Psilas JC, et al. De novo generation of white adipocytes from the myeloid lineage

via mesenchymal intermediates is age, adipose depot, and gender specific. Proc Natl Acad Sci USA

2010; 107: 14781–6. https://doi.org/10.1073/pnas.1003512107 PMID: 20679227

26. Kim SJ, Kim JS, Papadopoulos J, et al. Circulating monocytes expressing CD31: implications for acute

and chronic angiogenesis. Am J Pathol 2009; 174: 1972–80. https://doi.org/10.2353/ajpath.2009.

080819 PMID: 19349357

27. Danks L, Sabokbar A, Gundle R, et al. Synovial macrophage-osteoclast differentiation in inflammatory

arthritis. Ann Rheum Dis 2002; 61: 916–21. https://doi.org/10.1136/ard.61.10.916 PMID: 12228163

28. Li Y, Adomat H, Guns ET, et al. Identification of a hematopoietic cell dedifferentiation-inducing factor. J

Cell Physiol 2016; 231: 1350–1363. https://doi.org/10.1002/jcp.25239 PMID: 26529564

29. Zhao Y, Glesne D, Huberman E. A human peripheral blood monocyte-derived subset acts as pluripotent

stem cells. Proc Natl Acad Sci USA 2003; 100: 2426–2431. https://doi.org/10.1073/pnas.0536882100

PMID: 12606720

30. Ungefroren H, Hyder A, Schulze M, et al. Peripheral blood monocytes as adult stem cells: molecular

characterization and improvements in culture conditions to enhance stem cell features and proliferative

potential. Stem Cell Int 2016; 2016: 7132751. https://doi.org/10.1155/2016/7132751 PMID: 26798361

31. Schmidt-Ullrich R, Paus R. Molecular principles of hair follicle induction and morphogenesis. Bioessays

2005; 27: 247–261. https://doi.org/10.1002/bies.20184 PMID: 15714560

32. Rahmani W, Liu Y, Rosin NL, et al. Macrophages promote wound-induced hair follicle regeneration in a

CX3XR1- and TGF-β1-dependent manner. J Invest Dermatol 2018; 138: 2111–2122. https://doi.org/

10.1016/j.jid.2018.04.010 PMID: 29705291

PLOS ONE Conversion of M-CSF-stimulated myeloid cells to epithelial Cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0262060 June 23, 2022 16 / 16

https://doi.org/10.1038/nm1040
http://www.ncbi.nlm.nih.gov/pubmed/15107841
https://doi.org/10.2337/db06-1385
https://doi.org/10.2337/db06-1385
http://www.ncbi.nlm.nih.gov/pubmed/17456852
https://doi.org/10.1038/s41586-018-0552-x
http://www.ncbi.nlm.nih.gov/pubmed/30258231
https://doi.org/10.1038/sj.jid.5700701
http://www.ncbi.nlm.nih.gov/pubmed/17299434
https://doi.org/10.1038/nature05766
http://www.ncbi.nlm.nih.gov/pubmed/17507982
https://doi.org/10.1002/reg2.38
https://doi.org/10.1002/reg2.38
http://www.ncbi.nlm.nih.gov/pubmed/26504521
https://doi.org/10.1038/ncomms14091
https://doi.org/10.1038/ncomms14091
http://www.ncbi.nlm.nih.gov/pubmed/28345588
https://doi.org/10.1038/nature12034
http://www.ncbi.nlm.nih.gov/pubmed/23619691
https://doi.org/10.1016/j.immuni.2016.02.015
http://www.ncbi.nlm.nih.gov/pubmed/26982353
https://doi.org/10.1016/j.ajpath.2015.06.001
http://www.ncbi.nlm.nih.gov/pubmed/26118749
https://doi.org/10.2353/ajpath.2009.090248
http://www.ncbi.nlm.nih.gov/pubmed/19850888
https://doi.org/10.4049/jimmunol.0903356
http://www.ncbi.nlm.nih.gov/pubmed/20176743
https://doi.org/10.1016/j.diabres.2013.08.004
https://doi.org/10.1016/j.diabres.2013.08.004
http://www.ncbi.nlm.nih.gov/pubmed/24011427
https://doi.org/10.1073/pnas.0604203103
http://www.ncbi.nlm.nih.gov/pubmed/16920790
https://doi.org/10.1073/pnas.1003512107
http://www.ncbi.nlm.nih.gov/pubmed/20679227
https://doi.org/10.2353/ajpath.2009.080819
https://doi.org/10.2353/ajpath.2009.080819
http://www.ncbi.nlm.nih.gov/pubmed/19349357
https://doi.org/10.1136/ard.61.10.916
http://www.ncbi.nlm.nih.gov/pubmed/12228163
https://doi.org/10.1002/jcp.25239
http://www.ncbi.nlm.nih.gov/pubmed/26529564
https://doi.org/10.1073/pnas.0536882100
http://www.ncbi.nlm.nih.gov/pubmed/12606720
https://doi.org/10.1155/2016/7132751
http://www.ncbi.nlm.nih.gov/pubmed/26798361
https://doi.org/10.1002/bies.20184
http://www.ncbi.nlm.nih.gov/pubmed/15714560
https://doi.org/10.1016/j.jid.2018.04.010
https://doi.org/10.1016/j.jid.2018.04.010
http://www.ncbi.nlm.nih.gov/pubmed/29705291
https://doi.org/10.1371/journal.pone.0262060

