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Abstract

Directed cell motion in response to an external chemical gradient occurs in many biological

phenomena such as wound healing, angiogenesis, and cancer metastasis. Chemotaxis

is often characterized by the accuracy, persistence, and speed of cell motion, but whether

any of these quantities is physically constrained by the others is poorly understood. Using a

combination of theory, simulations, and 3D chemotaxis assays on single metastatic breast

cancer cells, we investigate the links among these different aspects of chemotactic perfor-

mance. In particular, we observe in both experiments and simulations that the chemotactic

accuracy, but not the persistence or speed, increases with the gradient strength. We use a

random walk model to explain this result and to propose that cells’ chemotactic accuracy

and persistence are mutually constrained. Our results suggest that key aspects of chemo-

tactic performance are inherently limited regardless of how favorable the environmental con-

ditions are.

Author summary

One of the most ubiquitous and important cell behaviors is chemotaxis: the ability to

move in the direction of a chemical gradient. Due to its importance, key aspects of chemo-

taxis have been quantified for a variety of cells, including the accuracy, persistence, and

speed of cell motion. However, whether these aspects are mutually constrained is poorly

understood. Can a cell be accurate but not persistent, or vice versa? Here we use theory,

simulations, and experiments on cancer cells to uncover mutual constraints on the

properties of chemotaxis. Our results suggest that accuracy and persistence are mutually

constrained.
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Introduction

Chemotaxis plays a crucial role in many biological phenomena such as organism development,

immune system targeting, and cancer progression [1–4]. Specifically, recent studies indicate

that chemotaxis occurs during metastasis in many different types of cancer [2, 5–9]. At the

onset of metastasis, tumor cells invade the surrounding extracellular environment, and often-

times chemical signals in the environment can direct the migration of invading tumor cells.

Several recent experiments have quantified chemotaxis of tumor cells in the presence of differ-

ent chemoattractants [3] and others have been devoted to the intracellular biochemical pro-

cesses involved in cell motion [10]. Since the largest cause of death in cancer patients is due to

the metastasis, it is important to understand and prevent the directed and chemotactic behav-

ior of invading tumor cells.

Chemotaxis requires sensing, polarization, and motility [11]. A cell’s ability to execute these

interrelated aspects of chemotaxis determines its performance. High chemotactic performance

can be defined in terms of several properties. Cell motion should be accurate: cells should

move in the actual gradient direction, not a different direction. Cell motion should be persis-

tent: cells should not waste effort moving in random directions before ultimately drifting in

the correct direction. Cell motion should be fast: cells should arrive at their destination in a

timely manner.

Indeed, most studies of chemotaxis use one or more of these measures to quantify chemo-

tactic performance. Accuracy is usually quantified by the so-called chemotactic index (CI),

most often defined in terms of the angle made with the gradient direction [12–15] (Fig 1A);

although occasionally it is defined in terms of the ratio of distances traveled [16] or number of

motile cells [17–19] in the presence vs. absence of the gradient. Directional persistence [10]

(DP) is usually quantified by the ratio of the magnitude of the cell’s displacement (in any direc-

tion) to the total distance traveled by the cell (Fig 1A; sometimes called the McCutcheon index

Fig 1. Illustration of chemotaxis. (A) The cell’s displacement makes an angle θ with the gradient direction. The chemotactic index (CI) is defined here as the ratio of

the displacement in the gradient direction to the total displacement. The directional persistence (DP) is defined here as the ratio of the total displacement to the total

distance traveled. (B) High CI values are indicative of cell movement in the gradient direction, whereas high DP values are indicative of straight cell movement in any

direction.

https://doi.org/10.1371/journal.pcbi.1006961.g001

Physical constraints of cancer cell chemotaxis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006961 April 10, 2019 2 / 20

The Purdue Cancer Center is supported by National

Cancer Institute grant P30 CA023168 (BH). The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1006961.g001
https://doi.org/10.1371/journal.pcbi.1006961


[20], length ratio [21], or straightness index [22]), although recent work has pointed out

advantages of using the directional autocorrelation time [21, 23]. Speed is usually quantified in

terms of instantaneous speed along the trajectory or net speed over the entire assay.

However, the relationship among the accuracy, persistence, and speed in chemotaxis, and

whether one quantity constrains the others, is not fully understood. Are there cells that are

accurate but not very persistent, or persistent but not very accurate (Fig 1B)? If not, is it

because such motion is possible but not fit, or is it because some aspect of cell motion funda-

mentally prohibits this combination of chemotactic properties?

Here we focus on how a cell’s intrinsic migration mechanism as well as properties of the

external environment place constraints on its chemotactic performance. The physics of diffu-

sion places inherent limits on a cell’s ability to sense chemical gradients [24]. These limits,

along with the cell’s internal information processing and its motility mechanism, determine

the accuracy, persistence, and speed of migration. Using a human breast cancer cell line

(MDA-MB-231) embedded within a 3D collagen matrix inside a microfluidic device imposing

a chemical gradient, we are able to quantify the chemotactic performance of invasive cancer

cells in response to various chemical concentration profiles. Results from chemotaxis assays

are then compared with simulations and theoretical predictions in order to probe the physical

limits of cancer cells to chemotaxis.

Results

Quantifying accuracy, persistence, and speed

We measure accuracy using the chemotactic index (CI) [12–15]

CI � h cosyi; ð1Þ

where θ is the angle the cell’s displacement makes with the gradient direction (Fig 1A), and the

average is taken over many cell trajectories. CI is bounded between −1 and 1. For chemotaxis

in response to an attractant, as in this study, CI generally falls between 0 and 1; whereas in

response to a repellent, CI usually falls between −1 and 0. CI = 1 represents perfectly accurate

chemotaxis in which cell displacement is parallel to the gradient direction (Fig 1B, top two

examples), and CI = 0 indicates that the cells’ migration is unbiased (Fig 1B, bottom two exam-

ples). The facts that CI is bounded and dimensionless make it easy to compare different values

across different experimental conditions, and get an intuitive picture for the type of cell

dynamics it represents.

We measure persistence using the directional persistence (DP), defined as the ratio of the

magnitude of the cell’s displacement (in any direction) to the total distance traveled [20–22]

(Fig 1A),

DP �
jdisplacementj

distance

� �

: ð2Þ

Note that this ratio goes by several names [20–22], and although the name we use here con-

tains the word ‘chemotactic,’ the ratio is in fact independent of the gradient direction. Indeed,

DP measures the tendency of a cell to move in a straight line, in any direction. DP is also

dimensionless and bounded between 0 and 1, and once again intuitive sense can be made of

either limit. If DP = 1, then the cells are moving in perfectly straight lines in any arbitrary

direction (Fig 1B, right two examples). In contrast, a low DP is representative of a cell trajec-

tory that starts and ends near the same location on average (Fig 1B, left two examples), with

DP! 0 in the limit of an infinitely long non-persistent trajectory.
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An alternative measure of persistence is the directional autocorrelation time

tAC ¼
R1

0
dt0 h cos ðytþt0 � ytÞi, where t0 is the time difference between two points in a

trajectory, and the average is taken over all starting times t [21, 23]. The advantage of the

autocorrelation time is that, unlike the DP, it is largely independent of the measurement fre-

quency and total observation time. The disadvantage is that, unlike the DP, it is not dimen-

sionless or bounded. Although we use the DP here, we verify in S1 Fig that the

autocorrelation time varies monotonically with the DP for our experimental assay.

We measure speed using the instantaneous speed along the trajectory. That is, we take the

distance traveled in the measurement interval Δt (15 minutes in the experiments, see below),

divide it by the interval, and average this quantity over all intervals that make up the trajectory.

Breast cancer cells chemotax up TGF-β gradients

We begin by investigating the above properties of chemotaxis in the context of metastasis,

specifically the epithelial-mesenchymal transition and subsequent invasion of cancer cells.

To this end, we perform experiments using a triple-negative human breast cancer cell line

(MDA-MB-231). Invasion of tumor cells in vivo is aided by external cues including soluble fac-

tors that are thought to form gradients in the tumor microenvironment [2, 5–9]. Among these

soluble factors, transforming growth factor-β (TGF-β) is a key environmental cue for the inva-

sion process [2, 25–28]. Therefore, we use TGF-β as the chemoattractant.

The in vivo tumor microenvironment is highly complex. As a result, in vitro platforms

have been developed and widely used to investigate the cancer response to a specific cue. In

this study, a microfluidic platform is used to expose the TGF-β gradient to the cells in 3D cul-

ture condition (Fig 2A). The microfluidic device is designed with three different channels, a

center, source, and sink channel (Fig 2B). The center channel is filled with a composition of

MDA-MB-231 cells and type I collagen while the medium is perfused through the side source

Fig 2. Microfluidic device used as a chemotaxis platform. (A) Cross-sectional view illustrating concentration gradient formed by

diffusion. (B) Illustration showing structure of the microfluidic channels. Center channel (green) is filled with type I collagen mixture and

MDA-MB-231 mixture, source channel is filled with culture medium containing TGF-β, and sink channel is filled with only culture

medium. (C) FITC-dextran fluorescence within the center channel. Blue region indicates sink channel while red region indicates source

channel.

https://doi.org/10.1371/journal.pcbi.1006961.g002
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and sink channels. TGF-β is applied only through the source channel, not the sink channel,

and therefore a graded profile develops over time in the center channel by diffusion. Conse-

quently, the MDA-MB-231 cells surrounded by type I collagen are exposed to a chemical gra-

dient of TGF-β.

To verify that a graded TGF-β profile is generated in the center channel, we utilize 10kDa

FITC-dextran, whose hydrodynamic radius (2.3 nm) is similar to that of TGF-β (approxi-

mately 2.4 nm [29]). The fluorescence intensity is shown in Fig 2C. The profile approaches

steady state within 3 hours, is approximately linear, and remains roughly stationary for more

than 12 hours. Therefore, we record the MDA-MB-231 cells using time-lapse microscopy

every 15 minutes from 3 to 12 hours after imposing the TGF-β. See Materials and methods for

details.

First, we perform a control experiment with no TGF-β to characterize the baseline of the

MDA-MB-231 cell migratory behavior. Representative trajectories are shown in Fig 3A, and

we see that there is no apparent preferred direction. Indeed, as seen in Fig 3C (black), the CI

is centered around zero, indicating no directional bias. Notably, the spread of the CI values is

very broad, with many data points falling near the endpoints −1 and 1. This is a generic feature

of the CI due to its definition as a cosine: when the distribution of angles θ is uniform, the dis-

tribution of cos θ is skewed toward −1 and 1 because of the cosine’s nonlinear shape. Nonethe-

less, we see that the median of the CI is very near zero as expected. The speed and DP are

shown in Fig 3D and 3E, respectively (black). We see that the DP is significantly above zero,

indicating that even in the absence of any chemoattractant, cells exhibit persistent motion.

This result is consistent with previous works that showed that cells cultured in 3D tend to have

directionally persistent movement unlike those in 2D [10].

Next, we expose cells to a TGF-β gradient of g = 50 nM/mm. Representative trajectories are

shown in Fig 3B, and we see a possible bias in the gradient direction. Indeed, as seen in Fig 3C

(red), the CI is centered above zero, indicating a directional bias, and the difference with the

control distribution is statistically significant (p value < 0.05). We also see in Fig 3D (red) that

the speed increases, although we will see below that the increase is relatively small and that

the trend is non necessarily monotonic. Finally, we see in Fig 3E (red) that the DP decreases,

although the difference with the control is not statistically significant. These results suggest

that a TGF-β gradient causes a significant increase in directional bias (CI) but not necessarily a

significant change in cell speed or persistence (DP).

To confirm the trends suggested above, we evaluate the response to four different TGF-β
gradient strengths, g = 0, 1, 5, and 50 nM/mm, in three separate experiments each (Fig 4A–4C;

the trajectories for all experiments and g values are shown in S2 Fig). We see in Fig 4A that,

consistent with Fig 3, the CI is zero for the control and increases with gradient strength g. In

fact, the CI appears to saturate beyond 5 nM/mm, such that its value at 50 nM/mm is not sig-

nificantly larger than its value at 5 nM/mm. We also see in Fig 4B, consistent with Fig 3, the

DP slightly decreases with the gradient strength although the decrease is roughly within error

bars. Finally, we see in Fig 4C that the increase in the speed is small, achieving a statistically sig-

nificant difference with the control only at the largest gradient strength, and that the trend is

not monotonic.

Minimum detectable gradient is shallow

A striking feature of Fig 4A is that the cells respond to a gradient as shallow as g = 5 nM/mm.

To put this value in perspective, we estimate both the relative concentration change and the

absolute molecule number difference across the cell body [4]. The microfluidic device is about

1 mm in the gradient direction, and therefore a cell in the middle experiences a background
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concentration of about c = 2.5 nM. Assuming the cell is on the order of a = 10 μm wide, the

change in concentration across its body is ga = 0.05 nM, for a relative change of ga/c = 2%. The

number of attractant molecules that would occupy half the cell body is on the order of ca3 =

1500. Two percent of this is ga4 = 30, meaning that cells experience about a thirty-molecule dif-

ference between their two halves. The same quantities are approximately ga/c = 1% and 6%,

and ga4 = 60 and 300, for amoebae in cyclic adenosine monophosphate gradients [14] and epi-

thelial cells in epidermal growth factor gradients [30], respectively [4]. This suggests that the

response of MDA-MB-231 cells to TGF-β gradients is close to the physical detection limit for

single cells.

Fig 3. Cell trajectories and chemotaxis metrics. Cell trajectories of (A) control and (B) 50nM/mm TGF-β gradient. Distribution of (C) chemotactic index, (D)

speed, and (E) directional persistence of each trajectory from both the control (black) and the TGF-β gradient (red). Boundary of box plots indicates quadrants

with centerline as median. Distributions are statistically compared using Mann-Whitney test.

https://doi.org/10.1371/journal.pcbi.1006961.g003
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Fig 4. Comparison of experiments with simulations. Experimental (A) chemotactic index, (B) directional persistence, and (C) speed for four

different TGF-β gradients, g = 0, 1, 5, and 50 nM/mm.(red) Data points indicate average and standard error of medians from three different

experiments. A, B, and C are plotted with log-scaled TGF-β gradient. (D-F) Same for cellular Potts model (CPM) simulations (blue). Error bars are

standard error from 1000 trials. Directional persistence from reduced polarization memory decay rate(r) is represented in (E) (gray).

https://doi.org/10.1371/journal.pcbi.1006961.g004
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Simulations suggest sensing and persistence are decoupled

To understand the experimental observation that the CI increases with gradient strength, but

the DP and speed do not (Fig 4A–4C), we turn to computer simulations. The cells in the exper-

iments are executing 3D migration through the collagen matrix (as opposed to crawling on

top of a 2D substrate). Nevertheless, the imaging is acquired as a 2D projection of the 3D

motion. We do not expect this projection to introduce much error into the analysis because

the height of the microfluidic device is less than 100 μm, whereas its width in the gradient

direction is about 1 mm, and its length is several millimeters. Indeed, from the experimental

trajectories (Fig 3) we have estimated that if motility fluctuations in the height direction are

equivalent to those in the length direction, then the error in the CI that we make by the fact

that we only observe a 2D projection of cell motion is less than 1%. Consequently, for simplic-

ity we use a 2D rather than 3D simulation of chemotaxis of a cell through an extracellular

medium.

Specifically, we use the cellular Potts model (CPM) [31, 32], a lattice-based simulation that

has been widely used to model cell migration [33–35] (note that whereas often the CPM is

used to model collective migration, here we use it for single-cell migration). In the CPM, a cell

is defined as a finite set of simply connected sites on a regular square lattice (Fig 5). The cell

adheres to the surrounding collagen with an adhesion energy α and has a basal area A0 from

which it can fluctuate at an energetic cost λ. This gives the energy function

u ¼ aLþ lðA � A0Þ
2
; ð3Þ

where L and A are the cell’s perimeter and area, respectively.

Cell motion is a consequence of minimizing the energy u subject to thermal noise and a

bias term w that incorporates the response to the gradient [33]. Specifically, for a lattice with S

Fig 5. Cellular Potts model (CPM) simulation. Snapshot shows cell (gray) migrating towards increasing chemical

concentration over time (white trajectory). Inset: Cell motility occurs through addition and removal of lattice sites.~p,

cell polarization vector; α, cell-collagen adhesion energy; δL, change in perimeter; δA, change in area.

https://doi.org/10.1371/journal.pcbi.1006961.g005
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total sites, one update step occurs in a fixed time τ and consists of S attempts to copy a random

site’s label (cell or non-cell) to a randomly chosen neighboring site. Each attempt is accepted

with probability

P ¼

(
e� ðDu� wÞ Du � w > 0

1 Du � w � 0;

ð4Þ

where Δu is the change in energy associated with the attempt. The bias term is defined as

w ¼ D~x �~p; ð5Þ

where D~x is the change in the cell’s center of mass caused by the attempt, and~p is the cell’s

polarization vector (Fig 5 inset, black arrow), described below. The dot product acts to bias cell

motion because movement parallel to the polarization vector results in a more positive w, and

thus a higher acceptance probability (Eq 4).

The polarization vector is updated every time step τ according to

D~p
t
¼ rð� ~p þ ZDx̂t þ �~qÞ: ð6Þ

The first term in Eq 6 represents exponential decay of~p at a rate r. Thus, r−1 characterizes the

polarization vector’s memory timescale. The second term causes alignment of~p with Dx̂t
according to a strength η, where Dx̂t is a unit vector pointing in the direction of the displace-

ment of the center of mass in the previous time step τ. Thus, this term promotes persistence

because it aligns~p in the cell’s previous direction of motion. The third term causes alignment

of~p with~q according to a strength �, where~q contains the gradient sensing information, as

defined below. Thus, this term promotes bias of motion in the gradient direction.

The sensing vector~q is an abstract representation of the cell’s internal gradient sensing net-

work and is defined as

~q ¼ hðni � �nÞr̂ ii; ð7Þ

where the average is taken over all lattice sites i that comprise the cell, and receptor saturation

is incorporated as described below. The unit vector r̂ i points from the cell’s center of mass to

site i, the integer ni represents the number of TGF-βmolecules detected by receptors at site i,
and �n is the average of ni over all sites. The integer ni is the minimum of two quantities: (i)

the number of TGF-β receptors at site i, which is sampled from a Poisson distribution whose

mean is the total receptor number N divided by the number of sites; and (ii) the number of

TGF-βmolecules in the vicinity of site i, which is sampled from a Poisson distribution whose

mean is (c + gxi)ℓ3, where ℓ is the lattice spacing, and xi is the position of site i along the gradi-

ent direction. Taking the minimum incorporates receptor saturation, since each site cannot

detect more attractant molecules than its number of receptors. The subtraction in Eq 7 makes

~q a representation of adaptive gradient sensing: if receptors on one side of the cell detect mole-

cule numbers that are higher than those on the other side, then~q will point in that direction.

Adaptive sensing has been observed in the TGF-β pathway [36] in the form of fold-change

detection [37] (for shallow gradients, subtraction as in Eq 7 is similar to taking a ratio as in

fold-change detection [30]).

The simulation is performed at a fixed background concentration c and gradient g for a

total time T. The position of the cell’s center of mass is recorded at time intervals Δt, from

which we compute the CI, DP, and speed.
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The parameter values used in the simulation are listed in Table 1 and are set in the following

way. The values T = 9 h, Δt = 15 min, c = 2.5 nM, and g = 5 nM/mm are taken from the experi-

ments. We estimate A0 = 400 μm2 from the experiments, and we take ℓ = 2 μm, such that a cell

typically comprises A0/ℓ2 = 100 lattice sites. We find that realistic cell motion is sensitive to α:

when α is too small the cell is diffuse and unconnected, whereas when α is too large the cell does

not move because the cost of perturbing the perimeter is too large. The crossover occurs around

α� ℓ−1 as expected, and therefore we set α on this order, to α = 2 μm−1. In contrast, we find

that cell motion is not sensitive to λ (apart from λ = 0 for which the cell evaporates), and there-

fore we set λ = 0.01 μm−4 corresponding to typical area fluctuations of λ−1/2/A0 = 2.5%. In order

for our Poisson sampling procedure to be valid, the time step τ must be much larger than the

timescale ℓ2/D for an attractant molecule or receptor to diffuse with coefficient D across a lattice

site. Taking D� 10 μm2/s, we find τ� 0.4 s. At the other end, we must have τ< Δt = 900 s for

meaningful data collection. We find that within these bounds, results are not sensitive to τ, and

therefore we set τ on the larger end at τ = 100 s to reduce computational run time.

The parameters N, η, and � are calibrated from the experimental data in Fig 4A–4C. Specifi-

cally, N sets the gradient value above which the CI saturates (see Fig 4A) because if the gradient

is large but N is small, the cell quickly migrates into a region in which there are more attractant

molecules than receptors at all lattice sites, and gradient detection is not possible. We find that

N = 10,000, which is a reasonable value for the number of TGF-β receptors per cell [38, 39],

places the saturation level at roughly g = 50 nM/mm as in the experiments (Fig 4D). We set

� = 56 μm−1 and η = 107 μm−1 to calibrate their cognate observables, CI and DP, respectively,

to the corresponding experimental values at g = 5 nM/mm (Fig 4D and 4E).

The final parameter is the memory timescale of the polarization vector, r−1. As seen in Fig

4E (gray), we find that the behavior of the DP depends sensitively on this timescale. When r−1

is large, the DP increases with gradient strength. In contrast, when r−1 is small (indeed, equal

to the smallest timescale in the system, τ), the DP does not increase with gradient strength, and

in fact slightly decreases (Fig 4E, blue). Because the latter behavior is consistent with the exper-

iments (Fig 4B), we set r−1 = τ. We conclude that the memory timescale of MDA-MB-231 cells

is very short when responding to TGF-β gradients.

We validate the simulation in two ways, using the speed. First, we find that the magnitude

of the speed in the simulations is on the same order as the speed in the experiments (Fig 4C

and 4F), i.e., tens of microns per hour. Second, we find that the speed shows little dependence

Table 1. Table of parameters and values used in cellular Potts model (CPM) simulations. See text for more detailed

reasoning behind values.

Parameter Value Reason

Total time T 9 h Experiments

Recording interval Δt 15 min Experiments

Background concentration c 2.5 nM Experiments

Concentration gradient g 5 nM/mm Experiments

Relaxed cell area A0 400 μm2 Experiments

Lattice spacing ℓ 2 μm �100 sites per cell

Cell-environment contact energy α 2 μm−1 α� ℓ−1

Area deviation energy λ 0.01 μm−1 λ−1/2� A0

Simulation time τ 100 s ℓ2/D� τ < Δt
Total receptor number N 10,000 CI saturation

Bias strength � 56 Calibrated via CI

Persistence strength η 107 Calibrated via DP

Polarization memory decay rate r 0.01 s−1 r� τ−1

https://doi.org/10.1371/journal.pcbi.1006961.t001
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on the gradient strength in both the simulations and the experiments: it slightly increases in

Fig 4C and slightly decreases in Fig 4F. Considering that the speed is not calibrated directly in

our simulations, these consistencies validate the CPM as a reasonable description of the cell

migration in the experiments.

Our finding that the cell’s memory timescale r−1 takes its minimum value allows for the fol-

lowing interpretation: the parameter r couples the persistence term and the sensory term in the

CPM (Eq 6). Thus, when the memory timescale r−1 is long, biased motion must be also persis-

tent and vice versa. In contrast, when the memory timescale r−1 is short, it is possible for bias to

increase without increasing persistence. Therefore, the simulations suggest that the reason that

CI but not DP increases with gradient strength in the experiments, is that the drivers of sensory

bias and migratory persistence in the cell’s internal network are decoupled from one another.

Theoretical model reveals performance constraints

Our finding that bias and persistence are decoupled in the simulations allows us to appeal to a

much more simplified theoretical model in order to understand and predict global constraints

on chemotaxis performance. Specifically, we consider the biased persistence random walk

(BPRW) model [40, 41], in which bias and persistence enter as explicitly independent terms

controlled by separate parameters. The BPRW has been shown to be sufficient to capture

random and directional, but not periodic, behaviors of 3D cell migration [42]. Because we do

not observe periodic back-and-forth motion of cells in our experiments, we propose that the

BPRW is sufficient to investigate chemotactic constraints here.

As in the simulations, we consider the BPRW model in 2D. In the BPRW model, a cell is

idealized as a single point. Its trajectory consists of M steps whose lengths are drawn from an

exponential distribution. We take M = T/Δt = 36 as in the experiments. The probability of a

step making an angle θ with respect to the gradient direction is

Pðyjy0Þ ¼ b cosy
|fflfflffl{zfflfflffl}

bias

þ
ep cos ðy� y0Þ

2pI0ðpÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
persistence

;
ð8Þ

where θ0 is the angle corresponding to the previous step. The first term incorporates the bias,

with strength b. It is maximal when the step points in the gradient direction (θ = 0) and there-

fore promotes bias in that direction. It integrates to zero over its range (−π< θ< π) because

the bias term only reshapes the distribution without adding or subtracting net probability. The

second term incorporates the persistence, with strength p. It is a von Mises distribution (simi-

lar to a Gaussian distribution, but normalized over the finite range −π< θ< π) whose sharp-

ness grows with p. It is maximal at the previous angle θ0 and therefore promotes persistence.

The normalization factor I0 is the zeroth-order modified Bessel function of the first kind.

The requirement that P(θ|θ0) be non-negative over the entire range of θ mutually constrains

b and p. However, apart from this constraint, b and p can take any positive value. We sample

many pairs of b and p, reject those that violate the constraint, and compute the CI and DP

from a trajectory generated by each remaining pair. The results are shown in Fig 6 (colored cir-

cles). We see in Fig 6 that the BPRW model exists in a highly restricted ‘crescent’ shape within

CI–DP space. As expected, the CI increases with the bias parameter b (color of circles, from

blue to red). The top corner corresponds to maximal bias and no persistence; indeed, when

p = 0 the persistence term in Eq 8 reduces to (2π)−1, and non-negativity requires b< (2π)−1�

0.16, which is consistent with the upper limit of the color bar. Also as expected, the DP

increases with the persistence parameter p (size of circles, from small to large), although only

in the lower portion where the CI is low.
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The crescent shape of the allowed CI and DP values in Fig 6 can be understood quantita-

tively because several moments of the BPRW are known analytically [41]. Specifically, the

mean squared displacement and the mean displacement in the gradient direction are, in units

of the mean step length,

hr2i ¼
1

ð1 � cÞ
2

�

z2 ~M2 þ 2 1 � 2z2 � z2e� ~M
� �

~M

þ2ð2z2 � 1Þ
�

1 � e� ~M
�
þ 2z2

�
1 � e� ~M

�2
�

;

ð9Þ

hxi ¼
z

1 � c
~M � 1þ e� ~M

� �
; ð10Þ

respectively, where ~M ¼ Mð1 � cÞ and z = χ/(1 − ψ), with w ¼
R p
� p

dy b cos 2y ¼ pb and

c ¼
R p
� p

d� ½2pI0ðpÞ�
� 1ep cos � cos� ¼ I1ðpÞ=I0ðpÞ. We approximate the CI and DP in terms of

these moments,

CI ¼
x
r

D E
�
hxi
hri
�
hxi
ffiffiffiffiffiffiffiffi
hr2i

p ; ð11Þ

DP ¼
hri
M
�

ffiffiffiffiffiffiffiffi
hr2i

p

M
; ð12Þ

and evaluate these expressions in specific limits to approximate the edges of the shape. In the

limit b = 0, Eq 11 reduces to CI = 0 (bottom black line in Fig 6). In the limit p = 0, Eqs 11 and 12

are functions of only b and M, and b can be eliminated to yield DP ¼ ½1þMð1 � CI2Þ=2�
� 1=2

(left black line in Fig 6), where we have used the approximation M� 1 (see Materials and

methods). Note here that when CI = 0 we have DP� (M/2)−1/2 for large M, which makes sense

because for a simple random walk (p = b = 0) the displacement goes like M1/2 while the distance

goes like M, such that DP�M−1/2. Finally, the right edge corresponds to the maximal value of p
for a given b, for which we compute the approximation curve parametrically (right black line in

Fig 6; see Materials and methods). We see in Fig 6 that these approximate expressions slightly

underestimate the CI and overestimate the DP, but otherwise capture the crescent shape well.

The under- and overestimation are due to the approximation hri �
ffiffiffiffiffiffiffiffi
hr2i

p
in Eqs 11 and 12:

because s2
r ¼ hr

2i � hri2 � 0 for any statistical quantity, we have
ffiffiffiffiffiffiffiffi
hr2i

p
� hri, making Eq 11

an underestimate and Eq 12 an overestimate.

The crescent shape can also be understood intuitively. First, we see that the DP cannot be

smaller than a minimum value (region I in Fig 6). This is because the trajectory length M is

finite, and as discussed above, the DP only vanishes for infinitely long trajectories. If M were to

increase, the crescent would extend further toward DP = 0. Second, we see that the top of the

crescent bends away from the CI!1, DP!0 corner (region II in Fig 6). In other words, it is

not possible to have high bias without any persistence. This is because if the bias is strong, then

cells will track the gradient very well. Consequently, they will move in nearly straight lines in

the gradient direction, and straight movement corresponds to high persistence. This is a bias-

induced persistence, distinct from the bias-independent persistence in the lower-right corner

of the crescent. Finally, we see that the bending shape of the crescent implies that no solutions

exist at large DP and intermediate CI (region III in Fig 6). In other words, it is not possible to

have high persistence with partial bias. This is because, as mentioned above, persistence is

induced either (i) directly, as a result of a large persistence parameter p which is independent
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of the bias, in which case the CI is low; or (ii) indirectly, as a result of a large bias parameter b,

in which case the CI is high. Neither of these mechanisms permits intermediate bias, and

therefore high persistence can be accompanied only by low or high directionality. Together,

these features of the crescent shape imply that specific modes of chemotaxis are prohibited

under our simple model, as indicated by the regions I, II, and III.

Finally, the crescent shape provides a qualitative rationale for the data from the simulations

and experiments, which are overlaid in the cyan and red squares in Fig 6, respectively. Specifi-

cally, the shape of the crescent is such that if a cell has a low CI and intermediate DP (bottom

right corner of the crescent) and its CI increases, its DP must decrease (solid magenta arrow in

Fig 6). In contrast, a simultaneous increase in CI and DP from this starting position is not pos-

sible according to the model (dashed magenta arrow in Fig 6). We see that the data are qualita-

tively consistent with this predicted trend, as an increase in the CI corresponds to a decrease in

the DP in both the experiments and the simulations (Fig 6, squares). There is quantitative dis-

agreement, in the sense that the data do not quite overlap with the crescent, but this is a reflec-

tion of the extreme simplicity of the BPRW model. Nonetheless, the qualitative features of the

BPRW model are sufficient to explain the way in which accuracy and persistence are mutually

constrained during the chemotaxis response of these cells.

Discussion

By integrating experiments with theory and simulations, we have investigated mutual con-

straints on the accuracy (CI), persistence (DP), and speed of cancer cell motion in response

to a chemical attractant. We have found that while the CI of breast cancer cells increases with

the strength of a TGF-β gradient, the speed does not show a strong trend, and the DP slightly

decreases. The simulations suggest that the decrease in DP is due to a decoupling between

sensing and persistence in the migration dynamics. The theory confirms that the decrease

in DP is due to a mutual constraint on accuracy and persistence for this type of decoupled

Fig 6. Comparison of theory with experiments and simulations. Colored circles show CI and DP for all values of

bias parameter (color) and persistence parameter (size) for biased persistent random walk (BPRW) theory. Black lines

show analytic approximations of the bounding curves. Red and cyan squares show experimental and simulation data,

respectively, from Fig 4. Magenta numerals and arrows show “forbidden” regions and qualitative trends, respectively,

discussed in text.

https://doi.org/10.1371/journal.pcbi.1006961.g006
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dynamics, and more generally, it suggests that entire regions of the accuracy–persistence space

are prohibited.

The present results provide some insights into TGF-β induced migration mechanisms.

Multiple signaling pathways induced by TGF-β affect the dynamics of actin polymerization

regulating cell migratory behaviors [27, 43–45]. Among these, phosphatidylinositol 3-kinase

(PI3K) and the small GTPase-Rac1 signaling have been reported to promote actin organization

of breast cancer cells in response to TGF-β [45, 46]. PI3K and the Rho-family GTPase net-

works (including Rac1, RhoA and Cdc42) have been widely studied in chemotaxis, which

regulates cell polarity and directional sensing [47–50]. The PI3K activity, thus, can possibly

explain the present chemotactic responses of the breast cancer cells to TGF-β gradient. Recent

studies have shown that PI3K is relevant to the accuracy of the cell movement in shallow che-

moattractants, whereas it does not induce the orientation of cell movement in steep gradients;

rather, PI3K contributes the motility enhancement [51, 52]. These results can be correlated

with the cell motility trend in the present experimental results. In addition, the PI3K signaling

pathway has been reported not to mediate the persistence of cell protrusions which could be

directly related to the DP [47, 48]. The directional persistence could be more relevant to the

polarity stability which is hardly controlled by chemotaxis [47] as presented in the present

results. In TGF-βmolecular cascades, activation of SMAD proteins could also affect the actin

dynamics. Since SMAD-cascades include negative feedback inhibiting Rho activity [43, 44], it

may affect the cell responses highly promoted in CI but not in speed. However, the underlying

molecular mechanisms need further research.

Our finding that sensing and persistence are largely decoupled in the migration dynamics is

related to the view that directional sensing and polarity are separate but connected modules in

chemotaxis [11]. Indeed, CI, DP, and speed in our study play the roles of the directional sens-

ing, polarity, and motility modules, respectively, that have been shown to reproduce many of

the observed behaviors of chemotaxing cells. Moreover, several of the the molecular signaling

pathways discussed above, including those involving PI3K and Rho family GTPases, have been

proposed as the potential networks corresponding to these modules [11].

Several predictions arise from our work that would be interesting to test in future experi-

ments. First, our simulation scheme assumes that the saturation of the CI with gradient

strength (Fig 4A) is due to limited receptor numbers. However, alternative explanations exist

that are independent of the receptors, such as the fact that it is more difficult to detect a con-

centration difference on top of a large concentration background than on top of a small

concentration background due to intrinsic fluctuations in molecule number [30, 53]. An inter-

esting consequence of our mechanism of receptor saturation is that, at very large gradients

(beyond those of Fig 4A), the CI would actually decrease because all receptors would be

bound. It would be interesting to test this prediction in future experiments.

Second, our work suggests that not all quadrants of the accuracy–persistence plane are pos-

sible for cells to achieve (Fig 6). It would be interesting to measure the CI and DP of other cell

types, in other chemical or mechanical environments, to see if the crescent shape seen in Fig 6

is a universal restriction, or if not, what new features of chemotaxis are therefore not captured

by the modeling. In this respect, the work here can be seen as a null model, deviations from

which would indicate new and unique types of cell motion.

Materials and methods

Cell culture and reagents

Human breast adenocarcinoma cells (MDA-MB-231) were cultured in Dulbecco’s Modified

Eagle Medium/Ham’s F-12 (Advanced DMEM/F-12, Lifetechnologies, CA, USA) supplemented
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by 5% v/v fetal bovin serum (FBS), 2 mM L-glutamine (L-glu), and 100 μg ml-1 penicillin/strep-

tomycin(P/S) for less than 15 passages. MDA-MB-231 cells were regularly harvested by 0.05%

trypsin and 0.53mM EDTA (Lifetechnologies, CA, USA) when grown up to around 80% con-

fluency in 75 cm2 T-flasks at 37 ˚C with 5% CO2 incubation. Harvested cells were used for

experiments or sub-cultured.

Cell-matrix composition was prepared in the microfluidic device. For the composition,

MDA-MB-231 cells were mixed with 2 mg/ml of type I collagen (Corning Inc., NY, USA)

mixture prepared with 10X PBS, NaOH, HEPE solution, FBS, Glu, P/S, and cell-culture level

distilled water after centrifuged with 1000 rpm for 3 minutes. The cell mixture was filled in

center-channel of the microfluidic devices and incubated in at 37 ˚C with 5% CO2. The cells

in the collagen matrix were initially cultured in basic medium (DMEM/F12 supplemented by

5% v/v FBS, 2 mM L-glu, and 100 μg ml−1 p/s) for 24 hours. Then the cells were exposed by

reduced serum medium for another 24 hours, which was advanced DMEM/F12 containing

1% v/v FBS, 2 mM L-glu, and 100 μg ml−1 p/s [54]. After 24 hour-serum starvations, cells were

exposed by a gradient of transforming growth factor beta-1 (TGF-β1, Invitrogen, CA, USA).

Microfluidic device for chemical gradient

The microfluidic device was designed to generate a linear gradient of soluble factors (Fig 2).

The device is composed of three channels which are 100 μm in thickness as described previ-

ously [55]. A center channel that is 1 mm wide aims to culture tumor cells with ECM compo-

nents. The center channel is connected to two side channels. The 300 μm-wide side channels

are connected to large reservoirs at the end ports including culture medium. Since the side

channels are in contact with the top and bottom sides of the center channel, the growth factor

gradient can be generated by diffusing the soluble factor from one of the side channels, a

source channel, to the other, a sink channel. Assuming there is neither pressure difference nor

flow between the side channels, the concentration of a given factor can be described by the

chemical species conservation equation as follows:

@ci
@t
¼ Di � rci ð13Þ

Once the concentration profile in the center channel reaches steady state, the linear profile

persists for a while and can therefore be approximated by assuming the boundary conditions

of concentration at the side channels are constants. To verify the diffusion behavior, the gradi-

ent formation was examined by using 10k Da FITC-fluorescence conjugated dextran (FITC-

dextran). FITC-dextran solution was applied in the source channel while the sink channel was

filled with normal culture medium. The FITC-dextran concentration profile was evaluated by

the FITC fluorescent intensity in the center channel. To disregard the effect of photo-bleaching

on the results, the intensity was normalized by the intensity of the source channel. The normal-

ized intensity was reasonably considered since the fluorescence intensity of the source channel

consistently remained as maximum due to the large reservoirs. The FITC dextran intensity

profile (Fig 2C) showed that the linear profile was developed within 3 hours after applying the

source and continued for more than 9 hours.

Characterization of cell migration with time-lapse microscopy

Cell behaviors were captured every 15 minutes for 9 hours using an inverted microscope

(Olympus IX71, Japan) equipped with a stage top incubator as described previously [56–58],

so that the microfluidic platform could be maintained at 37 ˚C in a 5% CO2 environment dur-

ing imaging. The time-lapse imaging was started 3 hours after applying TGF-β1 solution in the
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source channel to have sufficient adjusting time. To analyze each cell behavior, a cell area in

the bright field images were defined by a contrast difference between the cells and a back-

ground, and the images were converted to monochrome images by using ImageJ. Cell trajecto-

ries were demonstrated by tracking centroids of the cell area. In tracking the cell movements,

cells undergoing division were excluded to avoid extra influences to affect cell polarity [59].

Moreover, stationary cells due to the presence of the matrix were excluded [26, 59–61]. The

stationary cells were defined as the cells that moved less than their diameter. A migration tra-

jectory was defined by connecting the centroids of a cell from each time point.

Statistical analysis of experiments

In examining the chemotactic characteristics of each group, more than 40 cell trajectories were

evaluated per a group. A data point in Fig 3C–3E indicates each metric of a cell trajectory show-

ing distribution characteristics with a box plot. The box plot includes boundaries as quadrants

and a center as a median. The distribution of each metric was statistically analyzed by using

Mann-Whitney U-test. This non-parametric method was used since the distribution was not

consistently normal (the CI is a function of cosine). The significant change on the population

lies on the biased distribution of each cell parameter when the p value< 0.05. Furthermore, the

experiments were repeated at least 3 times and reported with means of medians ± standard esti-

mated error (S.E.M.) in Fig 4A–4C. To evaluate physical limits on each metric, the data points

were compared each other using a student t-test. The statistical significance between compari-

sons were examined when the p value< 0.05.

Mathematical approximations

In the limit p = 0, Eqs 9 and 10 become

hr2i ¼ z2M2 þ 2ð1 � 2z2ÞM þ 2ð3z2 � 1Þ; ð14Þ

hxi2 ¼ z2ðM � 1Þ
2
; ð15Þ

where z = πb, and we have neglected the exponential terms in the limit M� 1. Defining the

small parameter � = 1/M, these expressions become

hr2i ¼ z2M2ð1þ c�Þ; ð16Þ

hxi2 ¼ z2M2ð1 � 2�Þ ð17Þ

to first order in �, where c� 2(z−2 − 2). Inserting these expressions into Eqs 11 and 12, we

obtain

CI2 ¼ 1 � ðcþ 2Þ�; ð18Þ

DP2 ¼ z2ð1þ c�Þ ð19Þ

to first order in �. Because z and c are both functions only of b, we eliminate b from Eqs 18 and

19 to obtain

CI2 ¼ 1 � 2�
1 � DP2

DP2
ð20Þ

to first order in �. This expression is equivalent to that given below Eq 12 and provides the left

black line in Fig 6.
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The right black line in Fig 6 corresponds to the maximal value of p for a given b that keeps

Eq 8 non-negative. Non-negativity requires that the sum of the minimal values of each term

in Eq 8 is zero: −b + e−p/[2πI0(p)] = 0. With this expression for b in terms of p, Eqs 11 and 12

become functions of only p and M. Therefore, by varying p, we compute the right black line

parametrically.
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23. Dang I, Gorelik R, Sousa-Blin C, Derivery E, Guérin C, Linkner J, et al. Inhibitory signalling to the Arp2/3

complex steers cell migration. Nature. 2013; 503(7475):281–284. https://doi.org/10.1038/nature12611

PMID: 24132237

24. Varennes J, Fancher S, Han B, Mugler A. Emergent versus individual-based multicellular chemotaxis.

Physical Review Letters. 2017; 119(18):188101. https://doi.org/10.1103/PhysRevLett.119.188101

PMID: 29219578

Physical constraints of cancer cell chemotaxis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006961 April 10, 2019 18 / 20

https://doi.org/10.1021/acs.molpharmaceut.5b00899
https://doi.org/10.1021/acs.molpharmaceut.5b00899
http://www.ncbi.nlm.nih.gov/pubmed/26835969
https://doi.org/10.1016/j.cell.2011.11.016
http://www.ncbi.nlm.nih.gov/pubmed/22118458
https://doi.org/10.1152/physiol.00045.2009
http://www.ncbi.nlm.nih.gov/pubmed/20430953
http://www.ncbi.nlm.nih.gov/pubmed/9362419
https://doi.org/10.1016/j.yexcr.2004.06.030
https://doi.org/10.1016/j.yexcr.2004.06.030
http://www.ncbi.nlm.nih.gov/pubmed/15383325
https://doi.org/10.1016/j.ccr.2007.04.020
http://www.ncbi.nlm.nih.gov/pubmed/17560334
https://doi.org/10.1038/nrm2729
http://www.ncbi.nlm.nih.gov/pubmed/19603038
https://doi.org/10.1371/journal.pcbi.1003122
http://www.ncbi.nlm.nih.gov/pubmed/23861660
https://doi.org/10.1083/jcb.153.4.795
http://www.ncbi.nlm.nih.gov/pubmed/11352940
https://doi.org/10.1016/j.cub.2006.09.016
http://www.ncbi.nlm.nih.gov/pubmed/17113383
https://doi.org/10.1529/biophysj.107.104356
https://doi.org/10.1529/biophysj.107.104356
http://www.ncbi.nlm.nih.gov/pubmed/17513372
https://doi.org/10.1038/nrm2419
http://www.ncbi.nlm.nih.gov/pubmed/18500256
http://www.ncbi.nlm.nih.gov/pubmed/1102606
https://doi.org/10.1084/jem.194.6.847
https://doi.org/10.1084/jem.194.6.847
http://www.ncbi.nlm.nih.gov/pubmed/11560999
https://doi.org/10.1016/S8756-3282(01)00690-1
http://www.ncbi.nlm.nih.gov/pubmed/11882460
https://doi.org/10.1016/j.bbrc.2005.06.116
http://www.ncbi.nlm.nih.gov/pubmed/16005848
https://doi.org/10.1152/physrev.1946.26.3.319
https://doi.org/10.1152/physrev.1946.26.3.319
http://www.ncbi.nlm.nih.gov/pubmed/20993553
https://doi.org/10.1038/nprot.2014.131
http://www.ncbi.nlm.nih.gov/pubmed/25033209
https://doi.org/10.1098/rsif.2008.0014
https://doi.org/10.1038/nature12611
http://www.ncbi.nlm.nih.gov/pubmed/24132237
https://doi.org/10.1103/PhysRevLett.119.188101
http://www.ncbi.nlm.nih.gov/pubmed/29219578
https://doi.org/10.1371/journal.pcbi.1006961


25. Luwor RB, Hakmana D, Iaria J, Nheu TV, Simpson RJ, Zhu HJ. Single live cell TGF-β signalling imag-

ing: breast cancer cell motility and migration is driven by sub-populations of cells with dynamic TGF-β-

Smad3 activity. Molecular Cancer. 2015; 14(1):50. https://doi.org/10.1186/s12943-015-0309-1 PMID:

25744371

26. Giampieri S, Manning C, Hooper S, Jones L, Hill CS, Sahai E. Localized and reversible TGFβ signalling

switches breast cancer cells from cohesive to single cell motility. Nature Cell Biology. 2009; 11

(11):1287. https://doi.org/10.1038/ncb1973 PMID: 19838175

27. Ikushima H, Miyazono K. TGFβ signalling: a complex web in cancer progression. Nature Reviews Can-

cer. 2010; 10(6):415. https://doi.org/10.1038/nrc2853 PMID: 20495575

28. Kleuser B, Malek D, Gust R, Pertz HH, Potteck H. 17-β-Estradiol inhibits Transforming Growth Factor-β
signalling and function in breast cancer cells via activation of Extracellular Signal-Regulated Kinase

through the G protein coupled receptor 30. Molecular Pharmacology. 2008; 74(6):1533–1543. https://

doi.org/10.1124/mol.108.046854 PMID: 18768737

29. Venturoli D, Rippe B. Ficoll and dextran vs. globular proteins as probes for testing glomerular perms-

electivity: effects of molecular size, shape, charge, and deformability. American Journal of Physiology-

Renal Physiology. 2005; 288(4):F605–F613. https://doi.org/10.1152/ajprenal.00171.2004 PMID:

15753324

30. Ellison D, Mugler A, Brennan MD, Lee SH, Huebner RJ, Shamir ER, et al. Cell–cell communication

enhances the capacity of cell ensembles to sense shallow gradients during morphogenesis. Proceed-

ings of the National Academy of Sciences. 2016; 113(6):E679–E688. https://doi.org/10.1073/pnas.

1516503113

31. Graner F, Glazier JA. Simulation of biological cell sorting using a two-dimensional extended Potts

model. Physical Review Letters. 1992; 69(13):2013. https://doi.org/10.1103/PhysRevLett.69.2013

PMID: 10046374

32. Swat MH, Thomas GL, Belmonte JM, Shirinifard A, Hmeljak D, Glazier JA. Multi-scale modeling of tis-

sues using CompuCell3D. Methods in Cell Biology. 2012; 110:325. https://doi.org/10.1016/B978-0-12-

388403-9.00013-8 PMID: 22482955
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