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Abstract

The advance in microbiome and metabolome studies has generated rich omics data reveal-

ing the involvement of the microbial community in host disease pathogenesis through inter-

actions with their host at a metabolic level. However, the computational tools to uncover

these relationships are just emerging. Here, we present MiMeNet, a neural network frame-

work for modeling microbe-metabolite relationships. Using ten iterations of 10-fold cross-

validation on three paired microbiome-metabolome datasets, we show that MiMeNet more

accurately predicts metabolite abundances (mean Spearman correlation coefficients

increase from 0.108 to 0.309, 0.276 to 0.457, and -0.272 to 0.264) and identifies more well-

predicted metabolites (increase in the number of well-predicted metabolites from 198 to

366, 104 to 143, and 4 to 29) compared to state-of-art linear models for individual metabolite

predictions. Additionally, we demonstrate that MiMeNet can group microbes and metabo-

lites with similar interaction patterns and functions to illuminate the underlying structure of

the microbe-metabolite interaction network, which could potentially shed light on uncharac-

terized metabolites through “Guilt by Association”. Our results demonstrated that MiMeNet

is a powerful tool to provide insights into the causes of metabolic dysregulation in disease,

facilitating future hypothesis generation at the interface of the microbiome and

metabolomics.

Author summary

The microbiome has shown to functionally interact with its host or environment at a met-

abolic level, however the exact nature of these interactions is not well understood. In addi-

tion, metabolic dysregulation caused by the microbiome is believed to contribute to the

development of diseases such as inflammatory bowel disease, diabetes mellitus, and obe-

sity. In this manuscript, we introduce a computational framework to integrate micro-

biome and metabolome data to uncover microbe-metabolite interactions in a data-driven

manner. Our model uses neural networks to predict metabolite abundances from microbe

abundances. The trained models are then used to derive microbe-metabolite feature

scores, which are used for clustering microbes and metabolites into functional modules.
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These module-based interactions are useful in generating biological insights and facilitat-

ing hypothesis generation for the investigation of their roles in various metabolic diseases.

The software of our model is made freely available to interested researchers.

This is a PLOS Computational BiologyMethods paper.

Introduction

The microbiome has been shown to impact both host development, normal metabolic pro-

cesses, as well as the pathogenesis of various diseases [1–3]. Of particular interest is the micro-

biome of the human gut, which has been linked to diseases such as inflammatory bowel

disease (IBD), obesity, and diabetes mellitus [4–7]. While previous studies have uncovered var-

ious microbe-disease associations, recent work also revealed the central role of bacterial

metabolites and their impact on host health [8–13]. The microbiome-metabolome crosstalk is

pervasive. For example, strong associations between microbes and metabolites were found in

the gut and blood metabolomic profiles [14] and the gut of patients with IBD [15]. The abun-

dance of metabolic pathways is relatively consistent despite considerable variability in taxo-

nomic composition among individuals [16–19]. Thus, the identification of mechanisms of

microbiome-metabolome interactions by modeling community metabolic activity is essential

for understanding how the microbiome affects the host’s health and for the development of

precise therapies for the prevention or management of chronic diseases [20, 21].

Early methods for modeling have focused on mapping metagenomic features to metabolo-

mic features due to the unavailability of metabolomic profiles. One set of methods referred to

as Predictive Reactive Metabolic Turnover (PRMT) uses known enzymatic reactions from

genome annotations and existing metabolic pathways to calculate the relative production and

consumption of metabolites using metagenomic gene abundance profiles [22, 23]. Other

methods have focused on constraint-based stoichiometric modeling using flux balance analysis

to learn the flux rate of metabolites in the community [24, 25]. A major limitation of these

approaches is their reliance on annotated references. Missing or incorrect annotations can

lead to poor performing models. Additionally, the reliance on annotations makes it difficult to

identify novel mechanisms.

More recently, several machine learning models have been developed to map metagenomic

features to metabolites as both data have become increasingly available. One method, Melon-

nPan, uses the Elastic Net linear regression to model the relative abundance of each metabolite

using metagenomic taxonomic or functional features [26]. The primary emphasis of Melon-

nPan is predictive modeling of metabolites so that the learned models can be used for the pre-

diction of metabolomes in similar studies where only microbiome is available. MelonnPan

displayed promising performance, however, it models each metabolite individually, missing

the opportunity to use shared information across metabolomic features to boost prediction

performance. Another method, mmvec, uses neural networks to estimates the conditional

probability that a metabolite is present given the presence of a specific microbial sequence

[27]. mmvec focuses on learning embeddings of microbial sequences and metabolites to cap-

ture microbe-metabolite interactions, thus, it cannot predict the entire metabolomic profile.

Another recent model based on neural network encoder-decoder (NED) has proposed
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constraints of sparsity and non-negative weights for mapping microbiomes to metabolomes

[28, 29]. The use of non-negative weights in NED imposes a stringent constraint on the model,

which may limit the learning capacity. Consequently, these existing models have not fully

explored the microbiome-metabolome interactions that can be uncovered through integrative

analysis.

In this work, we present MiMeNet (Microbiome-Metabolome Network), a multi-layer per-

ceptron neural network (MLPNN) that models the community metabolome profile using

metagenomic taxonomic or functional features obtained from a microbiome sample. The use

of MLPNN allows MiMeNet to be scalable regarding the amount of metagenomic and metabo-

lomic features in the two types of omics data. Furthermore, by learning multiple metabolites

simultaneously, the underlying information can be transferred to augment the learning of

metabolites with similar patterns [30], thus leading to more robust predictive models and

hence more reliable microbiome-metabolome interactions. Here, we use three paired metage-

nomic-metabolomic datasets obtained from studies on IBD, cystic fibrosis, soil wetting envi-

ronment as well as an additional external dataset of IBD to evaluate MiMeNet’s ability to

predict metabolomic profiles from metagenomic features by comparing with the existing

methods. Using the IBD datasets, we further show how MiMeNet uses learned network models

to generate hierarchies of metagenomic and metabolomic modules, which further reveal

microbe-metabolite interactions and their associations to host IBD status. The MiMeNet pack-

age and the datasets used for evaluation are freely available at https://github.com/YDaiLab/

MiMeNet.

Results

MiMeNet framework

MiMeNet is an integrative analysis framework for microbiome and metabolome data utilizing

MLPNN, which trains models to accurately predict the metabolome based on a microbiome

sample represented by the microbial taxonomic composition or microbial gene features. With

learned network models, MiMeNet performs additional analysis to extract feature attribution

scores between all microbe-metabolite pairs and organizes microbes and metabolites into

modules according to the patterns of their attribution scores. These modules can be used to

examine the microbe-metabolite interactions between modules and assess the statistical associ-

ations of modules to host phenotypes. MiMeNet takes advantage of multivariate learning by

using the entire microbiome to model the abundance of all metabolites in a unified neural net-

work architecture. This approach enables MiMeNet to train more robust models. An overview

of the MiMeNet framework is shown in Fig 1.

The network architecture in MiMeNet is first determined for each paired dataset by tuning

the hyperparameters for the number and size of the hidden layers, the L2 regularization pen-

alty parameter, and the dropout rate. MiMeNet then trains multiple network models using

10-fold cross-validation and the predictive performance of a model is measured by the aver-

aged Spearman correlation coefficients (SCCs) between the predicted and the observed abun-

dance of the metabolites across the samples in testing sets. The protocols for MLPNN model

training are outlined in the Methods section. MiMeNet then generates a background distribu-

tion of SCCs through multiple iterations of shuffling the dataset and performing a cross-vali-

dated evaluation on the shuffled set. This background distribution of SCCs is then used to

determine a cutoff for significantly well-predicted metabolites. Then, using the learned net-

work weights obtained from cross-validation training, MiMeNet constructs a score matrix of

microbe-metabolite feature attributions between the microbes and well-predicted metabolites.

Then MiMeNet biclusters the score matrix into microbial and metabolomic modules,
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grouping microbes or metabolites with shared feature attribution patterns and constructs a

module-based interaction network. Additionally, MiMeNet trains a final predictive model to

be used to predict the metabolomic profile of an external set with similar microbial features

(Methods).

MiMeNet identifies significantly correlated metabolites

We used three datasets for the development and evaluation of MiMeNet (Table 1). The first

dataset was taken from a published study of patients enrolled in PRISM (the Prospective Regis-

try in IBD Study at Massachusetts General Hospital) containing 121 IBD patients and 34 con-

trols [15]. Additionally, it includes another set of 43 IBD and 20 control subjects from two

Fig 1. Framework of MiMeNet learning model. MiMeNet uses paired microbiome and metabolome data for model training. Microbiome abundance features

(green) are used to train a neural network to predict metabolite abundance features (blue). Well-predicted metabolites are identified, and the trained models

are used to learn a microbe-metabolite attribution score matrix. The attribution score matrix is biclustered into microbe and metabolite modules which are

then used to construct a module-based interaction network.

https://doi.org/10.1371/journal.pcbi.1009021.g001

Table 1. Summary of the datasets used in evaluation. The patients with IBD have two subtypes: Crohn’s Disease (CD) and Ulcerative Colitis (UC).

#Case #Control #Microbes #Metabolites

IBD (PRISM) 68 (CD), 53 (UC) 34 201 8848

IBD (External) 20 (CD), 23 (UC) 20 201 8848

Cystic Fibrosis 172 - 657 168

Soil - 19 446 85

https://doi.org/10.1371/journal.pcbi.1009021.t001
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other cohorts. This set will be used for external evaluation. The second dataset was taken from

a study that collected lung sputum samples from 172 patients with cystic fibrosis [31]. The

third dataset was taken from biocrust soil water and captures microbial and metabolic activity

caused by soil wetting at five-time points across four biocrust successional stages [32]. For

IBD, cystic fibrosis, and soil datasets, the numbers of microbes are 201, 657, and 446, respec-

tively; and the numbers of metabolites are 8848, 168, and 85 respectively (see Methods for

details).

Using the background distributions generated by MiMeNet (Method), the cutoffs for SCCs

between the predicted and observed abundances of metabolites were found to be 0.136, 0.129,

and 0.410 for the IBD (PRISM), cystic fibrosis, and soil datasets, respectively. Based on these

cutoff values, MiMeNet identified metabolites to be well-predicted for 6857 (77.50%) of the

8848 metabolites in the IBD (PRISM) dataset, 143 (94.08%) of the 152 metabolites in the cystic

fibrosis dataset, and 29 (34.12%) of the 85 metabolites in the soil dataset. The distributions of

the SCCs in the background and observed data are shown in Fig 2A–2C. The soil dataset had

the lowest percent of well-predicted metabolites, which could be due to the larger cutoff. We

suspect that this is from the bootstrapping procedure being performed on the dataset of small

size as well as the fact that the dataset is longitudinal and samples may be correlated with each

Fig 2. Distributions of correlations (Background and observed) and evaluation of multivariate learning. Background (blue) and observed (orange)

distributions are shown for the (A) IBD (PRISM), (B) cystic fibrosis, and (C) soil datasets. The red vertical line denotes the 95th percentile of the background

correlations and the gray area represents the well-predicted region using this threshold. (D) Scatter plot comparing the annotated metabolite correlations

between models trained on just the annotated set and models trained on the full set of metabolites. (E) Mean correlation and (F) number of well-predicted

metabolites found in models trained on the annotated set of metabolites and full set of metabolties as Gaussian noise is added to the annotated metabolite set

input. All results in (D)-(F) are for prediction of the annotated metabolites.

https://doi.org/10.1371/journal.pcbi.1009021.g002
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other. Our evaluation shows the strong predictability of the MiMeNet models trained on data

with reasonable sample sizes.

Multivariate learning boosted MiMeNet’s prediction performance

To evaluate if multivariate learning improves the prediction of the metabolomic profiles, we

trained two separate models using 10 iterations of 10-fold cross-validation using the IBD

(PRISM) dataset. The first model was trained to predict the entire set of metabolites, and the

second model was trained to predict the 466 annotated set of metabolites without including

the rest of the metabolites. We then compared the SCCs of the 466 metabolites from both

models and observed that by training on the entire set of metabolites, the number of well-pre-

dicted metabolites for the annotated set increased from 333 to 366. Additionally, the SCCs of

the annotated metabolites significantly increased from 0.259 to 0.309 when using all the

metabolites to train MiMeNet (P < 10−47, the Wilcoxon signed-rank test). The scatter plot

comparing the prediction correlation performances is shown in Fig 2D.

Next, we evaluated the robustness of MiMeNet by gradually increasing noise to the anno-

tated set of metabolites. Specifically, with 10-fold cross-validation, we trained models using all

the metabolites and using only the annotated set to predict the 466 annotated set. For each par-

tition of the cross-validated training, we added Gaussian noise to the annotated metabolites

within the training data. We observed that the two models performed similarly under small

amounts of noise. However, once the noise increased to higher levels and had a variance

greater than 2, the models trained only on the annotated set collapsed and could no longer pre-

dict the annotated metabolites. On the other hand, the models trained using all the metabolites

were much more robust to the noise at higher levels and could predict the annotated metabo-

lites to a much greater degree compared to those trained using only the annotated set (Fig 2E

and 2F). These results show MiMeNet benefited from multivariate learning.

MiMeNet is robust to training dataset size and hyper-parameter selection

To evaluate MiMeNet performance on different sizes of data for training and testing, we com-

pared the k-fold cross-validated prediction correlations (k = 10, 5, 3, and 2) using the IBD

(PRISM) and cystic fibrosis datasets (the soil dataset was excluded from this analysis due to the

small data size). In the IBD (PRISM), we only observed a slight decrease in performance

(mean correlation coefficient decrease from 0.297 to 0.218) as the number of partitions

decreased (Fig 3A). Similarly, in the cystic fibrosis dataset, the correlation dropped slightly

from 0.457 to 0.410 (Fig 3B). Additionally, we evaluated performance on random subsetting of

100%, 80%, 60%, and 40% of the entire datasets. For each level of subsetting, 3 random sets of

subset data were generated. Then, for each set of data, network hyper-parameters were tuned

and 10 iterations of 10-fold cross-validation was performed to evaluate how reducing the num-

ber of overall samples affected the prediction correlation (Fig 3C). As the size of the dataset

decreased, we observed a decrease in the IBD (PRISM) dataset from a mean correlation of

0.287 to 0.179, and a decrease in the cystic fibrosis dataset from a mean correlation of 0.443 to

0.364. Moreover, we evaluated the IBD (External) dataset for each MiMeNet model trained on

the IBD (PRISM) dataset and observed a decrease in mean correlation from 0.222 to 0.162.

Even though there was a decrease in overall correlations as expected, we show that MiMeNet

can still predict the metabolomic profiles when using smaller sets of training data.

We also compared the performance of the prediction using two types of microbial abun-

dance representations: relative abundance (RA) and the centered log-transformation of abun-

dance (CLR). The prediction correlations in the IBD (PRISM) dataset were comparable

between both transformations, however, we saw an increase in correlations in the cystic
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fibrosis and soil datasets when using CLR. In addition, we observed an improvement in pre-

diction performance on the IBD (External) test set when using the CLR transformation (S1

Fig).

Lastly, we evaluated if sharing the learned hyper-parameters across all cross-validated parti-

tions in MiMeNet lead to overfitting. Although performing a single run of hyper-parameter

tuning that is shared allows for much more computational efficiency, it could potentially be a

source of bias. We evaluated the IBD (PRISM) and cystic fibrosis datasets using a single shared

hyper-parameter set learned on the first partition against cross-validation where hyper-param-

eters are tuned every partition. Using the IBD (PRISM) dataset, we observed an increase in

mean SCC when tuning every iteration, while in the cystic fibrosis dataset, we observed a

decrease in mean SCC. Despite the decrease of performance in the cystic fibrosis dataset, 141

of the 143 significantly correlated metabolites were still identified. Comparisons of the two

evaluations for each dataset are shown in S2 Fig. Together, MiMeNet shows a robust perfor-

mance using the proposed parameter-tuning procedure.

MiMeNet outperforms models in MelonnPan

For benchmarking, we first compared MiMeNet to MelonnPan, a recent model that uses Elas-

tic Net linear regression to predict metabolite abundance from microbial abundance features

[26]. Elastic net regression applies a linear combination of both L1 and L2 regularizations to

avoid overfitting. In the case of MelonnPan, a linear model is trained for one metabolite at a

time and cannot benefit from multivariate learning. In our study, MelonnPan was evaluated

using the same data partitions of the 10 iterations of 10-times cross-validation for each dataset.

However, in the case of the IBD (PRISM) dataset, only the annotated metabolites were pre-

dicted due to the large running time for the entire metabolite set. On the other hand, MiMeNet

was trained to predict all metabolites in the IBD (PRISM) dataset. We observed that in each of

the datasets trained using cross-validation (Fig 4A–4C), MiMeNet has a higher correlation for

prediction across all metabolites when compared to MelonnPan. In the IBD (PRISM) dataset,

the mean correlation increased from 0.108 to 0.309 when evaluating the annotated metabolites.

When training MiMeNet only on the annotated metabolites, we observed a similar result with

Fig 3. Mean correlation analysis using different amounts of training data. Correlations for 10-, 5-, 3-, and 2- fold cross-validation evaluations are shown for

the (A) IBD (PRISM) and (B) cystic fibrosis datasets. (C) Subsets of the IBD (PRISM) and cystic fibrosis corresponding to 100%, 80%, 60%, and 40% of the total

samples are used as an input for MiMeNet. Three random datasets for each level of subsetting were created and then mean correlation using 10 iterations of

10-fold cross-validation is calculated across the three. In addition, models trained on the complete subsets of the IBD (PRISM) data are used to evaluate the IBD

(External) test set.

https://doi.org/10.1371/journal.pcbi.1009021.g003
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an increased correlation to 0.259 (S3 Fig). In the cystic fibrosis dataset, the mean correlation

increased from 0.276 to 0.457. In the soil dataset, the mean correlation from MelonnPan was

-0.272 and was increased to 0.264 using MiMeNet. Moreover, we evaluated the performance of

the models obtained from MelonnPan and MiMeNet using the IBD (External) dataset on the

annotated metabolites. The mean correlation of the annotated metabolites was increased from

0.168 to 0.275 (Fig 4D). Among the top 20 well-predicted metabolites from MiMeNet from the

IBD (PRISM) dataset (Fig 4E), they are fatty acids (eicosatrienoic acid, docosapentaenoic acid,

adrenic acid, and docosapentaenoate), and bile acids (chenodeoxycholate and cholate). Both

of these classes of metabolites have been associated with IBD in previous studies [33–35].

Additionally, within the IBD (PRISM) dataset, MiMeNet identified 351 well-predicted

metabolites from the 466 annotated metabolites. Even though MelonnPan uses a default corre-

lation cutoff of 0.3, when using the same correlation cutoff derived by MiMeNet, MelonnPan

identified 198 well-predicted metabolites of which 181 were identified by MiMeNet. In the cys-

tic fibrosis dataset, MiMeNet identified 143 well-predicted metabolites while MelonnPan iden-

tified 104. In the soil dataset, MiMeNet identified 29 well-predicted metabolites while

MelonnPan identified 4. When training using the entire IBD (PRISM) dataset to predict the

IBD (External) test data, MiMeNet identified 308 well-predicted metabolites while MelonnPan

Fig 4. Scatter plots comparing MiMeNet to MelonnPan prediction correlations. Scatter plots showing the metabolite prediction correlations of MiMeNet

against MelonnPan for (A) PRISM IBD dataset, (B) cystic fibrosis dataset, and (C) soil dataset, each trained using 10 iterations of 10-fold cross-validation. (D)

In addition, 10 iterations of both models were trained on the PRISM dataset to evaluate the external IBD dataset. Each point represents the average correlation

of a metabolite across 10 iterations of training. (E) The top 20 best correlated metabolites identified from the PRISM IBD dataset are shown.

https://doi.org/10.1371/journal.pcbi.1009021.g004
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identified 186, of which 160 were also identified by MiMeNet (S4 Fig). When analyzing the

overall prediction correlation and number of well-predicted metabolites, we observed that

MiMeNet’s improvement was not a global improvement across all metabolites, but rather it

came from MiMeNet being able to model a large set of microbes that MelonnPan could not.

For example, in the IBD (PRISM) dataset, there were 237 metabolites with a negative predic-

tion correlation. Of these metabolites, MiMeNet was able to predict 160 with a correlation

above the determined cutoff. These metabolites also made up the set of metabolites with a pre-

diction correlation of 0 in the IBD (External) set when using MelonnPan. Upon investigation,

this set of metabolites was predominantly composed of triacylglycerols, long-chain fatty acids,

and bile acids. These three classes of metabolites have been shown to interact with various

microbes as well as relate to IBD patients.

We observed that the running time of MiMeNet was robust and did not scale largely with

the number of metabolites as all three datasets complete in similar timespans (Table 2). These

results show that MiMeNet benefited from multivariate learning, the scalability of MLPNN,

and the ability of MLPNN in capturing complex relationships between microbiome and

metabolomes.

In addition, we benchmarked MiMeNet against other general regression models, i.e., Ran-

dom Forest (RF), multivariate Elastic Net, and canonical correlation analysis (CCA) models

using 10 iterations of 10-fold cross validation (S1–S3 Tables). Based on three evaluation met-

rics, i.e., SCC, Pearson correlation coefficient (PCC), and mean absolute error (MAE), we

observed that for the IBD (PRISM) and cystic fibrosis datasets, MiMeNet and RF models per-

formed best. For the soil dataset, we observed that CCA models performed the best, which

may be due to the extremely small sample size of the soil dataset. When models were trained

on the entire IBD (PRISM) dataset to predict the IBD (External) dataset, we observed that

MiMeNet outperformed all other models.

MiMeNet identifies biologically important modules of microbes and

metabolites

To discern what group of microbes contributed collectively to a group of metabolites, we com-

puted the feature attribution scores for all pairs of microbes and the 6857 well-predicted

metabolites using the network weights of the trained models obtained from the IBD (PRISM)

data set. We identified 163 microbes that had at least one significant attribution score with a

well-predicted metabolite (Methods). A positive score means that the microbe contributes pos-

itively to the prediction of the abundance of the metabolite. Likewise, a negative score contrib-

utes negatively to the prediction of the abundance of the metabolite. To reveal the pattern of

attribution scores, we grouped the microbes and metabolites into modules using biclustering

(Methods). We identified 8 modules of microbes and metabolites respectively (Fig 5A) and

computed the module feature value as the average abundance of features within the module

Table 2. Running time for MiMeNet and MelonnPan. Running time for MiMeNet was calculated using the recom-

mended settings from the Github page: 20 random searches for hyper-parameter tuning, 10-iterations of 10-fold cross-

validation for prediction evaluation, 10-iterations of 10-fold cross-validation for background generation, and the train-

ing of 10 final candidate models. MelonnPan was run using 10-iterations of 10-fold cross-validation and for the IBD

(PRISM) dataset MelonnPan only used the 466 annotated metabolomic features.

MiMeNet Running Time (H:M:S) MelonnPan Running Time (H:M:S)

IBD (PRISM) 1:11:39 16:33:04

Cystic Fibrosis 1:18:05 3:47:27

Soil 1:54:24 1:31:29

https://doi.org/10.1371/journal.pcbi.1009021.t002
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for each sample. We then constructed a bipartite graph between microbe and metabolite mod-

ules such that the attribution score was the mean attribution score found within the block

identified by both modules (Fig 5B).

We further went to examine if a module is enriched for one patient group (IBD or healthy)

by comparing the average normalized feature values of the members within the module

between the two groups using the IBD (PRISM) samples (P<0.05, Wilcoxon rank-sum test).

We observed that 7 of the 8 microbial modules were significantly different between groups

using the IBD (PRISM) data. Using the IBD (External) data, two of the modules were still sig-

nificantly different; and even though other modules were no longer significant, they shared

similar trends in the differences between groups (Fig 6A and 6C). We also found that 7 of the 8

metabolic modules were significantly different between groups using the IBD (PRISM) data

and when using the IBD (External) data, the same 7 modules were also significantly different

between groups (Fig 6B and 6D). To further examine the MiMeNet’s predictive performance

in each metabolite module, we calculated the mean SCC and PCC values of members within

each module from both the cross-validated evaluation and the evaluation on the IBD

Fig 5. Clustering of microbes and metabolites in the IBD datasets. (A) Clustering of microbes (row) and metabolites (column) based on the feature

attribution scores obtained from the IBD (PRISM) dataset. Row and column colors represent assigned modules. (B) Network connecting microbial modules

with metabolomic modules. The most abundant genera are annotated for microbe modules. The most abundant metabolite classes are annotated for the

metabolite modules. Red connections indicate negative attributions and green edges indicate positive attributions. Node color represents module color from

(A). (C) Jaccard Index and (D) Spearman correlation between module features of WGCNA and MiMeNet. Jaccard Index values and Spearman correlation p-

values shown in the boxes. (E) IBD status prediction of IBD (External) using models trained on WGCNA module feature values, MiMeNet module feature

values, and original abundance from IBD (PRISM) microbial and metabolomic data.

https://doi.org/10.1371/journal.pcbi.1009021.g005
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(External) data (S5 Fig). For the cross-validated evaluation, the mean SCC for each module

ranged from 0.25 to 0.41 and the mean PCC ranged from 0.21 to 0.35, showing that each mod-

ule contributed to the overall prediction performance of the MiMeNet model. On the IBD

(External) evaluation, the mean SCC ranged from 0.14 to 0.28 and the mean PCC ranged from

0.06 to 0.25. Although the values decreased in the IBD (External) data, the modules with higher

mean SCC and PCC values in the cross-validated evaluation were also the modules with the

higher SCC and PCC values in the IBD (External) data. Taken together, these results show that

the predictive ability as well as the information carried by the collective members of each mod-

ule were transferrable to an external cohort of patients.

Four metabolite modules were enriched in healthy subjects, i.e., higher average module fea-

ture values. The first module (module 2) contained medium-chain fatty acids (MCFA), triter-

penoids, and cholesterols. Triterpenoids, such as oleanolic acid and maslinic acid, have been

shown to have an anti-inflammatory effect as well as enhance the integrity of intestinal tight

junctions [36], and have been explored as therapeutic options for IBD [36–38]. In addition,

both cholesterols and MCFAs have been noted to be depleted in subjects with IBD [39]. The

second module (module 3) contained MCFA molecules as well as secondary bile acids such as

deoxycholic acid and lithocholic acid, which was found to be reduced in IBD patients [40, 41].

The third module (module 7) was mainly composed of short-chain fatty acids (SFCA) such as

propionate, butyrate, and valeric acid, all of which were shown to be protective against IBD

Fig 6. Microbial and metabolic module abundance by patient status in the IBD (PRISM) dataset. The mean

normalized abundance of members within modules are shown here for healthy patients and IBD patients from the IBD

(PRISM) dataset using (A) microbial and (B) metabolic modules and from the IBD (External) dataset using (C)

microbial and (D) metabolic modules identified by MiMeNet. P-values from a two-sided Wilcoxon rank-sum test are

shown on the bottom.

https://doi.org/10.1371/journal.pcbi.1009021.g006
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[34]. The final module (module 8) contained triradylcglycerols, which in previous studies have

been found depleted in subjects with IBD [39].

Similarly, three metabolite modules were found enriched in IBD patients. The first module

(module 1) was composed of a large portion of primary bile acids, amines, amino acids, choles-

teryl esters, and long-chain fatty acids (LCFA). Primary bile acids aid in the digestion of lipids

and are further deconjugated to secondary bile acids by microbes in the gut. The deconjuga-

tion of primary bile acids in subjects with IBD was previously shown to have an impaired abil-

ity causing a greater abundance of primary bile acids [40]. Additionally, these primary bile

acids were shown in previous studies to bind to the farnesoid X receptor, which is linked to the

elevated immune response in IBD [42]. Cholesteryl esters have also been shown to be elevated

in subjects with IBD, potentially explained by lipid mobilization or by increased intestinal per-

meability [43]. The amine group within this module is composed of N-acylethanolamines as

well as sphingosine. N-acylethanolamines have been shown to alter the gut microbiome and

potentially increase levels of lipopolysaccharides in the intestines, causing inflammation [44].

Sphingosine along with fatty acids that make up ceramide were also found within this module.

Ceramide is a precursor to sphingosine-1-phosphate, a signaling sphingolipid that has been

implicated in increased inflammation of the gut [45]. The LCFAs found here have been impli-

cated with IBD contained eicosapentaenoic acid, arachidonic acid, and docosapentaenoic acid,

which were all identified in the original study as well [15]. The largest group in this module,

however, comprised of 31 (24.4%) different amino acids and amino acid derivatives. Amino

acids have been found in a previous study to be elevated in IBD patients, possibly due to the

increase in the bacterial enzyme urease promoting a flux of nitrogen for the synthesis of amino

acids by the host [46]. The second module (module 4) contained LCFAs such as docosahexae-

noic acid, arachidonic acid, and eicosapentaenoic acid, as well as glycerolipids, glyceropho-

spholipids, and sphingolipids. Bacterial-derived sphinogolipids have been shown to play a

crucial role in the development of IBD through multiple signaling pathways [47]. The elevated

glycerolipids and glycerophospholipids were also identified in the original study [15]. The

third module (module 5) contained mostly conjugated bile acids, which is similar to primary

bile acids have been shown to be elevated in IBD subjects due to a decreased ability to deconju-

gate the bile acids into secondary bile acids. In addition to disease related metabolite modules,

MiMeNet also identified one module (module 6) not associated with disease status. This mod-

ule was composed of a small number of LCFAs.

Lastly, we compared the microbial modules in the IBD (PRISM) dataset identified by

MiMeNet to those identified by the Weighted Correlation Network Analysis (WGCNA)

(Methods). The module features of a sample were calculated as the average normalized abun-

dance of the members within the module. Using the Jaccard similarity between the members

of the modules as well as the Spearman correlation coefficient between module features across

samples, we observed only a small consensus between the two groupings (Fig 5C and 5D).

To evaluate if the modules embody the useful information for IBD prediction, we trained

neural network models on the IBD (PRISM) dataset using three different sets of inputs:

WGCNA module features, MiMeNet module feature values, and the original abundance. We

trained 100 networks for each input type and each network was then evaluated on the IBD

(External) dataset using the same input feature structure. For both microbial and metabolomic

data, we observed that MiMeNet’s modules had similar predictive power to the original fea-

tures, and that the models trained using the feature values of the WGCNA modules had a

much lower mean AUC value (Fig 5C). Moreover, the metabolite abundance values and their

module feature values are more predictive of IBD status compared to the microbial abundance

and their module feature values, respectively. Additionally, we compared the prediction of

IBD status when MiMeNet uses k-fold cross-validation (k = 10, 5, 3, and 2) and observed that
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modules generated using 10-fold cross-validation were most predictive of IBD status (S6 Fig).

Lastly, we compared the modules of well-predicted metabolites for the IBD (PRISM) dataset

when using CLR and RA transformations. We observed a large consensus of well-predicted

metabolites using both transformations, but MiMeNet was able to identify slightly more well-

predicted metabolites when using CLR (S7 Fig). We also observed that the modules generated

using CLR were more predictive of IBD status than those generated using RA values (S6 Fig).

Taken together, the analyses demonstrate that MiMeNet has organized microbes and metabo-

lites into biologically meaningful modules.

MiMeNet identifies biologically important microbe-metabolite module

interactions

We analyzed how the MiMeNet’s microbe modules impacted the various metabolite modules

identified by MiMeNet. SCFAs, and in particular butyrate, have been shown to be protective

of inflammation in the gut and important for gut homeostasis [48]. A recent study identified

ten microbial species commonly found in the gut microbiome that produce butyrate [49]. Five

of these microbes, Eubacterium biforme, Eubacterium hallii, Eubacterium rectale, Roseburia
intestinalis, and Roseburia inulinivorans were found in microbial module 6, which had a strong

positive association with the metabolite module comprising of SCFAs. For comparison, we cal-

culated the Spearman correlation between butyrate and each microbe in the IBD (PRISM) and

selected significant pairs after multiple test correction (adj. P<0.05, Benjamini-Hochberg).

Although the pairwise analysis identified 12 significant correlations, only one pair contained a

microbe, Anaerostipes hadrus, from the set of butyrate-producing microbes, indicating the

pairwise univariate analysis can only capture the strongest correlation pairs. This suggests that

not only could MiMeNet capture more biologically relevant microbe-metabolite interactions

but that it can also group them into meaningful modules based on common interactions.

In addition, we observed that metabolite module 5 had very weak positive interactions and

very strong negative interactions with microbial modules 2 and 4. This module contained pri-

marily conjugated bile acids, which are formed when primary bile acids are conjugated with

either taurine or glycine in the liver. Since this process is performed independently of the gut

microbiome, it would be expected to not observe a strong positive association. However, once

these bile acids enter the gut, various microbial enzymes convert these conjugated bile acids

into secondary bile acids through deconjugation, oxidation, and 7-dehydroxylation. Previous

studies have identified multiple genera of microbes that produce enzymes responsible for this

conversion, including Bacteroides, Clostridium, Eubacterium, and Ruminococcus [50], all of

which constitute a large portion of microbial modules 2, 4, and 6. These modules all show a

negative interaction with conjugated bile acids and a positive interaction with secondary bile

acids, suggesting that microbes found within these modules regulate the conversion of conju-

gated bile acids to secondary bile acids.

Discussion

We have developed MiMeNet for integrative analysis of the paired microbiome-metabolome

datasets using neural networks. The objectives of MiMeNet are to model microbiome-metabo-

lome interactions and uncover functional relationships between microbes and metabolites.

Using datasets obtained from the human gut of subjects with IBD, lung sputum of subjects

with cystic fibrosis, and soil wetting environmental studies, we showed that MiMeNet models

can produce a robust and accurate prediction of the community metabolome based on the

microbial taxa abundance in both cross-validation and external validation. MiMeNet is

empowered by neural networks’ capability of modeling nonlinear relationships and
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multivariate learning, which predicts the abundance of all metabolites at once, which can help

facilitate prediction through shared information across different metabolites. Indeed, our

results of the IBD data demonstrated that the MiMeNet prediction on the set of the annotated

metabolites benefited from including tasks of predicting the rest of the unannotated metabo-

lites in the metabolome profiles (Fig 2D–2F). We note that since not all metabolites may be

associated with microbes, some metabolites will have lower prediction correlations, which

resulted in an overall lower mean correlation across all metabolites. We also observed a higher

threshold value for the soil data (Fig 3A–3C), which may be due to the longitudinal

observations.

MiMeNet also facilitates additional analysis from the learned network models. Using the

IBD data, we showed that the feature attribution scores derived from the network weights

could be used to construct modules of microbes with similar positive or negative effects on a

set of metabolites. This is a unique feature that other regression-based models (e.g. random

forest) can not provide. Grouping metabolites into modules with similar feature attribution

score patterns can facilitate the annotation of uncharacterized metabolites through “Guilt of

Association” [15, 51]. This is extremely important in the field of metabolomics due to a large

amount of current “dark matter” [52]. Untargeted metabolomics study has been hindered by

many unknown metabolites and much of the newly collected information remains uninter-

preted. The annotated metabolites clustered in a MiMeNet module that contains unannotated

metabolites may provide a clue that those metabolites participate in similar biochemical reac-

tions due to similar interaction patterns with some microbial modules. Those unannotated

metabolites may relate to the annotated metabolite structurally or functionally. Additionally, if

microbial gene features are used as input to train MiMeNet, it may further uncover gene-

metabolite association from the feature attribution scores identified from the MiMeNet model.

Although the MiMeNet analysis is data-driven without incorporating mechanistic knowledge,

these types of evidence obtained from the integrative analysis of metagenomes and metabo-

lomes could be used in predictive computational approaches such as MAGI and MINEs to

increase the confidence of metabolite identification [53]. Furthermore, we have shown that the

predictive models learned from the derived modules were equally competitive for the predic-

tion of IBD status compared to those built on the entire microbes or metabolites, suggesting

the metabolic functional relevance of microbial modules. This direction could be further

explored in integrating omics data for host phenotype prediction [23].

The predictive model in MiMeNet distinguishes it from MelonnPan [26], which uses a reg-

ularized linear regression to model each metabolite separately. MiMeNet models all metabo-

lites nonlinearly and benefits from learning the shared information. The MiMeNet model is

also different from another highly relevant predictive model of NED in several aspects. NED

models the metabolome using the representation of microbiome in the latent space generated

by an encoder [28, 29]. It imposes an additional sparsity constraint to prevent overfitting and

non-negative weights for ease of interpretation. Our comparison shows that the MiMeNet

model is competitive with the NED model in terms of predictive accuracy and the ability to

make well-prediction for a larger set of metabolites (S8 Fig). This suggests that the constraint

of non-negative weights may diminish the capability of the NED to capture interactions where

some microbes negatively affect some metabolites. Indeed, it was reported that more than 50%

of associations identified between microbial metabolic pathways and species in human fecal

and blood samples are negative [19]. Similar to MiMeNet, the NED generated latent micro-

biome space, which was shown to contain biologically relevant information useful in discrimi-

nation of Crohn’s disease, ulcerative colitis, and healthy subject, and prediction of other

clinical measurements such as usage of immunosuppressive therapy. However, since NED

models metabolites using the microbiome latent space representation, the interpretation of
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microbe-metabolite interaction is less intuitive, and it does not reveal modules in microbes

and metabolites with shared interaction patterns. Nevertheless, we note that NED belongs to a

broad class of integrative approaches to omics data analysis using latent components derived

from various statistical and machine learning models [54].

The scope for integrative analysis of microbiome and metabolomics data developed so far

are diverse, ranging from the identification of statistical associations using univariate and mul-

tivariate correlation analyses to predictive modeling based on machine learning and metabolic

network-based modeling [8, 14, 15, 18, 55–57]. For example, a recently released webserver,

M2IA [58], is an excellent tool to streamline the statistical analysis, such as overall similarity

assessment of the two omics datasets, pairwise correlation analysis between microbes and

metabolites, a heatmap visualization tool for revealing positive and negative correlation pat-

terns. It also includes other components including WGCNA for identifying clusters of metabo-

lites based on the pairwise Spearman’s correlations of metabolites, supervised multivariate

analyses of detection of disease associations on the microbes, or metabolites or functional

annotations. M2IA, however, does not provide predictive models to quantify the impact of the

abundance of multiple microbes on a metabolite abundance. This is the major distinction

between MiMeNet and other machine learning-based methods (MelonnPan [26], mmvec

[27], and NED [28, 29]) specifically designed for microbiome and metabolome integrative

analysis. Despite the progress, all these methods including MiMeNet, are still limited in pro-

viding biological plausibility and mechanistic insights. Future direction for MiMeNet exten-

sion could be the development of procedures to discern the statistical association of microbe-

metabolites interactions to host diseases and detect modules of metabolites that require spe-

cific microbial taxa in healthy and disease samples. In addition, datasets including additional

metagenomics data could be integrated to allow for predicting metabolites from genes. This

could potentially reveal richer functional connections that are not currently annotated as well

as provide a richer functional exploration of the impact of the microbiome on the host meta-

bolome. Moreover, neural networks could be utilized to model how the host metabolome

influences gut microbial composition.

Methods

Data for evaluation

Concurrent profiles of microbiome and metabolome from varying environments were used

for evaluation (Table 1). The first dataset was taken from a published study of patients with

inflammatory bowel disease (IBD) [15]. It includes one cohort from the Prospective Registry

in IBD Study at MGH (PRISM), which enrolled patients with a diagnosis of IBD based on

endoscopic, radiographic, and histological evidence of either Crohn’s Disease (CD) or Ulcera-

tive Colitis (UC). This dataset has 121 IBD patients and 34 controls and is named as IBD

(PRISM). Additionally, it includes an external validation dataset using two other cohorts. One

consists of 20 healthy subjects who participated in LifeLines-DEEP, a general population-

based study in the northern Netherlands (NLIBD) [59]. The second cohort consists of 43 sub-

jects with IBD taken from the Department of Gastroenterology and Hepatology at the Univer-

sity Medical Center in Groningen, Netherlands. This dataset is named as IBD (External). The

processing of the stool samples collected is described in the original study [15]. A total of 201

microbial species and 8848 metabolites were identified for the IBD (PRISM) and IBD (Exter-

nal) datasets.

The second dataset was taken from a study that collected 172 lung sputum samples from

patients with cystic fibrosis [31]. Microbial features were generated using 16S rRNA gene

sequencing and abundance was collected at the genus level, resulting in 657 unique microbial
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features. Metabolomic data were generated using LC-MS/MS technology, resulting in 168

unique metabolites.

The third dataset represents microbial and metabolic activity caused by soil wetting at five-

time points across four biocrust successional stages [32]. Biocrust soil water for each sample

was analyzed by LC/MS for metabolite detection. Metagenomic shotgun sequencing was used

to profile the microbial community and the authors used the 50S ribosomal protein L15 to

map microbial taxa. A total of 466 microbes and 85 metabolites were detected.

Any input or output feature that is present in less than 10% of samples was removed. Micro-

biome and metabolomic data were then transformed using the centered log-ratio (CLR) trans-

formation:

CLRðxÞ ¼ log
x1

gðxÞ
; . . . ; log

xm
gðxÞ

� �

where x is the abundance vector of a sample, g(x) is the sum of entry values in x, andm is the

number of features. A pseudocount of 1 was added to each entry of x before the CLR transfor-

mation to prevent taking the log of 0 values. The only exception was for the IBD (PRISM) and

IBD (External) microbe values, which were obtained in relative abundance (RA).

MiMeNet architecture and training protocol

An MLPNN model is composed of multiple fully connected hidden layers composed of per-

ceptrons. The values hl+1 of layer l+1 are defined as

hlþ1 ¼ φðhlWl þ blÞ

HereWl are the weights connecting the perceptrons of the lth layer with values hl with those

of layer l+1, bl is the bias values between layer l and l+1, and φ is a non-linear function. In

MiMeNet, φ is set as the rectified linear unit (ReLU). We selected this activation function since

previous studies have shown that it is resilient to the problems of exploding and vanishing gra-

dient in MLPNN training [60]. We used the L2 regularization in order to prevent the model

from having large weights. Additional regularization was applied through dropout at each hid-

den layer, where a portion of the nodes and their weights are masked for a given epoch. MiMe-

Net was trained using the ADAM optimizer and the mean squared error (MSE) loss function.

The entire loss function for MiMeNet is defined as,

Loss ¼
1

N

XN

i¼1

ðyi � ŷlÞ
2
þ l

X

l2L

kWlk2

Here, N is the number of training samples and L is the total number of hidden layers. The

first term represents the mean squared error (MSE) of the observed metabolites y and the pre-

dicted metabolites ŷ. The second term represents the L2-regularization penalty which is con-

trolled by the parameter λ.

The overall evaluation of MiMeNet prediction was conducted using 10 iterations of the

10-fold cross-validation, and the average of the correlations between the predicted and

observed values for metabolites was reported. More explicitly, during the 10-fold cross-valida-

tion, each dataset was partitioned into two subsets: 90% for training and 10% for testing. For

each training partition, the 90% of the data was further split into 80% for model training and

20% for validation. After finishing one iteration of 10-fold cross-validation, the SCC between

the predicted and the observed was calculated for each metabolite. To prevent overfitting,

MiMeNet models were trained using early stopping. After each iteration of updating network
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weights using the 80% of the training set, the loss of the validation set was calculated. The

training process was terminated when the loss of the validation set has not improved within 40

iterations, and the network weight parameters were set to the values of the best performing

model on the validation set. Finally, the average of the SCC values was calculated after repeat-

ing the 10-fold cross-validation procedure for 10 times. For the IBD datasets, a final model

trained on the full IBD (PRISM) dataset was then evaluated on the IBD (External) data set.

Hyper-parameter tuning was performed on the first training partition during cross-validation.

To determine the optimal set of hyper-parameters (number of layers, layer size, λ, and dropout

rate), we performed a cross-validated random search using a nested 5-fold cross-validation. We

allowed for 1, 2, and 3 hidden layers of sizes 32, 128, and 512. The L2 regularization parameter

(λ) was selected from 10 different values between 0.0001 and 0.1, evenly spaced on a log scale.

Dropout was selected from 0.1, 0.3, and 0.5. The average SCC was calculated after a model was

trained. We evaluated 20 sets of hyper-parameters and selected the best performing set for the

rest of the 10-fold cross-validation. The optimal hyper-parameters are shown in Table 3.

Identifying well-predicted metabolites

To identify which metabolites are well predicted by MiMeNet, we generated a background dis-

tribution of SCC by training 100 models of 10-fold cross-validation where the samples in

microbiomes and metabolomes were each randomly shuffled. From each of the 100 models

generated, we collected the SCC for each metabolite and combined the values across all metab-

olites to construct the background distribution. We then defined a metabolite as well-predicted

if its SCC is above the 95th percentile of the background correlations.

Calculation of microbe-metabolite feature attribution scores

Microbe-metabolite feature attribution scores are calculated using Olden’s method for under-

standing variable contributions in neural network models [61]. Olden’s method generates

these scores by multiplying the weights of each hidden layer together, resulting in a single

matrix where each row represents an input feature, and each column represents an output fea-

ture. More specifically, for each trained network model, a microbe-metabolite feature attribu-

tion score matrix S is calculated as

S ¼
Y

l2L

Wl

where l is the current layer in the set of L layers, andWl is the weight matrix connecting layer l
−1 and layer l. Each element in S represents a microbe-metabolite feature attribution score. A

positive value indicates that an increase of the microbe will lead to an increase of the metabo-

lite and a negative value indicates that an increase of the microbe will lead to a decrease of the

metabolite. For the subsequent procedure, we only retained the columns of the feature attribu-

tion matrices representing the well-predicted metabolites.

Table 3. The optimal hyper-parameters for the neural network model in each dataset.

Layer Size Number of Layers L2 Penalty (λ) Dropout

IBD (PRISM) 512 1 0.001 0.5

Soil 128 2 0.005 0.3

Cystic Fibrosis 128 1 0.0001 0.5

https://doi.org/10.1371/journal.pcbi.1009021.t003
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Identifying microbes with significant microbe-metabolite interactions

Denoting Si as the feature attribution score matrix for the ith trained model (n = 100 models

resulted from the 10 iterations of 10-fold cross-validation), we calculated the mean feature

attribution matrix �S as

�S ¼
1

n

Xn

i¼1

Si

To identify microbes with significant associations, we further calculated feature attribution

score matrices from the network models used to generate the background correlation distribu-

tions and calculated the mean feature attribution score matrix, which was then flattened into a

vector and a threshold was set at the 97.5 percentile. Any feature attribution score in the

observed dataset with an absolute value above the threshold was considered significant. Finally,

any microbe with at least one significant feature attribution score with any metabolite was con-

sidered to be significant and the rows representing non-significant microbes were filtered out

from �S as well as from all feature attribution score matrices Si used in subsequent analyses.

Clustering and visualization of microbe-metabolite interactions

We normalized the values in each feature attribution score matrix Si by dividing the significant

threshold score identified from the background and clipped values to be between -1 and 1. In

doing so, every significant attribution score was treated with equal magnitude. We recalculated

�S using the normalized Si so that each element in �S is also between -1 and 1. The normalized

matrix Si was then used to cluster microbes (rows) and metabolites (columns) separately based

on the Euclidean distance and complete linkage using Seaborn’s clustermap function in

Python. Modules were constructed by cutting each dendrogram at a given height. To deter-

mine the number of clusters for microbes, for each fixed k, ranged from 2 to 20, a k-clustering

of the rows using each normalized Si was generated. Then a consensus matrixM(k) was calcu-

lated as the mean connectivity matrix across all k-clustering results (n = 100),

MðkÞ ¼
1

n

Xn

i¼1

CðkÞi

CðkÞi ða; bÞ ¼ 1 if features a and b are in the same cluster

CðkÞi ða; bÞ ¼ 0 if features a and b are not in the same cluster

where CðkÞi is the connectivity matrix of the clustering using k clusters on Si. We further calcu-

lated the area under the cumulative distribution function (CDF) for the consensus matrix of

each clustering,

AðkÞ ¼
Xm

j¼1

ðxj � xj� 1ÞφðxjÞ

where xj is the jth value from the set {0.01, 0.02, 0.03,. . .,0.99, 1.0} and φ(xj) is the proportion of

entries in consensus matrixM(k) that are less than xj. Lastly, we calculated the proportional

change in area as the number of clusters changed,

Dk ¼
AðkÞ � Aðk� 1Þ

Aðk� 1Þ
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This value represents how much cleaner the consensus matrix gets if we increase the num-

ber of clusters by 1. We set a threshold of Δk = 0.025, indicating that increasing the cluster by 1

more would give less than a 2.5% increase in the area under the CDF. The best cluster number

k� was selected as the largest value of k that resulted in Δk larger than the threshold. Further

details of this analysis can be found inMonte et al. [62] and an example demonstrating the

changes of A(k) is shown in S9 Fig. The number of metabolite clusters was determined using

the same procedure. The best cluster numbers for microbes and metabolites are then denoted

as k�
1
and k�

2
, respectively. The final set of microbial and metabolite modules are then deter-

mined by biclustering �S using k�
1
and k�

2
to cluster the rows and columns respectively.

For visualization of the microbe-metabolite interaction network, the score between a pair

of microbe and metabolite modules was calculated as the average normalized feature attribu-

tion score in �S between each microbe and metabolite within the two modules. For visualization

purposes only we removed any score whose absolute value was less than 0.25. Networks show-

ing microbe and metabolite modules and the interactions between them were constructed

using Cytoscape [63].

Determination of the final model for external metabolite prediction

For evaluating the external test data, multiple neural network models were trained on the

entire training dataset. For each model, biclustering is performed on the extracted feature attri-

bution score matrix using k�
1

and k�
2

as the number of microbial and metabolite clusters respec-

tively, and microbe and metabolite match scores are assigned as the number of co-clustered

microbes or metabolites that also occur in the previously identified modules. The model with

the highest combined match scores was selected as the final model for external evaluation.

Machine learning models for benchmarking

MelonnPan and NED models were obtained from their respective GitHub repositories and

executed using default parameters as according to their tutorials. Random Forest, multivariate

Elastic Net, and Canonical correlation analysis models were implemented using Python’s sci-
kit-learn package. Similar to MiMeNet, these models can predict the entire set of metabolites

at once, and all models were evaluated using 10 iterations of 10-fold cross-validation. Random

Forest models were implemented using RandomForestRegressor with the default parameter set-

tings of 100 tree estimators. Multivariate Elastic Net models were implemented using Elastic-
Net and GridSearchCV using 5-fold internal cross-validation for hyper-parameter tuning

where the hyper-parameter grid contained α2{0.0001, 0.001, 0.01, 0.1} and l1 ratio2{0.0, 0.2,

0.4, 0.6, 0.8, 1.0}. To keep computational time in line with MiMeNet, the maximum iterations

was set to 10. Canonical correlation analyses were implemented using CCA with 10, 20, and 40

components.

Weighted correlation network analysis (WGCNA)

WGCNA analysis of microbial features was performed using theWGCNA library in R [64] on

each dataset. The adjacency matrix was created with a power of 2 for the microbiome data and

5 for the metabolomic data. To compare the WGCNA microbial modules to the MiMeNet

microbial modules derived from the IBD (PRISM) dataset, we calculated the Jaccard similarity

between the modules as well as the Spearman correlation.
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Neural networks for host phenotype prediction

For each module derived from MiMeNet or WGCNA using the IBD (PRISM) dataset, the

module feature value was calculated as the mean normalized abundance value of the features

comprising the module for each subject in both IBD datasets. Network models for the IBD sta-

tus prediction were trained on the IBD (PRISM) dataset using the original microbial OTUs

(using either relative or center log-transformed abundance), the module feature values of the

MiMeNet and WGCNA microbial modules, respectively. Similarly, the network models were

trained on the IBD (PRISIM) data using the normalized metabolomic abundance and metabo-

lomic module feature values. We trained a 3-layer neural network model with 32 nodes in

each layer for each input format described above. The evaluation was done by training 100

neural network models evaluating on the IBD (External) test set using the area under the

receiver operating characteristic curve (AUC).

Other existing tools

The MelonnPan was downloaded from https://github.com/biobakery/melonnpan and exe-

cuted using the given instructions. The NED model was trained using code downloaded from

https://github.com/vuongle2/BiomeNED.

Supporting information

S1 Fig. Comparison of prediction correlation when using relative abundance and centered

log-ratio. Scatterplots comparing metabolite correlation prediction between data transformed

to relative abundance (RA) and centered log-ratio (CLR) for (A) IBD (PRISM), (B) cystic

fibrosis, (C) soil datasets using 10 iterations of 10-fold cross-validation, and (D) IBD (External)

test predictions using models trained on the full IBD (PRISM) dataset.

(TIF)

S2 Fig. Performance comparison of models trained using shared hyper-parameters against

models trained with tuning hyper-parameters every cross-validated partition. Using

10-iterations of 10-fold cross-validation, evaluations using shared hyper-parameters tuned

from the first partition (Tune Once) were compared against evaluations with tuning for each

partition (Tune Every Partition) for the IBD (PRISM) and cystic fibrosis dataset. Each point

represents the mean SCC of a metabolite and the red lines represent the determined SCC

threshold for significantly well-predicted metabolties.

(TIF)

S3 Fig. Prediction correlation comparison between models of MiMeNet and MelonnPan

trained only on the annotated metabolites. Scatterplot of mean predicted Spearman’s corre-

lations over 10 iterations of the 10-fold cross-validation for each metabolite between MiMeNet

and MelonnPan when MiMeNet is trained only on the annotated metabolites in the IBD

(PRISM) dataset.

(TIF)

S4 Fig. Overlap of well-predicted metabolites identified by MiMeNet and MelonnPan.

Using the correlation cutoff identified by MiMeNet, the overlap between the well-predicted

metabolites is shown between MiMeNet and MelonnPan for (A) IBD (PRISM) dataset, (B)

cystic fibrosis dataset, (C) and soil dataset. (D) In addition, the overlap of well-predicted

metabolites is shown when training on the entire IBD (IBD) dataset and predicting on the IBD

(External) dataset.

(TIF)
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S5 Fig. Mean Spearman and Pearson correlation per metabolite module. For each metabo-

lite module, the (A) mean SCC and (B) mean PCC values of the members within the module

are shown using the cross-validated evaluation on IBD (PRISM) as well as when evaluating the

IBD (External) data.

(TIF)

S6 Fig. IBD status of prediction for different module construction methods evaluated on

the IBD (External) dataset. Module values were constructed using WGCNA and MiMeNet.

For metabolomic modules constructed by MiMeNet, the values within the parentheses repre-

sent the compositional transformation, number of folds for cross-validation, and the aggrega-

tion method respectively. Mean aggregation calculates the mean normalized abundance value.

PCA aggregation uses the first principal component of the members’ values from that module.

Microbiome modules were constructed similarly with the exception that RA was always used.

(TIF)

S7 Fig. Overlap of significant metabolites and module membership when using relative

abundance and centered log-ratio. (A) Overlap of well-predicted metabolites when using rel-

ative abundance and centered log-ratio for the IBD (PRISM) dataset. Heatmaps show Jaccard

similarity between membership of (B) metabolite and (C) microbial modules in the IBD

(PRISM) dataset. (D) Overlap of well-predicted metabolites when using relative abundance

and centered log-ratio for the cystic fibrosis dataset. Heatmaps show Jaccard similarity

between membership of (E) metabolite and (F) microbial modules in the cystic fibrosis data-

set.

(TIF)

S8 Fig. Comparison of MiMeNet to NED. Scatterplot comparing metabolite prediction corre-

lation between MiMeNet and NED on the IBD (External) dataset validation. The red line indi-

cates the correlation threshold identified by MiMeNet and the gray area represents well-

predicted metabolites. The one-tailed p-value (Wilcoxon sign-rank) comparing MiMeNet’s

values to NED’s is shown in the top right.

(TIF)

S9 Fig. Using consensus clustering analysis for cluster number determination for the IBD

(PRISM) dataset. (A) The cumulative distribution functions (CDF) for varying cluster num-

bers and (B) change in area under the CDF is shown for clustering on the microbial features.

(C) The cumulative distribution functions (CDF) for varying cluster numbers, and (D) change

in area under the CDF is shown for clustering on the metabolic features.

(TIF)

S1 Table. Cross-validated evaluation using centered log-ratio data. Benchmarking results

using MiMeNet, Random Forest (RF), Multivariate Elastic Net, and Canonical correlation

analysis (CCA) of the three datasets using 10 iterations of 10-fold cross-validation. Mean and

standard deviation values for Spearman correlation coefficient (SCC), Pearson correlation

coefficient (PCC), and mean absolute error (MAE) are shown. All data were transformed

using centered log-ratio exception for IBD microbial input, which was obtained in relative

abundance.

(XLSX)

S2 Table. Cross-validated evaluation relative abundance data. Benchmarking results using

MiMeNet, RF, Multivariate Elastic Net, and CCA of the three datasets using 10 iterations of

10-fold cross-validation. Mean and standard deviation values for SCC, PCC, and MAE are
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shown. All data are transformed using relative abundance.

(XLSX)

S3 Table. Evaluation of the IBD (External) data. Benchmarking results using MiMeNet,

Random Forest (RF), Multivariate Elastic Net, and CCA of the three datasets using the IBD

(PRISM) data to predict the IBD (External) data. Values for SCC, PCC, and MAE are shown.

(XLSX)
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