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Among orbital lymphoproliferative disorders, about 55% of diagnosed cancerous tumors are orbital ymphomas, and nearly 50% of
benign cases are immunoglobulin G4-related ophthalmic disease (IgG4-ROD). However, due to nonspecific characteristics, the
differentiation of the two diseases is challenging. In this study, conventional magnetic resonance imaging-based radiomics
approaches were explored for clinical recognition of orbital lymphomas and IgG4-ROD. We investigated the value of radiomics
features of axial T1- (T1WI-) and T2-weighted (T2WI), contrast-enhanced T1WT in axial (CE-T1WI) and coronal (CE-T1WI-
cor) planes, and 78 patients (orbital lymphoma, 36; IgG4-ROD, 42) were retrospectively reviewed. The mass lesions were
manually annotated and represented with 99 features. The performance of elastic net-based radiomics models using single or
multiple modalities with or without feature selection was compared. The demographic features showed orbital lymphoma
patients were significantly older than IgG4-ROD patients (p <0.01), and most of the patients were male (72% in the orbital
lymphoma group vs. 23% in the IgG4-ROD group; p = 0.03). The MR imaging findings revealed orbital lymphomas were mostly
unilateral (81%, p=0.02) and wrapped eyeballs or optic nerves frequently (78%, p=0.02). In addition, orbital lymphomas
showed isointense in T1IWI (100%, p < 0.01), and IgG4-ROD was isointense (60%, p < 0.01) or hyperintense (40%, p < 0.01) in
T1WI with well-defined shape (64%, p < 0.01). The experimental comparison indicated that using CE-T1WI radiomics features
achieved superior results, and the features in combination with CE-T1WI-cor features and the feature preselection method
could further improve the classification performance. In conclusion, this study comparatively analyzed orbital lymphoma and
IgG4-ROD from demographic features, MR imaging findings, and radiomics features. It might deepen our understanding and

benefit disease management.

1. Introduction

Orbital lymphoproliferative disorders (OLPDs) consist of a
broad range of benign and malignant tumors [1, 2]. Among
diagnosed cancerous tumors, nearly 55% of cases are orbital
lymphomas [3], while luckily, most orbital lymphomas are
primary, low-grade, and amendable to low-dose radiother-
apy [1-3]. To improve the diagnosis performance, many
studies explored to figure out some discriminative character-
istics. Eckardt et al. evaluated the diagnostic approach in 11
orbital lymphoma patients and found that orbital swelling,
pain, and motility impairment were the leading clinical
symptoms [4]. Another study observed the proptosis, eyelid

lesions, decreased visual acuity, and optic nerve compression
in 26 cases with orbital lymphoma [5]. Moreover, Priego et al.
described different orbital lymphoma patterns at diagnosis
and follow-up in 19 cases, and superior-lateral quadrant
and extraconal location were predominantly observed on
imaging scans [6]. The patterns were further confirmed by
Jin et al. who evaluated the computed tomography (CT)
imaging and magnetic resonance imaging (MRI) features of
primary orbital lymphoma to establish a differential diagno-
sis in 14 cases, reporting that periorbital preseptal tissues
were mainly involved in the upper lateral quadrant of the
orbit [7]. They also suggested that MRI may be very useful
for assessing the location, configuration, inner structure,
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and characteristic manifestations of orbital lymphomas [7].
However, these symptoms were either qualitative such as
laterality or nonspecific such as decreased visual acuity; thus,
they could not have a wider application [1-8].

It is also figured out that nearly 50% of benign OLPD
cases are immunoglobulin G4-related ophthalmic disease
(IgG4-ROD) [1, 9]. IgG4-ROD is an inflammatory disease
of unknown etiology, which can be treated using corticoste-
roid therapy [1, 2]. Typical IgG4-ROD is characterized by
painless enlarging masses over the lacrimal gland with or
without proptosis. Bilateral disease is common but not neces-
sarily symmetrical; visual acuity is usually not impaired.
Besides the lacrimal gland, IgG4-ROD has been reported in
various orbit tissues, including muscle, fat, eyelid, and nerve
[9]. A short summary of related publications indicated that
the signs and symptoms of IgG4-ROD included chronic non-
inflammatory lid swelling and proptosis. Moreover, patients
often had a history of allergic disease and increased serum
levels of IgG4, IgE, and hypergammaglobulinemia [10]. In
addition, a study comparing both IgG4-ROD and non-
IgG4-ROD European patients revealed that infraorbital
nerve enlargement was frequently presented in IgG4-ROD
patients [11].

Except for conventional MR images, diffusion-weighted
imaging (DWI) has been extensively explored over the years.
The apparent diffusion coeflicient (ADC) values have been
revealed useful in diagnosing OLPDs [12, 13]. Haradome
et al. observed that the mean ADC of orbital lymphomas
was significantly lower than that of benign OLPDs (p < 0.01
). In addition, an optimal cutoff of ADC values could yield
a superior prediction of orbital lymphoma, and the predic-
tion was even better than that using the contrast-
enhancement ratio of lesions [1]. Xu et al. also found signif-
icantly lower ADC (p <0.001) in malignant OLPDs when
compared to benign ones, and a receiver operating character-
istic curve analysis indicated ADC alone could achieve an
optimal sensitivity in the classification of benign and malig-
nant OLPDs [2]. In addition, EIKhamary et al. suggested that
median ADC was significantly different between benign and
malignant OLPDs, and an ideal threshold of ADC values
benefited the classification of diffuse orbital masses [14].
Notably, Lecler et al. [15] and Maldonado et al. [16] also
reported similar results.

CT is another useful imaging approach for analyzing
OLPDs. Jin et al. [7] found that isodense soft tissue masses
characterized primary orbital lymphoma with clear demarca-
tion on CT images; the lesions showed homogeneously
marked enhancement when contrast medium was used.
Simon et al. [17] discovered that benign lesions were more
likely hyperdense or hypodense on CT in comparison with
inflammatory and malignant tumors. Briscoe et al. [5] sug-
gested that bone changes were more common on CT images
when orbital lymphomas were suspected. Thus, combining
CT and MR imaging could be useful for accurate diagnosis
of OLPDs.

Preoperative identification of orbital lymphoma and
IgG4-ROD facilitates disease management, treatment plan-
ning, and health care [1-3]. Yet, due to nonspecific present-
ing signs and symptoms and lack of qualitative findings,
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diagnosis is still somehow challenging. For diagnosis, a
biopsy is routinely utilized in clinics. However, considering
the tumor’s specific location, i.e., orbital lesions, a biopsy is
difficult, and thus, may lead to misdiagnosis, mistreatment,
and even missed diagnosis [9].

Radiomics has been widely explored for intelligent diag-
nosis [18-20]. It extracts quantitative features from medical
images using advanced algorithms [21-23], and the features
are further mined for disease diagnosis and cancer staging
[24-27]. However, to the best of our knowledge, no machine
learning-based radiomics models have yet been designed for
orbital lymphoma and IgG4-ROD. Since previous studies
suggested that MR imaging is a promising tool to accurately
visualize the location, shape, and internal structure of orbital
lymphoma [1, 2, 7, 11]; in this study, we assessed the value of
conventional MR images in machine learning-based radio-
mics approaches for clinical identification of orbital lym-
phoma and IgG4-ROD.

2. Materials and Methods

2.1. Patients and Data Collection. This retrospective study
was approved by the institutional review board of the Second
Hospital of Jilin University, and written informed consent
from patients was waived. Through a review of our hospital
database, 36 cases of orbital lymphoma and 42 cases of
IgG4-ROD were identified. All patients were historically con-
firmed by surgical biopsy between March 2013 and Septem-
ber 2018. It should be noted that all patients received MR
imaging before the surgical biopsy.

Histopathologic features were used for pathologic diag-
nosis. Orbital lymphoma was diagnosed using flow cytomet-
ric and gene rearrangement analysis. IgG4-ROD was
identified according to the immunohistochemical staining
results, which require the number of IgG4-positive plasma
cells more than 50 cells per high-power field samples, the
ratio of IgG4-positive plasma cells over IgG-positive plasma
cells >40%, and serum IgG4 concentration of 1.35g/L [28].

All diagnosed patients were without a history of previous
treatment or surgery. They had no history of orbital diseases
or other tumors. All imaging was performed using a 3.0-T
MR equipment (GE MR 750) with imaging parameters as
in Table 1. Axial fast spin-echo (FSE) T1-weighted (T1WI)
and T2-weighted (T2WI) images, contrast-enhanced T1WI
in the axial (CE-T1WI) and coronal (CE-T1WI-cor) planes
were acquired using Gd-DTPA (dose: 0.1 mmol/kg; and
injection rate: 2.0 ml/s).

2.2. Manual Annotation and Feature Extraction. Mass lesions
were manually outlined by using the ITK-SNAP software
(version 3.8.0). Two board-certified radiologists with 6 and
10 years of experience in head and neck imaging performed
the manual annotation together and were blinded to clinical
information and histologic diagnosis. If consensus was not
reached, the annotation was further arbitrated by a senior
radiologist with 16 years of experience to ensure the annota-
tion quality.

Manual annotation and feature extraction were per-
formed as follows: MR images of one patient were imported
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TaBLE 1: MR imaging parameters on the 3.0-T scanner.

TR (ms) TE (ms) Slice thickness (mm) Slice gap (mm) Matrix size Field of view ([mm, mm])
TIW1 515 17 3.0 03 (512, 512] [15, 15]
T2WI 2000 85 3.0 0.3 [512, 512] [15,15]
CE-TIWI 463 8.5 3.0 0.3 [512, 512] [15, 15]
CE-T1WI-cor 650 8.8 3.0 03 [512, 512] [15, 15]

into the ITK-SNAP. Then, the radiologists performed the
image analysis from the laterality (left/right/bilateral) and
the shape of the margins (well-defined or ill-defined) to fig-
ure out obvious lesion boundaries. If the lesion boundaries
were ambiguous, MR images from the four imaging
sequences were displayed for observation, and CE-T1WI
and CE-T1WI-cor were set as the baseline. After discussion,
the consensus was reached, and lesion delineation was per-
formed slice by slice. Specifically, the delineation was made
from the head to the feet direction to avoid bone structures
and eyeball regions. When eye muscles and/or optic nerves
were involved, eye muscles and organ tissues were outlined
if necessary, as the lesion was our point of interest.

Two representative examples are shown in Figure 1. The
top row represents a case of orbital lymphoma, and the bot-
tom row shows a case of IgG4-ROD. From left to right is
one slice of TIW1, T2W1, CE-TIWI, and CE-T1WI-cor
image in addition to the mask of volume region of interest.
In each slice, the region in red lines represents the mass
lesion.

Annotated tumors were quantified using a public pack-
age Pyradiomics (version 3.0), and a total of 99 features were
computed. Among the features, 14 were for shape descrip-
tion, 18 were from first-order histogram analysis, 22 were
from gray-level cooccurrence matrix (GLCM) analysis, 14
were from gray-level run-length matrix (GLRLM) features,
16 were from gray-level size zone matrix (GLSZM) analysis,
and 15 were from gray-level differential matrix (GLDM)
analysis. These features have been applied for lesion repre-
sentation, radiomics, and intelligent diagnosis [29].

2.3. Disease Differentiation. Figure 2 shows the workflow of
disease differentiation using elastic net fitting [30]. First, a
data set was divided into a training set and a testing set by
random splitting. The Wilcoxon rank-sum test was option-
ally used to figure out these statistically significant features
by comparing the two groups of data samples. Consequently,
the default parameters of the elastic net were tuned, finally
generating a trained model. At the testing stage, the trained
elastic net was evaluated via a testing data set, and its perfor-
mance was assessed. The rectangle with a dashed line indi-
cated a comparison study to investigate the effect of the
Wilcoxon rank-sum test in disease diagnosis.

2.4. Experimental Design. This study investigated the effect
of single modality, multiple modalities, and preselection of
important features on disease classification performance.
Single modality data sets included T1WI, T2WI, CE-
TIWI, and CE-T1WI-cor; multiple modality data sets
comprise different combinations of single modality data

(TIWI + T2WI + CE-T1WIL, T1WI + T2WI + CE-T1WI-
cor, CE-T1WI + CE-T1WI-cor, and TIWI + T2WI + CE-
T1IWI + CE-T1WI-cor). In addition, the effect of selecting
statistically important features using a nonparametric test of
Wilcoxon rank-sum test on disease diagnosis was observed.

The elastic net has been widely used in feature selection,
regularized regression, and data classification [30]. It line-
arly combined both L, and L, penalties using a parameter
« to overcome some limitations of the least absolute shrink-
age and selection operator (LASSO) [31]. In this study, the
elastic net was used for feature selection and classification
(¢=0.75). First, 80% of data samples were randomly
selected for training the elastic net model, and 10-folder
cross-validation was used for automatic parameter tuning.
Next, the trained elastic net model was tested on the testing
samples. Then, the prediction performance was evaluated
using four metrics, including the area under the curve
(AUC), accuracy (ACC), sensitivity (SEN), and specificity
(SPE) [32]. In addition, the procedure was repeated 100
times, and the performance metrics were averaged. The
whole procedure was implemented with MATLAB2018a
(MathWorks, USA) and the elastic net using the embedded
function “lasso.m.”

2.5. Statistical Analysis. The group differences were assessed
by a two-tailed -test or Pearson’s chi-squared test based on
the SPSS software (version 25.0, IBM Corp., Armonk, NY).
p value <0.05 was considered statistically significant.

3. Results

3.1. Patient Characteristics and Tumor Distribution. Table 2
shows patient characteristics and tumor distribution between
the two groups. Significant differences were found between
groups. Patients with orbital lymphoma were 9 years older
than patients with IgG4-ROD. Moreover, most patients with
malignant tumors were male (26/36, 72%). In the IgG4-ROD
group, 10/42 (23%) were male. Yet, no statistical difference in
gender was found between the two groups. In addition, most
orbital lymphomas were unilaterally involved (29/36, 81%),
while IgG4-RODs were equally unilateral and bilateral.
Table 3 summarizes MR features between the two groups.
Significant differences were found in 3 attributes. First, the
shape of margins of IgG4-ROD lesions was well-defined
(27/42, 64%) in comparison with that of orbital lymphomas
(14/36, 39%). Second, the lesions were more frequently
wrapped around eyeballs and/or optic nerves in patients with
orbital lymphomas (28/36 (78%)) compared to those with
IgG4-RODs (22/42 (52%)). Third, in TIWI images, orbital
lymphoma was perceived as isointense (36/36, 100%), while
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FIGURE 1: Two representative cases. The top row shows a 60-year male patient with orbital lymphoma, and the bottom row shows a 60-year
female patient with IgG4-ROD. In each case, one image of TIWI, T2WI, CE-T1WI, and CE-T1WI-cor and the volume mask are shown from
left to right. Mass lesions are the region in red lines. Note that images are cropped for display purposes.

IgG4-ROD as isointense (25/42, 60%) or hyperintense
(17742, 40%). We also found that some patients in both
groups had flow void sign and in-homogeneity in lesion
regions. Moreover, most orbital lymphomas (26/36, 72%)
and IgG4-RODs (31/42, 74%) were perceived as hypointense
signals in T2WI images.

3.2. Parameter Optimization. Figure 3 shows the automated
optimization A when training samples were fitted by elastic
net using 10-folder cross-validation (CV). The x-axis indi-
cates the change of A value, and the y-axis corresponds to
the mean square error (MSE). In addition, the green dotted
line locates the A with minimum CV error, and the solid blue
line points to the minimum CV error plus one standard devi-
ation (SE). In this study, a larger A was used when the MSE
was within one SE of the minimum one for the consideration
of model reliability.

3.3. Performance Using Single versus Multiple Modality Data.
Table 4 summarizes the performance when using single or
multiple modality data for disease classification. The best
result was obtained when using CE-T1WI, followed by CE-
T1WI-cor. Both TIWI and T2WTI caused poor SPE (<0.50),
while TIWI led to a fair AUC value (<0.60). The application
of multimodality increased the diagnosis results. The addi-

tion of CE-T1WI-cor increased the AUC and SPE by 5%
and 9%, respectively. However, adding TIWI and T2WI to
the combination of CE-TIWI + CE-T1WI-cor did not
improve the classification performance.

3.4. Performance with Feature Preselection. The results with
feature preselection are shown in Table 4. By comparing both
Table 4 and Table 5, we found that feature preselection
improved the combination of CE-TIWI and CE-T1WI-cor
(p <0.02) and benefited single- (such as CE-T1WI and CE-
T1WI-cor) and other multiple modality data (such as
TIWI + T2WI + CE-T1WI) based disease differentiation.

3.5. Feature Analysis. Wilcoxon rank-sum test indicated that
13, 18, 75, and 40 features were with statistical significance
(p<0.05) corresponding to TIWI, T2WI, CE-T1WI, and
CE-T1WI-cor. In disease classification, elastic net further
verified that 1, 5, 6, and 4 features were frequently selected
(>50 times) between the two groups of patients on TIWI,
T2WI, CE-T1WI, and CE-T2WI-cor, respectively. It is worth
noting the elastic net model with the superior performance
required 6 features, among which 5 were computed from
CE-T1WI (1 shape feature, major axis length; 2 GLCM fea-
tures, correlation and autocorrelation; 1 GLDM feature, large
dependence high gray-level emphasis; 1 GLRM feature, long-
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FiGure 2: The procedure of disease diagnosis. It includes data
splitting, identification of significant features, elastic net-based
feature selection, disease diagnosis, and performance assessment.

TABLE 2: Patient characteristics and tumor distribution.

Orbital lymphoma  IgG4-ROD p K
(n=136) (n=42) value value
Age (years) <0.01
Mean =+ std 64.89 +10.30 55.21 +£13.88
Range [38, 84] [25, 78]
Gender 0.03 4.85
Male 26 20
Female 10 22
Laterality 0.02 753
Left 18 11
Right 11 11
Bilateral 7 20

run high gray-level emphasis), and 1 GLDM feature (large
dependence high gray-level emphasis) from CE-T2WI-cor.
In addition, frequently selected features were all from post-
contrast TIWI images, and the GLDM feature was
highlighted.

4. Discussion

This study investigated demographic characteristics, MR
imaging features, and radiomics models of orbital lymphoma
and IgG4-ROD, thus aiming to facilitate preoperative diag-
nosis of these two different tumor types. Seventy-eight
patients were retrospectively reviewed, and mass lesions were
manually annotated. Clinical characteristics, MR findings,
and the performance of single and multimodality data with
and without feature preselection were analyzed.
Demographic characteristics revealed that orbital lym-
phoma patients were significantly older than IgG4-ROD
patients. This has also been previously reported by other
studies that examined the difference between orbital lym-
phoma and other diseases, such as benign OLPDs [1, 2],

TaBLE 3: Perceived MR imaging features.

lyr?lﬂillgila IgG4-ROD — p K
(n = 36) (n=42) value value
Margin < 37.05
0.01
Well-defined 14 27
IlI-defined 22 15
oroptenonve 002 543
Yes 28 22
No 8 20
il);tgi(l);;ﬂar muscles L2 247
Yes 15 25
No 21 17
Flow void sign present
on T2WI P 023 144
Yes 14 11
No 22 31
rSrl;g\r;;lll intensity on 0;1 863
Low 0 0
Iso 36 25
High 0 17
"S[‘lzg\I;?Il intensity on 050 104
Low 26 31
Iso 9 3
ngh 1 3
Homogeneity 0.75 0.10
Yes 29 35
No 7 7

pseudotumor [33], and lymphoma subtypes [34]. Thus, the
patient’s age should be considered when performing a diag-
nosis. Moreover, we discovered that most patients with
orbital lymphoma (72%) were male, yet there was no signifi-
cant difference between patients with orbital lymphoma and
those with IgG4-ROD, which is consistent with data pub-
lished by Olsen and Steffen [34] and inconsistent with some
other studies [1, 2, 33]. Therefore, the predominance of male
patients in orbital lymphoma requires to be further investi-
gated by future clinical studies.

MR imaging features suggested orbital lymphomas had
unilateral involvement compared to benign OLPDs, which
was consistent with previous data [1, 2, 6-8, 33, 34]. More-
over, orbital lymphomas were frequently located around
organs, such as eyeballs, and compress optic nerves, which
might explain the decreased visual acuity, eye irritation,
excessive tearing, and pain in the eye in these patients [6, 8,
34]. In addition, when comparing the signal intensity with
that of the cerebral cortex, orbital lymphomas showed isoin-
tense in T1WI and hypointense signals in T2WI. At the same
time, IgG4-RODs had iso- or hyperintense signals in TIWI
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FIGURE 3: Automated optimization of the parameter A when the training samples are fitted by elastic net using 10-folder cross-validation
(CV). The x-axis shows the change of A, and the y-axis indicates the mean square error (MSE). The green dotted line locates the A with
minimum CV error, and the solid blue line points to the minimum CV error plus one standard deviation (SE).

TaBLE 4: Disease classification using single or multiple modality data.

AUC ACC SEN SPE
T1WI 0.54+0.10 0.53+0.13 0.79+0.16 0.29+£0.20
T2WI 0.63+0.12 0.62+0.13 0.79+0.11 0.46+0.18
CE-T1WI 0.74+0.10 0.74+0.11 0.81+0.16 0.67£0.16
CE-T1WI-cor 0.72+0.10 0.72+0.11 0.83+0.14 0.61+0.21
TIWI + T2WI + CE-T1WI 0.70+£0.12 0.70£0.12 0.79+0.10 0.62+0.14
T1WI + T2WI + CE-T1WI-cor 0.71+0.12 0.69+0.14 0.85+0.10 0.58 £0.16
TIWI + T2WI + CE-T1WI + CE-T1WI-cor 0.78£0.10 0.77£0.10 0.82+0.14 0.74+0.17
CE-T1WI + CE-T1WI-cor 0.79+0.11 0.78 £0.11 0.82+0.15 0.76 £0.19

and hypointense signals in T2WI. As to the shape of margins,
most IgG4-RODs were well-defined, which was verified by
prior disease classification [7]. However, these MR findings,
nonspecific, qualitative, and subjective, could be found
between orbital lymphoma and other non-IgG4-ROD. Thus,
these nondiscriminative features might require other
advanced imaging modalities for deeper understanding.
Experimental results highlighted the importance of CE-
T1WI for disease classification. CE-T1WI achieves superior
performance, and in combination with CE-T1WI-cor and
preselection of features, it could further improve the diagnos-
tic performance. Contrast-enhanced T1-weighted MR imag-
ing was highlighted in this study. Six discriminative features
(5 from CE-T1WI and 1 from CE-T1WI-cor) were retrieved.
As these features were quantitative and meaningful, they can
help understand the machine learning-based radiomics
models. On the other hand, two studies explored machine
learning methods for the quantitative analysis of ocular
adnexal lymphoma and idiopathic orbital inflammation.

Guo et al. discovered that five features (4 from CE-T1WI
and 1 from T2WI) achieved a larger AUC (> 0.70) [35].
Hou and his colleagues found bag-of-words features from
CE-T1WI may significantly outperform the features from
no-enhanced MR images [36]. In general, both studies indi-
rectly provided support for our findings, suggesting that
contrast-enhanced MR imaging may improve the differenti-
ation between orbital lymphoma and IgG4-ROD.

To our knowledge, this is the first study that aimed at
building a machine learning model for the differentiation of
orbital lymphoma and IgG4-ROD. The elastic net is the
backbone of the proposed radiomics model. It retrieves infor-
mative features for data representation and also acts as the
classifier for disease prediction. When analyzing the perfor-
mance of single- and multimodal data, CE-TIWTI resulted
as the most informative. To reduce the feature number,
improve the prediction performance, and enhance the model
interpretability, feature preselection via statistical compari-
son was conducted, and a handful of features were identified.



BioMed Research International 7
TaBLE 5: Disease classification with feature preselection.

Wilcoxon rank-sum test AUC ACC SEN SPE

T1IWI 0.57+£0.09 0.55+0.11 0.74+0.16 0.39+0.19
T2WI 0.59+0.12 0.58+0.13 0.80+0.14 0.38+£0.18
CE-T1WI 0.73+£0.11 0.73+0.11 0.78 £0.15 0.68+0.19
CE-T1WI-cor 0.74+0.10 0.73+£0.11 0.86+0.12 0.61+0.21
TIWI + T2WI + CE-T1WI 0.75+£0.11 0.74+£0.11 0.80+0.11 0.69+£0.12
TIWI + T2WI + CE-T1WI-cor 0.70£0.10 0.69+0.12 0.83+0.10 0.58+0.16
TIWI + T2WI + CE-T1WI + CE-T1WI-cor 0.78£0.11 0.78 +£0.10 0.83+0.13 0.73+0.18
CE-T1IWI + CE-T1WI-cor 0.82+0.09 0.81+0.09 0.84+0.12 0.79+0.14

The present study proposed a radiomics model, which
revealed the importance of CE-TIWI in the classification
and might further be used to screen and diagnose eye
diseases.

This study also has a few limitations. First, TIWI, T2WI,
and CE-T1WTI are conventional MR imaging modalities, yet
other modalities, such as DWI and CT, and some other
parameters, such as contrast-enhancement ratio and ADC,
should also be considered. Second, a limited number of fea-
tures were collected for tumor description; more features
should be collected to quantify mass lesions from various
perspectives. Third, this study applied elastic net for feature
selection and disease diagnosis. Several other approaches,
such as feature ranking methods [37], can be used for feature
selection in this binary classification task. Finally, the sample
size was small, and large-scale studies are required to confirm
these findings.

5. Conclusion

In the present study, several quantitative MR features were
identified as relevant for differentiation of orbital lymphoma
and IgG4-ROD. The machine learning-based radiomics
model verified that contrast-enhanced T1 MR imaging was
discriminative in disease classification. The next step is to
incorporate other modalities and advanced techniques to fur-
ther explore the differences between diseases.
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