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Abstract 
Motivation: The emergence and subsequent pandemic of the SARS-CoV-2 virus raised urgent 
questions about its origin and, particularly, its reservoir host. These types of questions are long-
standing problems in the management of emerging infectious diseases and are linked to virus discovery 
programs and the prediction of viruses that are likely to become zoonotic. Conventional means to 
identify reservoir hosts have relied on surveillance, experimental studies and phylogenetics. More 
recently, machine learning approaches have been applied to generate tools to swiftly predict reservoir 
hosts from sequence data.  
Results: Here, we extend a recent work that combined sequence alignment and a mixture of alignment-
free approaches using a gradient boosting machines (GBMs) machine learning model, which integrates 
genomic traits (GT) and phylogenetic neighbourhood (PN) signatures to predict reservoir hosts. We 
add a more uniform approach by applying Machine Learning with Digital Signal Processing (MLDSP)-
based structural patterns (M-SP). The extended model was applied to an existing virus/reservoir host 
dataset and to the SARS-CoV-2 and related viruses and generated an improvement in prediction 
accuracy. 
Availability and implementation: The source code used in this work is freely available at https:// 
github.com/bill1167/hostgbms. 
Contact: dsmith@hku.hk, yguan@hku.hk  
Supplementary information: Supplementary data are available at Bioinformatics online. 

 

1 Introduction  
Prevention and management of emerging viral infections (e. g. SARS, 
Ebola, MERS, and Zika), require urgent identification of the natural 
reservoir hosts that carry these viruses. This has been emphasised by the 
emergence and current pandemic of the SARS-CoV-2 virus and the 
questions surrounding its origin (Lu, et al., 2020). Common practice to 
identify reservoir hosts has used a combination of methods such as field 
surveillance, laboratory experiments, and phylogenetic analyses, which 
are time consuming and often inconclusive (Viana, et al., 2014) and delays 
could lead to more economic and health losses. As an alternative, a 
Gradient Boosting Machines (GBMs)-based machine learning model was 

developed to rapidly predict natural reservoir hosts of single-stranded 
RNA (ssRNA) viruses (Babayan, et al., 2018). It utilized viral sequences 
that can now be generated at low cost, and integrated selected genomic 
traits (GT) and phylogenetic neighbourhood (PN) traits to make reservoir 
host predictions with high confidence (Babayan, et al., 2018), generating 
field testable hypotheses and narrowing the gap between virus discovery 
and insights into virus ecology and management. 

The GBM machine learning model was trained on a curated set of 
viruses and reservoir hosts established from literature sources (Babayan, 
et al., 2018). To compute PN traits, BLAST was used to align a query 
sequence against a set of references, which were mainly non-homologous. 
As BLAST-based alignment is designed to not select non-homologous 
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sequences, including those that might have the same reservoir host, PN 
traits obtained in this way may avoid information that could help 
classification and so limit the performance of the model. Alignment-free 
approaches (Zielezinski, et al., 2017) can bypass the requirement for 
homology or divergent evolution to potentially identify related sequences. 
The alignment-free GT approach, which selected the best 50 predictors 
from a set of over 4,000 that was based on nucleotide, codon, and amino 
acid composition parameters, was originally used to balance this 
(Babayan, et al., 2018).  

Here we present an augmented machine learning model that combines 
the GT and PN approaches (Babayan, et al., 2018) with Machine Learning 
with Digital Signal Processing (MLDSP)-based structural patterns (M-SP) 
of viral sequences (Randhawa, et al., 2019; Randhawa, et al., 2020a). The 
MLDSP approach applies a one-dimensional, consistent numeric 
recoding, or the two-dimensional Chaos Game Representation (CGR) 
(Almeida, et al., 2001; Jeffrey, 1990; Karamichalis, et al., 2015), of the 
sequences in a signal processing approach and was used to classify early 
SARS-CoV-2 sequences within a large viral genomic sequence dataset 
(Randhawa, et al., 2020b). This more structured approach to an alignment-
free method than the GT approach might allow better detection of non-
homologous viruses with the same reservoir host. MLDSP builds on 
alignment-free approaches that are widely used for sequence comparisons 
and can overcome the sequence length constraints that may hamper 
alignment based methods (Zielezinski, et al., 2019; Zielezinski, et al., 
2017) and a similar approach was used to compare genomic sequences 
(Lichtblau, 2019). In this work the use of MLDSP methods  improved the 
prediction of reservoir hosts of ssRNA viruses.  

We demonstrate how this consistent sequence structural information, 
using the alignment-free MLDSP method, could properly detect host 
predictors that were not seen by the alignment-based (PN) approach and 
improve accuracy over the GT combination of compositional parameters 
method. Through error analysis of the previous model, we suggest two 
combinations of family categories, into the order level, to achieve a higher 
confidence in host predictions. The primary classification of a host at the 
order level allows targeted investigations of subgroups and could provide 
insights into outbreaks of viruses and their management. 

The trained model was applied to the SARS-CoV-2 and related viruses 
to identify their natural reservoir hosts. Our model suggested a bat origin 
for SARS-CoV-2, consistent with field surveillance and phylogenetic 
analysis (Latinne, et al., 2020; Lau, et al., 2020; Vijaykrishna, et al., 2007; 
Zhou, et al., 2020). Further analysis using a deep learning model indicated 
that the host subgroup Pteropodiformes (Hutcheon and Kirsch, 2006) was 
more likely to be the natural reservoir of the SARS-CoV-2 viruses. 

2 Methods 

2.1 Datasets 
From the earlier work predicting natural reservoir hosts (Babayan, et al., 
2018), ssRNA viruses were further explored as they are the major 
pathogen group responsible for emerging human diseases (Olival, et al., 
2017; Woolhouse and Gaunt, 2007). 437 viral species that cover 80% of 
the ssRNA virus families that contain human-infecting species (Olival, et 
al., 2017) as developed in (Babayan, et al., 2018) were included. Each 
virus has been assigned a reservoir host that belongs exclusively to one of 
nine host categories, Artiodactyl, Bat, Bird, Carnivore, Fish, Insect, Plant, 
Primate, and Rodent, that are defined mainly at the class/order level. Other 
possible reservoir host categories were excluded from the dataset as 
underrepresented examples, where the number of known viral species was 

less than 15 (Babayan, et al., 2018). The Bird and Bat categories were each 
divided into two subgroups in (Babayan, et al., 2018), but were not in this 
work as this resulted in significantly higher accuracy. 

Two coronaviruses, SARS-CoV-2 isolate Wuhan-Hu-1, NCBI 
accession NC_045512.2 (18), and hCoV-19/bat/Yunnan/RaTG13/2013, 
aka RaBatCoV/4991, detected in Rhinolophus affinis from Yunnan 
province, GISAID accession EPI_ISL_402131 (Ge, et al., 2016; Zhou, et 
al., 2020), were used for detailed analysis. Another seven SARS-related 
viruses (Lam, et al., 2020) and ten SARS-CoV-2 virus strains, sequenced 
from January to June 2020 during the first wave outbreak, were collected 
from the NCBI database for phylogenetic analysis. Coding sequence 
(CDS) information of these 17 viruses were retrieved for feature 
computation to predict their reservoir host using the GBM-based model. 
The GT and PN features were used to train a subsequent deep-learning 
model (built using Keras with default parameters) to subclassify bat host 
predictions. 

2.2 Construction of features 
Three layers of traits, as viral features, were used to represent a pathogen’s 
association with its natural reservoir host. These were selected genomic 
traits (GT) and phylogenetic neighbourhood traits (PN) (as in (Babayan, 
et al., 2018)), and MLDSP-based structural patterns of viral sequences (M-
SP). GT contained the codon pair score (CPS), dinucleotide biases, codon 
biases, and amino acid biases from (Babayan, et al., 2018) and the 50 most 
important features from GT as defined in (Babayan, et al., 2018) were 
used. PN traits were computed as in (Babayan, et al., 2018), except that 
only nine host categories were mapped here, with the top five BLAST hits 
retained, as in (Babayan, et al., 2018). 

The third set of traits were designed to capture association patterns 
between a virus and its reservoir host that could have been missed by the 
BLAST local alignment-based method in the PN traits or the GT traits. 
The Machine Learning with Digital Signal Processing (MLDSP) strategy 
(Randhawa, et al., 2019; Randhawa, et al., 2020a), which was developed 
to make alignment-free comparisons among sequences, was adopted. 
Sequences were recoded based on a one-dimensional purine/pyrimidine 
code (a two-dimensional Chaos Game Representation Method with a k-
tuple size of 7 (Karamichalis, et al., 2015; Randhawa, et al., 2020b) was 
also examined, see Supplementary information), Fourier transformed (FT) 
and the Pearson correlation coefficients among the FT sequences were 
obtained (Randhawa, et al., 2019; Randhawa, et al., 2020a). A distance 
matrix was computed from the input sequences, and the matrix of a virus 
was associated with the host categories to gauge the weight of each host 
group (create a weight vector) for the target virus.  

The process was: (1) Use the MLDSP algorithm (details shown in 
Supplementary Information) to compute a distance matrix of query 
sequences against the whole viral dataset. (2) The distance values for each 
query sequence were inverted to give its weights against different 
reference sequences. (3) The top five weights, as with the PN traits, were 
selected and mapped to the host categories. (4) Weights were normalized 
by taking the absolute value of subtraction between each adjacent weight 
pair to measure the distance. (5) Weights pointing to the same host group 
were summed and all weights were converted into a percentage over the 
nine host categories to give the final weight vector, or M-SP traits, 
representing the association patterns between the query sequence and its 
potential hosts. 

The GT traits, PN traits, and M-SP traits are concatenated as the feature 
input of the model, so that the number of features considered are 68 (GT 
= 50, PN = 9, M-SP = 9). 
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2.3 Machine learning model 
Prior to building the model, the strength of virus-host associations 
between PN and M-SP traits was compared using the six methods in 
(Randhawa, et al., 2019) (i.e. LinearDiscriminant, LinearSVM, 
QuadraticSVM, FineKNN, SubspaceDiscriminant, and SubspaceKNN). 
The PN-host and M-SP-host pairs were used as two sets of data for input 
to the six algorithms, as described in (Randhawa, et al., 2019). The 
outcomes demonstrated the extent of host identification achieved by the 
PN or M-SP traits alone. 

For the main predictive model, the GBM framework from (Babayan, et 
al., 2018) that performed best at host prediction was adopted for host 
inference here. A random stratified split strategy was used to divide the 
dataset into training (70%), optimization (15%), and test (15%) sets. Five 
hundred and fifty rounds of training, as in (Babayan, et al., 2018) were 
conducted. 

Performance for each of the 437 viruses was evaluated by two methods. 
Firstly, as in (Babayan, et al., 2018), the overall top 25% of the 550 trained 
models were selected. For an individual virus, the bagged prediction 
accuracy was calculated by selecting from these “top 25%” models all that 
had that virus in the test set. In the second method, the performance of the 
models was defined by selecting the top 25% of all models that had a 
specific virus in the test set and bagging their predictions. Therefore, the 
host of every virus is predicted from exactly 25% of the models for which 
it was in the test set. 

As the GT and M-SP traits are calculated without alignment against 
reference sequences, models with GT only versus GT and M-SP combined 
(excluding PN traits) were compared to investigate the benefit brought by 
the M-SP traits. The best 138 models from the 550 rounds of training 
(similar to the first method above) were selected for comparison and were 
averaged (a bagging strategy) to generate a final prediction. The 
performance between this (averaged) model and the model of (Babayan, 
et al., 2018) were compared based on identical configuration settings. 

As bats are reservoir hosts of many recently emerging zoonoses 
(Brierley, et al., 2016; Luis, et al., 2013; Zhou, et al., 2016), a deep 
learning (DL) model (Supplementary Table 1) was built to further analyse 
the host subgroup of bat predictions. Of the 437 virus species in the data 
set, those from bats were extracted to train this model (with 50 rounds of 
training) to predict between the Pteropodiformes and Vespertilioniformes 
subgroups (Hutcheon and Kirsch, 2006). Further taxonomic subdivision 
was not possible due to the limited number of examples. 

2.4 Implementation 
The following computing environments were used: numpy and pandas in 
Python for data processing, MATLAB for M-SP feature generation, h2o 
in R and tensorflow with keras in Python for machine learning, and 
matplotlib in Python for plotting and visualization. 

2.5 Code and Data availability 
Source code is available at https://github.com/bill1167/hostgbms. 
Training data were the curated virus-reservoir host dataset generated and 
published by (Babayan, et al., 2018). 

3 Results 

3.1 Missed association patterns captured by the MLDSP 
method 

The six models used for the MLDSP performance test in (Randhawa, et 
al., 2019) were applied to the virus-host dataset and compared to 
predictions from the PN traits-based approaches (Table 1). The MLDSP-
based predictions were better or comparable to those from the PN-based 
methods for most cases, with SubspaceKNN and FineKNN giving the best 
results at accuracies of 54.9% and 53.8%, respectively, and clearly 
outperforming any method using PN traits. The extent to which patterns 
captured by the MLDSP algorithm correlated with their reservoir host was 
visualized through Multi-dimensional Scaling (MDS), as shown in Figure 
1a. Prediction accuracies over 90% (Supplementary Table 2) were 
achieved when MLDSP-based traits were used to predict the virus family 
(Figure 1b). Thus, this alignment-free method captures most of the 
information in the phylogenetic classification, while finding patterns 
relating to virus-host associations that were missed by the alignment-
based PN approach.  

 

Fig. 1. Visualization of pattern-category associations revealed by the 
MLDSP method using Multi-dimensional Scaling. (a) Associations 
between viral patterns and host categories using the MLDSP method. (b) 
Associations between viral patterns and virus categories using the MLDSP 
method. Each circle represents a virus (a total of 437 and 139 examples in 
(a) and (b), respectively) with color indicating the corresponding category. 
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Table 1. Accuracy of predictions of the virus’ host for different traits 

Model PN traits (%) MLDSP traits (%) 

LinearDiscriminant 38.9 47.8 
LinearSVM 44.4 36.6 
QuadraticSVM 49.2 49.0 
FineKNN 46.2 53.8 
SubspaceDiscriminant 38.9 43.0 
SubspaceKNN 46.0 54.9 
AverageAccuracy 43.9 47.5 

 
 
The PN and MLDSP methods were compared over the training 

examples (Table 2). Both methods failed for the Goose calicivirus 
(NC_024078.1), although the MLDSP method was a marginal failure. The 
PN method failed in a further three cases and gave less strong predictions 
than MLDSP in the six remaining cases where both methods were correct. 
Integrating MLDSP-based patterns into the machine learning model 
should improve the accuracy of its predictions. 

3.2 Improved accuracy of predictions when the GT, PN, 
and M-SP traits were combined 

The overall performance of the models was examined by taking the best 
25% of the 550 trained GBM models, with and without the M-SP traits, 
and assessing their predictions on their test sets over the host groups 
(Supplementary Table 3). Adding the MLDSP approach gave an average 
accuracy of 77.0% (Figure 2a), against 75.1% without it (Figure 2b). 
Prediction accuracies for the Bat and Bird host groups were approximately 
10% higher than their component subgroups (Supplementary Figure 1). 
For most of the host groups, prediction accuracies were better for the 
model including M-SP traits. 

The cumulative prediction accuracy for the bagged 138 models is 
presented in Figure 2c and Supplementary Table 4. Bagging of the models 
removed the accuracy distinction between the two approaches for 1st rank 
predictions, but an improvement remained for lower ranked predictions 
with M-SP traits. 

Analysis of GT only versus GT and M-SP combined, without PN, 
showed that the average of the best ten performances improved by 2.6%, 
from 70.9% to 73.5% (Supplementary Table 5). 

3.3 Prediction of bat origin for SARS-CoV-2 and related 
viruses 

As a test of the method, the predicted natural reservoir hosts for two 
coronaviruses, Wuhan-Hu-1 (SARS-CoV2 isolate NC_045512.2, (Wu, et 
al., 2020)) and hCoV-19/bat/Yunnan/RaTG13/2013 (EPI_ISL_402131.3, 
(Ge, et al., 2016; Zhou, et al., 2020)) are presented in Table 3, with 
individual models (the ten best of 50 trained models) making correct 
predictions for both viruses. For the 17 SARS-related and SARS-CoV-2 
test viruses (phylogeny shown in Supplementary Figure 2), the bagged 
predictions indicated that, as expected, all these SARS-related 
coronaviruses were of bat origin when the M-SP method was included 
(Table 4). 

3.4 Pteropodiformes origin of SARS-CoV-2 by subgroup 
analysis 

Whether the SARS-CoV-2 virus was of Pteropodiformes or 
Vespertilioniformes origin (Hutcheon and Kirsch, 2006) was investigated 
with a deep learning model. A Pteropodiformes bat origin was predicted 
for the Wuhan-Hu-1 isolate and the hCoV-19/bat/Yunnan/RaTG13/2013 
SARS-CoV-2 related virus (isolated from a Pteropodiformes bat) with 
probabilities of 0.6231 and 0.6492, respectively. All SARS-related and 
SARS-CoV-2 test strains (as given in Supplementary Figure 2) were 
predicted to be associated with the Pteropodiformes host group 
(Pterobat(%), Table 4). 
 

Fig. 2. Accuracy of the GBMs model using features captured by different 
algorithms. (a) Accuracy of the GBMs model using GT + PN + M-SP 
features. (b) Accuracy of the GBMs model using GT + PN features. Dark 
points and coloured lines are median and SD, respectively. (c) Cumulative 
bagged accuracy of models with GT + PN (blue) and GT + PN + M-SP 
(red) on all 437 viruses from the first prediction to the fifth ranked 
prediction. 

Page 4 of 6Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Reservoir host prediction 

Table 2. Reservoir host prediction by the PN and MLDSP methods 
 

Virus Accession # Reservoir Method Artiodactyla Bat Bird Carnivore Fish Insect Plant Primate Rodent 

Akabane virus NC_009896.1 Artiodactyl PN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 
    MLDSP 0.92 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.05 
Malsoor virus KF186496.1 Bat PN 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 
   MLDSP 0.12 0.85 0.00 0.03 0.00 0.00 0.00 0.00 0.00 
Newbury-1 virus NC_007916.1 Artiodactyl PN 0.28 0.00 0.00 0.72 0.00 0.00 0.00 0.00 0.00 
    MLDSP 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Goose calicivirus NC_024078.1 Bird PN 0.00 0.25 0.25 0.00 0.00 0.00 0.00 0.50 0.00 
    MLDSP 0.00 0.00 0.40 0.19 0.00 0.00 0.00 0.41 0.00 
Tyuleniy virus NC_023424.1 Bird PN 0.00 0.00 0.26 0.00 0.00 0.00 0.00 0.25 0.49 
   MLDSP 0.00 0.00 0.80 0.00 0.00 0.00 0.00 0.17 0.03 
Chicken calicivirus KM254171.1 Bird PN 0.29 0.00 0.47 0.00 0.00 0.00 0.00 0.24 0.00 
    MLDSP 0.00 0.00 0.60 0.00 0.00 0.00 0.00 0.40 0.00 
Kama virus NC_023439.1 Bird PN 0.25 0.00 0.26 0.00 0.00 0.00 0.00 0.25 0.25 
   MLDSP 0.00 0.00 0.97 0.00 0.00 0.00 0.00 0.03 0.00 
Human-  NC_003443.1 Primate PN 0.00 0.24 0.00 0.25 0.00 0.00 0.00 0.51 0.00 
parainfluenza   MLDSP 0.00 0.35 0.00 0.00 0.10 0.00 0.00 0.55 0.00 
Junin arenavirus NC_005081.1 Rodent PN 0.00 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.75 
    MLDSP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 
Rabies virus JQ685970.1 Carnivore PN 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 
   MLDSP 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 

a The highest values by the PN- and MLDSP-based methods are marked in bold. 
 
Table 3. Natural reservoir host of two coronaviruses predicted by the GT-PN-M-SP GBMs model  
 

Virus Accession # Model b Prediction Artiodactyl Bat Bird Carnivore Fish Insect Plant Primate Rodent 

Wuhan- NC_045512.2 47 Bat 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Hu-1  39 Bat 0.103 0.234 0.092 0.093 0.094 0.089 0.087 0.119 0.089 
  40 Bat 0.004 0.996 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
  45 Bat 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
  50 Bat 0.007 0.993 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
  12 Bat 0.003 0.996 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
  16 Bat 0.002 0.997 0.000 0.000 0.000 0.000 0.000 0.001 0.000 
  11 Bat 0.000 0.999 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
  32 Bat 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
  01 Bat 0.001 0.993 0.000 0.000 0.000 0.000 0.000 0.006 0.000 
RaTG13a EPI_ISL_ 47 Bat 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
 402131 39 Bat 0.094 0.243 0.094 0.092 0.099 0.092 0.090 0.103 0.092 
  40 Bat 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
  45 Bat 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
  50 Bat 0.005 0.994 0.000 0.000 0.000 0.000 0.000 0.001 0.000 
  12 Bat 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
  16 Bat 0.000 0.999 0.000 0.000 0.000 0.000 0.000 0.001 0.000 
  11 Bat 0.000 0.999 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
  32 Bat 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
  01 Bat 0.010 0.903 0.000 0.000 0.000 0.000 0.000 0.087 0.001 

a RaTG13 is hCoV-19/bat/Yunnan/RaTG13/2013. 
b The best ten individual GBMs of the 50 trained models are shown. 
 
4 Discussion 
Convenient measures to rapidly identify the natural reservoir hosts of 
emerging human infectious viruses are needed as the current practice of 
field surveillance, laboratory experiments and phylogenetics is time 
consuming and often inconclusive (Viana, et al., 2014). We have proposed 
a strategy to improve an existing in silico model (Babayan, et al., 2018) 
for reservoir host prediction by capturing additional host associations 
based on sequence structural patterns, M-SP, derived from MLDSP 
(Randhawa, et al., 2019; Randhawa, et al., 2020a), that can be determined 

without requiring alignments. These were added as a consistent method 
for all sequences rather than the selection of the best 50 parameters from 
a variety of over 4,000 compositional parameters, as in (Babayan, et al., 
2018). This led to an improvement in the accuracy of predictions. 
Application of the trained models to a set of SARS-related viruses 
indicated that they are associated with Pteropodiformes bats, consistent 
with prior knowledge. While the overall performance of the proposed 
model was better than the one without M-SP in testing on a total of 437 
viruses, there were still incorrect predictions. Other potentially 
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informative host indicators at the molecular or habitat level are yet to be 
explored thoroughly (Brass, et al., 2009; Roy, et al., 2014; Woolhouse and 
Gowtage-Sequeria, 2005), and the overall approach discussed here has 
been extended to identify human-infecting viruses (Mollentze, et al., 
2020). These ideas could help improve the accuracy of machine learning 
models and future work will look to refining the taxonomic level at which 
these predictions can be made. We acknowledge the essential role of field 
surveillance, laboratory experimentation and phylogenetics in providing 

the knowledge base for this and similar works. We hope that our and 
related work will contribute to the response to outbreaks and be useful for 
further field surveillance and experimentation. 
	
Financial	Support:	none	declared.	
	
Conflict	of	Interest:	none	declared. 
 

 
Table 4. Natural reservoir host of SARS-related coronaviruses predicted by the GT-PN-M-SP GBMs model  
 

Virus Accession # Bagged  Model 
47a 

Model 
39 

Model 
40 

Model 
45 

Model 
50 

Model 
12 

Model 
16 

Model 
11 

Model 
32 

Model 
01 

Pterobat(%) 

TW11 AY502924.1 Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat 68.51 
HKU3-6 GQ153541.1 Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat 67.94 
HKU3-12 GQ153547.1 Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat 65.12 
Cp/Yunnan2011 JX993988.1 Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat 68.40 
YNLF_31C KP886808.1 Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat 63.70 
JTMC15 KU182964.1 Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat 63.22 
HKU-SZ-005b MN975262 Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat 65.34 
USA-CA2 MN994468 Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat 62.89 
nCoV-FIN-29-Jan MT020781 Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat 62.91 
INMI1 MT066156 Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat 62.48 
SP02 MT126808 Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat 62.93 
VH198152683 MT359866 Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat 62.82 
VIC1178 MT451786 Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat 62.48 
GBRC144 MT560827 Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat 62.50 
NRW-01 MT582499 Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat 62.48 
SCPM-O-cDNA-02 MT635445 Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat 65.56 
Tor2 NC_004718.3 Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat 62.48 

a The best ten individual GBMs of the 50 trained models are shown. 
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