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Abstract: In the long-time pursuit of the solution to calculating the partition function (or free energy)
of condensed matter, Monte-Carlo-based nested sampling should be the state-of-the-art method,
and very recently, we established a direct integral approach that works at least four orders faster.
In present work, the above two methods were applied to solid argon at temperatures up to 300 K.
The derived internal energy and pressure were compared with the molecular dynamics simulation as
well as experimental measurements, showing that the calculation precision of our approach is about
10 times higher than that of the nested sampling method.
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1. Introduction

The birth of statistical physics laid a solid foundation to predict thermodynamic properties of
macroscopic condensed matters. Phase transitions [1–3], protein folding [4] and the optimal conditions
for novel material growth could be predicted theoretically as long as the partition function (PF) or free
energy can be evaluated [5]. Nevertheless, solutions to the PF have been a long standing problem [6]
and attempts were reluctantly turned to the help of molecular simulations [7]. With precedent efforts
made in calculating the relative free energy, e.g., Gibbs ensemble Monte Carlo (MC) [8] sampling
and thermodynamic integration [9], more attentions have been paid to density of states (DOSs) for
computing the absolute PF [10–13]. The Bayesian-statistics-based nested sampling (NS) may be the
state-of-the-art one [14,15], which aims at uniformly sampling a series of fixed fractions partitioned
by potential energies in the configurational space to calculate DOS and has been applied in several
systems [1,16–25].

Very recently, we put forward a direct integral approach (DIA) to calculate the PF of condensed
matters [26] and the high accuracy has been proved by molecular dynamics (MD) simulations of
condensed copper using tight-binding potential [26], graphene and γ-graphyne materials using
Brenner potential [27]. Based on our reinterpretation of the original sense of the integral, it was shown
that DIA works at least four-order faster than NS [26]. On the other hand, it has not yet been confirmed
whether the DIA has improved the computational precision of precedent MC methods. In this work,
we carried out detailed analysis of DIA and NS in terms of the computational precision, and performed
MD simulations to test the precision of internal energy and equations of state derived from the PF.
It should be pointed out that the tests with MD simulations, instead of experimental data, are the most
rigorous because same interatomic potentials can be used in calculations of the PF and MD simulations,
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which have been proved to be capable of producing very accurate results for various systems [28–30].
If the results derived from PF are only compared with experimental measurements, just as in most
previous works, it would yet be doubted that the method for calculating the PF is accurate or not even
if the agreements are excellent since it would be very likely that a deficient algorithm combined with
an inappropriate empirical potential accidentally gives rise to an outcome close to the experiment.

The paper is organized as follows. In Section 2, NS and DIA were briefly formulated, and
in Section 3, we first discussed the relationship between efficiency and accuracy of NS, and then
performed MD simulations of solid argon to test the computational precision of DIA and NS, showing
that DIA has a much higher precision than NS. In addition, we found that NS works badly for the
highly-condensed systems while DIA has no such a problem. A comparison with experimental data of
solid argon along the melting line was presented as well, which further validates that DIA is more
accurate than NS.

2. Methods

PF is defined as a summation over the probabilities of all the microstates, and for a canonical
ensemble consisting of N particles confined in volume V at temperature T, it reads

Z(N, V, T) =
1

N!Λ3N

∫
dq3N exp[−βU(q3N)], (1)

where Λ is the thermal wavelength, β = 1/kBT with kB the Boltzmann constant, q3N = {q1, q2 . . . , q3N}
the Cartesian coordinates of particles and U(q3N) the potential energy. The 3N-dimensional integral
on the right hand of Equation (1) is solely related to the microscopic states in configurational space,
the so-called configurational integral (CI),

Q =
∫

dq3N exp[−βU(q3N)]. (2)

2.1. Nested Sampling

In Equation (2), microstates in configurational space are expressed in terms of coordinates of
particles. From another point of view, we may also label the microstates by their corresponding
potential energy and the integral can be rewritten in terms of the DOS of potential energy.

To introduce this, Equation (2) is re-expressed in reduced coordinates(s = q/L) as

Q = VN
∫ 1

0
ds3N exp[−βU(s3N)], (3)

where L is the length of the cubic simulation box and V is the volume. The integral in Equation (3)
represents the ensemble average of Boltzmann factors and denoted as Qex. Since the probability of
finding potential energy U is proportional to the DOS, Ω(U) =

∫ 1
0 δ(U − U(sN))dsN , Qex can be

expressed as [16,20]

Qex =

∫
exp(−βU)Ω(U)dU∫

Ω(U)dU
. (4)

The strategy of NS is to partition the configurational space into a series of energy-decrease
subdivisions numbered by m. For the mth subspace with upper energy limit Um, a fixed number of
configurations (L) with each energy εi < Um are generated by MC method and ordered in a sequence
as ε1 < ε2 < . . . < εL. The lower energy boundary Um+1, which is the upper one for the (m + 1)th
subspace, is set to be the energy of a fixed fraction α of current subspace, as Um+1 = ε I with I = αL.
By the NS algorithm, Equation (4) can be simplified as [22]
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Qex ≈∑
m

∫ Um
Um+1

Ω(U)dU∫
Ω(U)dU

exp(−β〈U〉m) = ∑
m

ωm exp(−β〈U〉m), (5)

where 〈U〉m is an averaged energy of the mth subspace and ωm stands for the percentile of the mth
phase space volume. It is obvious that ωm = αm − αm+1, and after nth iteration when the convergence
condition is reached, CI is evaluated as

Q = VNQex = VN
n

∑
m=1

(αm − αm+1) exp(−β〈U〉m), (6)

where 〈U〉m = (Um + Um+1)/2 which is the average of two consecutive median energies of each
sampled partition to approximate an averaged energy of the mth subspace [20,22]. According to
E = − ∂ lnZ

∂β , the internal energy of the N-particle system is calculated by

E =
3
2

NkBT − ∂Qex

∂β

=
3
2

NkBT +

n
∑

m=1
[(Um + Um+1)/2](αm − αm+1) exp[−β(Um + Um+1)/2]

n
∑

m=1
(αm − αm+1) exp[−β(Um + Um+1)/2]

.
(7)

For determining the pressure by P = 1
β

∂ lnZ
∂V , another CI for the system with a volume of V + ∆V

should be calculated and P is obtained by

P =
1
β
(

N
V

+
∂ lnQex

∂V
)

≈ 1
β
(

N
V

+
1

Qex(V)

Qex(V + ∆V)−Qex(V)

∆V
).

(8)

2.2. Direct Integral Approach

Consider Equation (2) and let the set Q3N = {Q1, Q2 . . . Q3N} be the coordinates of particles in
the state of the lowest potential energy U0, we may introduce a function as

U′(q′3N) = U(q3N)−U0, (9)

where q′i = qi −Qi. By inserting Equation (9) into Equation (2), we obtain

Q = e−βU0

∫
dq′3N exp[−βU′(q′3N)]. (10)

According to our very recent work [26], the integral can be solved as

Q = e−βU0
3N

∏
i=1
Li, (11)

where Li represents the effective length on the ith degree of freedom and is defined as

Li =
∫

e−βU′(0...q′i ...0)dq′i. (12)
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For homogeneous systems with certain geometric symmetry, such as perfect one-component
crystals, all the particles are equivalent and U′ felt by one particle moving along q′x may be the same as
the one along q′y (or q′z). In such a case, Equation (11) turns into

Q = e−βU0L3N , (13)

where L is determined by Equation (12). Otherwise, it is needed to calculate the effective length, Lx,
Ly, Lz respectively, and Equation (11) turns into

Q = e−βU0(LxLyLz)
N , (14)

and, E and P are thus evaluated as

E =
3
2

NkBT + U0 + 3N

n
∑

i=1
Ui exp[−βUi]

n
∑

i=1
exp[−βUi]

, (15)

P ≈ −U0(V + ∆V)−U0(V)

∆V
+

3N
β

1
L(V)

L(V + ∆V)−L(V)

∆V
. (16)

3. Comparisons and Discussion

The tested models are face-centered-cubic (FCC) solid Ar systems consisting of 500 or 4000 atoms
confined in a cubic box with different sizes, and, NS and DIA were applied to calculate internal energy
E and pressure P at different temperatures to be compared with MD simulations. The interatomic
potential for solid Ar was characterized by the commonly used pairwise 12-6 Lennard-Jones (L-J)
potential [31],

φ(rij) = 4ε[(
σ

rij
)12 − (

σ

rij
)6], (17)

where rij is the distance between atoms i and j, ε = 117.05 (K), σ = 3.4 Å and the cutoff distance
is rcut = 12.0 Å. The MD simulations with periodic boundary condition applied were performed
by the Large-scale Atomic/Molecular Massively Parallel Simulator software package [32] with a
time step of 0.1 fs. The Nose-Hoover constant-temperature algorithm [33] was used to produce
a canonical ensemble at temperature T. The pressure was computed by the virial theorem for
two-body potentials [34,35], the algorithm of which has already been integrated in the software
package. The system was allowed to relax 20 ps at first and then continued to run for another 50 ps,
during which averages of E and P were recorded in every 10 fs.

To implement NS, it should be at first to select appropriate values of α and L, which cooperatively
balance the computational efficiency and precision of Q [Equation (6)]. Apparently, the larger the
values of α and L are, the higher the calculation precision is, but the slower the computation speed is.
Although the initial choice of α made by Pártay et al. [16] is L/(L + 1), successive works [17,18,21,22]
have showed that a smaller value of α = 1/2 is sufficient enough to guarantee the calculation precision
and enables NS to be applicable to systems consisting of up to several hundred atoms, of which the
computational cost is too expensive for NS with α = L/(L + 1). Therefore, α = 1/2 was adopted in
this work. Cares should be also paid to the value of L because, besides the factors of efficiency and
systematic errors mentioned above, fluctuations of the calculated results in NS simulations closely
depend on L for a fixed α [22]. We performed NS with four different numbers of configuration
(L = 45,000, 60,000, 75,000, 90,000) to calculate the pressures of the solid Ar system consisting of
500 atoms with a density of 1.83 g/cm3 at different temperatures, where the well-built cage model for
solid systems [18] was used. For each L, we ran the NS simulations 15 times to produce the averaged
value of pressure which was compared with MD simulations to see the relationship between the
deviations and L.
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As shown in Figure 1 (data in supplementary materials), the pressures obtained by the NS
are gradually approaching to those of the MD simulations as L increases and the corresponding
fluctuations of NS is relatively larger with the smallest L. On the other hand, it should be noted that
the fluctuations does not monotonically decrease with the increase of L, which was also observed in
previous works [17]. The fluctuations for L = 60,000 and 90,000 are almost the same, which are about
30% smaller than those with L = 75,000, though the pressures with L = 90,000 are slightly closer to the
MD simulations. Considering that the computational time with L = 90,000 is twice as much as that
with L = 60,000, we chose L = 60,000 in the following work and conducted the NS simulations at each
(N, V, T) conditions for 15 times to calculate the averaged values of internal energy by Equation (7)
and pressure by Equation (8), where the volume difference ∆V was made by changing the length of
the box by 1% because our calculations showed that smaller volume difference would produce very
unphysical results.
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Figure 1. The dependence of the pressure at different temperatures obtained by the NS (Nested
Sampling) and the standard deviations upon the L, where the results of MD (Molecular dynamics)
simulations are illustrated in dashed lines.

Relatively, systematic parameters are much fewer for implementation of DIA. For the solid Ar
system, the atoms were placed right at the FCC sites to produce U0, and U′(0 . . . q′i . . . 0) in Equation (12)
was obtained by moving the center atoms along its Z-axis ([100] direction) by 2Å while the coordinates
of its X-axis, Y-axis, and of all the other particles were kept fixed. 2× 104 potential energies were
recorded to calculate the L by Equation (12), and, the internal energy and pressure were subsequently
calculated by Equations (15) and (16), where the volume difference was made by changing the length
of the box by 10−3%.

For the argon system of 500 atoms with different densities (1.83, 2.13, 2.43 and 2.98 g/cm3) at
temperatures from 25 K to 300 K, E and P obtained by DIA and the NS are shown in Figure 2, where
the corresponding quantities of EMD and PMD of MD simulations are also presented as comparisons
(data in supplementary materials). For the systems with a density of 1.83 g/cm3 and 2.13 g/cm3,
the averaged relative difference of internal energy, RDE (= | E−EMD

EMD
|), of DIA is less than 4.1%, which is

about four times smaller than that, 16.6%, of NS [36]. As the density increases up to 2.43 g/cm3 and
2.98 g/cm3, the averaged RDE of DIA decrease to 5.51% and 0.48% respectively, while the averaged
RDE of the NS climbs up to 36.44% for the density of 2.43 g/cm3 and the NS fails to work for the
system with density of 2.98 g/cm3. As to precision of the pressure, the averaged relative difference,
RDP (= | P−PMD

PMD
|), of DIA is 2.48%, 1.69%, 0.17% and 0.63% for the densities of 1.83, 2.13, 2.43 and

2.98 g/cm3 respectively, while the corresponding RDP of the NS is 10.22%, 9.18%, 4.54% and ∞.
The above comparisons show that the calculation precision of DIA is much higher than that of the

NS. Furthermore, DIA works better with increase of the density while the NS can hardly work when
the density is higher than 2.98 g/cm3. The difficulty should be attributed to numerical calculations
of Equation (6), where the factor (αm − αm+1) approaches to zero (α = 1/2) as m approaches to larger
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number, meanwhile, the factor e−β(Um+Um+1)/2 increases quickly when Um < 0, which is the common
case for the Ar systems with lower density and the product ((αm − αm+1) · e−β(Um+Um+1)/2) is not too
large (or small) for the 16 bit number of computer to describe. However, when the density is large
enough that the Um > 0, both (αm − αm+1) and (e−β(Um+Um+1)/2) approach to zero as m getting larger,
and the product ((αm − αm+1) · e−β(Um+Um+1)/2) gets to be so small (but not exactly “0”) that the output
of computer is exact “0”, which makes the denominator in Equation (7) be zero easily. For this reason,
we failed to apply the NS to calculate E and P of the Ar system with a density of 2.98 g/cm3. A larger
value of α might be helpful while the computational efficiency would be slowed down. By contrast,
DIA has no such a problem because the largest part of the potential energy, U0 of the MSS, has been
extracted in Equations (9) and (10), and the left part U′ is small enough to guarantee the precision of
the integral for high density systems.
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Figure 2. Internal energy (a) and pressure (b) of 500 argon atoms in the solid state obtained by DIA
(Direct Integral Approach) (solid line), the NS (dashed line) and MD simulations (circles). Different
color stands for different density ρ.

The lower precision for the NS calculating the pressure can be understood as follows. The pressure
is determined by Equation (8), where the volume difference ∆V should be set as small as possible
to achieve high precision. However, the integral Q of Equation (6) is not very sensitive to the small
changes of the volume V because of the random characteristic of MC simulations, leading to large
fluctuations of Q(V + ∆V)−Q(V) for each running of the MC simulation. Our calculations showed
that the large fluctuations would produce unphysical pressures when the ∆V is smaller than 10−4%V,
which corresponds to the length of the cubic box changed by 1% adopted in our calculations. In DIA for
calculating the pressure [Equation (16)], the involved quantities U0 and L determined by Equation (12)
are all sensitive to volume of the system, so the volume difference in Equation (16) can be set much
smaller. We tried several values of the box length difference in the range of 10−1%–10−6% and
confirmed that the obtained pressures converges at the volume difference of 10−13% (10−3% box
length difference).

The computational efficiency of the NS and DIA depends on the number of the total potential
calculation. For the NS running, the MC algorithm has to work 6× 103–8× 103 times each producing
60,000 configurations to reach the convergence, so 3.6 × 108–4.8 × 108 times of potential energy
calculations must be performed to produce the Um in Equation (6). Because of the fluctuations, the NS
was run 15 times for a given system to produce the averaged results, thus the number of the total
potential calculations is larger than 5.4× 109, which is about five orders of magnitude larger than the
one, 2× 104, for running DIA in the same system.

Because of the ultra-high efficiency, DIA was applied to calculate the internal energy and pressure
of solid argon composed of 4000 atoms, on which the NS costs too much computer hours and we have to
give up the calculations, and we performed MD simulations to give comparisons. As shown in Figure 3,
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both E and P obtained by DIA coincide well with MD simulations where both RDE and RDP of DIA
are almost the same as those calculated in the 500-atom system (data in Supplementary materials).

Finally, a comparison was made of DIA and the NS with experimental data of solid Ar along
melting line [37]. Considering the lower efficiency of the NS, the simulated system for both DIA and
NS consists of 500 atoms and the computational procedures are the same as described above. As shown
in Figure 4, the internal energy and pressure obtained by DIA are significantly better than those of the
NS. The averaged relative deviation of internal energy and pressure to the experimental data is 5.34%
and 5.5% for DIA, which are about 6 times smaller than the ones, 39.12% and 28.72%, for the NS.
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Figure 3. Internal energy (a) and pressure (b) of 4000 argon atoms in the solid state obtained by DIA
(solid line) and MD simulations (circles). Different color stands for different density ρ.
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Figure 4. Internal energy (a) and pressure (b) of solid-state Ar, from experiment (squares) [37], DIA
(red circles), NS (blue triangles) along the melting line.

4. Conclusions

In summary, by comparisons with MD simulations as well as experimental data, we confirmed
that the accuracy of DIA outperforms the NS. The precision of DIA is about four times higher than
that of NS for low-density systems and about one order higher in high-density situations. We also
analyzed the intrinsic deficiency of NS in calculations of systems under highly condensed situations.
Since the efficiency of DIA is at least five orders faster than that of the NS at the same time, DIA paves
a better way to investigate thermodynamic properties of condensed matters, especially the ones with
high density under extreme conditions.

Supplementary Materials: The following are available online at http://www.mdpi.com/1099-4300/21/11/1050/
s1.
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