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Although hundreds of colorectal cancer- (CRC-) related genes have been screened, the significant hub genes still need to be further
identified. The aim of this study was to identify the hub genes based on protein-protein interaction network and uncover their
clinical value. Firstly, 645 CRC patients’ data from the Tumor Cancer Genome Atlas were downloaded and analyzed to screen
the differential expression genes (DEGs). And then, the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis
was performed, and PPI network of the DEGs was constructed by Cytoscape software. Finally, four hub genes (CXCL3, ELF5,
TIMP1, and PHLPP2) were obtained from four subnets and further validated in our clinical setting and TCGA dataset. The results
showed thatmRNA expression of CXCL3, ELF5, and TIMP1 was increased in CRC tissues, whereas PHLPP2mRNA expression was
decreased. More importantly, high expression of CXCL3, ELF5, and TIMP1 was significantly associated with lymphatic invasion,
distance metastasis, and advanced tumor stage. In addition, a shorter overall survival was observed in patients with increased
CXCL3, TIMP1, and ELF5 expression and decreased PHLPP2 expression. In conclusion, the four hub genes screened by our strategy
could serve as novel biomarkers for prognosis prediction of CRC patients.

1. Introduction

Colorectal cancer (CRC) is one of the most common malig-
nancies and an important contributor to cancermortality and
morbidity [1, 2]. Based on the previous studies, CRC is well
known as a heterogeneous disease in which aberrant expres-
sion of hub genes mediated tumor initiation, progression,
and metastasis [3]. A series of researches have demonstrated
that hub genes in CRC, such as DHRS9 [4], GRIM-19 [5],
EphA2 [6], and STYK1 [7], not only are involved in regulating
a variety of cellular processes including cell proliferation,
survival, differentiation,migration, and apoptosis but are also
correlated with disease progression and prognosis of patients
with CRC. However, due to the labor-intensive and ineffi-
ciency method, only small part of CRC-related hub genes
has been investigated using traditional detection methods
for individual biomarker. Besides that, the results from these
methods were not uniform and shared only a limited degree
of overlap. All these facts indicate that it is necessary to seek

a new approach to screen hub genes effectively and accurate-
ly.

Protein-protein interactions (PPIs) are crucial for bio-
logical processes including gene expression, cell growth,
proliferation, and apoptosis [8, 9]. Numerous studies have
implicated that aberrant PPIs were the basis of multiple
aggregation-related diseases, especially involved in cancer
occurrence and progression [10–13]. Moreover, it has been
clarified that proteins expression is a dynamic process as
their functions tend to be regulated in network [14]. Under-
standing protein interactions provides an efficient approach
for screening hub genes. Thus, due to the potential signif-
icance of PPI network in cancer biology, its implication in
human malignancies has aroused increasing attention. Hub
genes identified by PPI network based approach have been
reported in cancers of breast [15] and liver [16] and gastric
cancer [13]. Furthermore, the PPI network has a fraction
of highly connected region (subnet) with high probabilities
of engaging in essential biological regulation [17], whereas
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Figure 1: Flowcharts for deriving and validating hub genes in CRC. Expression profiles and corresponding clinical data for 645 CRC patients
were obtained from The Cancer Genome Atlas (TCGA) data portal (July 2016). PPI network analysis based on differential expression
genes between paired sets (normal and adjacent tumor tissue) was used to identify hub genes. Subsequently, patients with complete clinical
information were included in the study to investigate the clinicopathology features and prognostic value of the identified hub genes.

those lightly connected nodes do not exert critical role in the
whole network’s integrity [17, 18]. Besides that, gene silencing
experiment further confirmed that intramodular hubs were
significantly associated with disease status [19]. Thus, hub
genes obtained from PPI subnet were more meaningful than
individual genes screened without network information [20].
More importantly, the identified hub genes achieved higher
accuracy than individual genes in the classification of patients
with different clinicopathologic features such as metastatic
versus nonmetastatic patients [21, 22].

However, there are common limitations in previous stud-
ies. Firstly, due to many factors including small sample size,
different platforms, and unpaired methods for data process-
ing, the differential expression genes (DEGs) as the essential
data for PPI network analysis are not consistent in different
studies. Moreover, former studies almost did not validate the
identified hub genes by experiment and did not reveal their
clinicopathologic correlation and prognostic value. There-
fore, we aimed to identify the hub genes based onPPI network
approach in a large number of CRC cohorts downloaded
from TCGA and then further validate and investigate their
clinical values.

2. Results

2.1. Integrated RNA-Seq Data and Clinical Information in the
TCGA CRC Cohort. We first downloaded all of the publicly
available RNA-Seq data and clinical information fromTCGA
before July 30, 2016, through GDC Data Transfer Tool [22].
The tool provides a standard client-based mechanism in sup-
port of high performance data downloads and submissions.
After preprocessing, a huge genes expression matrix formed
by a total of 695 RNA-Seq sets of data from 645 CRC patients

was obtained. TCGA barcode for RNA-Seq and clinical
information in different data files was used to associate those
data tables. Finally, a large scale of gene expression data
in paired CRC tumor and corresponding adjacent normal
tissues were obtained by analyzing the information extracted
from barcode (see flowchart to Figure 1 for details). Before
studying the clinical significant of hub genes, Kaplan-Meier
test was performed to assess the relationship between clinico-
pathologic features and prognosis in the TCGA CRC cohort.
The preliminary assessment revealed that local invasion (T
stage), lymph node metastasis (N stage), distal metastasis
(M stage), and TNM stage were significantly associated with
prognosis, which is consistent with previous reports [23].
Thus, the clinical information was suitable for the next study
(Figure 2).

2.2. Identification and Functional Enrichment Analysis of
DEGs. To investigate the DEGs associated with CRC, expres-
sion files of 50 paired human primary colorectal cancer and
corresponding adjacent normal tissues were integrated to
screen DEGs using edgeR [24] and limma [25], respectively.
The criteria of | log FC| ≥ 2 and 𝑝 ≤ 0.05 were used to deter-
mine the significant DEGs (Figure 3(a)). For eliminating
the potential error, up- and downregulated gene sets were
intersected to obtain optimal DEGs (Figure 3(b)). Eventually,
a total of 1335 DEGs were screened, among which 447 genes
were upregulated while 888 genes were downregulated in
cancer tissues. In order to encapsulate the DEGs in an all-
round way, Circos Plots were created to display the distri-
bution, correlation, and variation of DEGs in chromosome
(Figure 3(c)). In addition, the relative mRNA expression
levels of DEGs among paired tumor and adjacent normal
and unpaired tumor tissue were analyzed and compared
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Figure 2: Kaplan-Meier survival estimates by the TNM (Tumor, Node, Metastasis) system and tumor stage in CRC cohort. (a–c) TNM stage
(overall log-rank test, 𝑝 < 0.0001). (d) Tumor stage (overall log-rank test, 𝑝 < 0.0001).

(Figure 3(d)). By assigning different colors to individual
DEGs, the expression pattern of DEGs was clearly displayed.
Obviously, the consistency of DEGs expression levels within
the paired tumor group was higher than unpaired tumor
group (Figure 3(d)).These findings at least in part account for
the accuracy of the DEGs analysis conducted in the present
study.

Furthermore, KEGG enrichment analysis was conducted
to interpret biological meanings of DEGs (Figure 4(a)). 9
pathwayswere significantly enriched includingWnt signaling
pathway (𝑝 = 1.65 × 10−3), cell cycle (𝑝 = 1.67 × 10−3),
Hippo signaling pathway (𝑝 = 9.88 × 10−3), spliceosome
(𝑝 = 1.66 × 10−3), RNA transport (𝑝 = 1.63 × 10−3),
ribosome (𝑝 = 1.66 × 10−3), calcium signaling pathway
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Figure 3: Screening of gene signatures and identification of DEGs. (a) Volcano Plot visualizing the DEGs of CRC was screened by limma and
edgeR. The red and blue points in plot represent the differentially expressed genes with statistical significance (𝑝 < 0.05, | log FC| ≥ 2).
(b) Venn diagram demonstrated the intersection set of upregulated (red) and downregulated (blue) genes identified by limma and edgeR,
respectively. (c) Circos plots showing the distribution and expression change of DEGs. (d) Heatmap of the significant differentially expressed
genes.The right longitudinal axis showed the clustering information of samples.The samplesweremainly divided into threemajor clusters and
these three clusterswere the adjacent normal tissue (𝑁 = 50), paired tumor tissue (𝑁 = 50), and the otherCRC tumor tissue (𝑁 = 595); the left
longitudinal axis showed the clustering information ofDEGs. Red represents the upregulated genes, while green represents the downregulated
genes.
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Figure 4: Pathway enrichment analysis of DEGs. (a) Enrichment plots for significant pathways identified by GSEA include Wnt signaling
pathway, cell cycle, Hippo signaling pathway, spliceosome, RNA transport, ribosome, calcium signaling pathway, cell adhesion molecules
(CAMs), cGMP-PKG signaling pathway, and cAMP signaling pathway. (b-c) The signaling pathway of Wnt and cell cycle (this image was
obtained by Kyoto Encyclopedia of Genes and Genomes with permission). Red represents the upregulated genes, while green represents the
downregulated genes.

(𝑝 = 2.56 × 10−3), cell adhesion molecules (CAMs) (𝑝 =
5.01 × 10−3), cGMP-PKG signaling pathway (𝑝 = 2.55 ×
10−3), and cAMP signaling pathway (𝑝 = 2.67 × 10−3)
(Figure 4(a)). Besides that, almost all of the target genes
of Wnt (Figure 4(b)) and cell cycle (Figure 4(c)) signaling

pathway were upregulated, which play a critical role in the
occurrence and development of carcinoma. Taken together,
these results suggest that the DEGs screened in the present
study are credible and consistent with previous knowledge of
CRC.
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Figure 5: PPI network of all DEGs. Interactome of the 1335 genes
showing 1166 nodes and 21671 edges in the PPI network encompass-
ing four subnets in CRC. Genes were denoted as nodes in the graph
and interactions between themwere presented as edges. Green color
indicates downregulated genes, and red color indicates upregulated
genes; the label size represents the degree value; the thickness of
connection line represents the level of closeness between two node.

2.3. Identification of Hub Genes by Using PPI Network. To
investigate the hub genes associated with CRC, the protein
interaction data were downloaded from STRING database
and a giant network was constructed by linking causal DEGs.
The detail parameters were as follows: number of nodes =
1201, number of edges = 4090, and average node degree = 6.81.
The size of label represents the degree index. The thickness
of connection line indicates the level of closeness between
two proteins. Color gradients from red to blue represent the
change of log FC (Figure 5). To find biologically essential
subnets and corresponding hub genes, MCODE [26] plugin
was used to investigate the whole network. Finally, four
subnets in the original network were obtained according to
the screening criteria at node score cut-off = 0.3, 𝐾-core =
4 (Figures 6(a)–6(d)). It is well demonstrated that disease
related subnet (highly connected region) was often of clinical
importance, and the hub genes among the subnets were
involved in crucial biological processes [17]. The importance
of each gene was evaluated by the centrality analysis from
the four subnets including MCODE score and degree. Obvi-
ously, there were some genes with significant differences in
MCODE score (Figure 6(e)) and degree (Figure 6(f)) among
each subnet. These results demonstrated that the genes were
highly interconnected within subnet while the subnets were
independent of each other. Then those genes in each subnet
with the highest MCODE score were considered as the hub
genes. In the present work, four hub genes were selected
including CXCL3, ELF5, PHLPP2, and TIMP1.

2.4. Validation of CRC-Related Hub Genes and Its Association
with Clinicopathologic Features. To determine the aberrant
expression of CRC-related hub genes, qRT-PCR analysis was
conducted in 25 pairs of cancerous and adjacent normal
tissue derived from the same patient. As obviously shown

Table 1: Clinical features for the CRC patients in the TCGA cohort.

Characteristics Number of patients (%)
(𝑛 = 498)

Age (years)
<60 144 (28.9%)
≥60 354 (71.1%)

Sex
Female 255 (51.2%)
Male 243 (48.8%)

Tumor location
Colon 362 (72.6%)
Rectum 136 (27.4%)

Local invasion
T1-T2 107 (21.4%)
T3-T4 391 (78.6%)

Lymph node metastasis
N0 303 (60.8%)
N1 108 (21.6%)
N2 87 (17.6%)

Distant metastasis
M0 419 (84.1%)
M1 79 (15.9%)

TNM stage
I 96 (19.2%)
II 197 (39.5%)
III 126 (25.3%)
IV 79 (16.0%)

Resection Margin Status
R0 454 (91.1%)
R1 5 (1.0%)
R2 39 (7.9%)

Death
No 413 (82.9%)
Yes 85 (17.0%)

in Figure 7(a), the mRNA expression of CXCL3, ELF5, and
TIMP1 significantly increased in CRC tissues compared with
matched adjacent normal tissues, whereas PHLPP2 mRNA
expression was decreased in CRC tissues; and these results
were further confirmed by TCGA database (Figure 7(b)).

To investigate the relationship between the expression
levels of hub genes and clinicopathologic features, 498 CRC
patientswith complete clinical informationwere summarized
in Table 1 and were selected to conduct correlation analysis.
As shown in Figures 7(c)–7(f), high expression of CXCL3,
ELF5, and TIMP1 was significantly associated with lymphatic
invasion, distance metastasis, and advanced tumor stage.
Besides that, high CXCL3 and ELF5 expression were also
significantly related to vascular invasion. Moreover, low
PHLPP2 expressionwas significantly related to vascular inva-
sion and tumor stage. However, there were no significant
associations observed between the four hub genes expression
and clinical characteristics such as age, sex, and tumor
location.
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Figure 6: Highly interconnected region form four best subnets among the 1335 DEGs and integrated centralities based analysis of subnet. Green
color indicates downregulated genes, while red color indicates upregulated genes; the label size represents the level of degree. (a–d) subnet 1,
subnet 2, subnet 3, and subnet 4, respectively. (e-f) Comparisons of MCODE score and degree centrality among the four subnets.There were
significant differences in MCODE score and degree distribution among each subnet.

2.5. Prognostic Values of Hub Genes for Patients with CRC.
To further investigate the clinical outcomes of hub genes for
patients with CRC, X-tile [27] and Kaplan-Meier survival
analysis were performed to evaluate the effects of hub genes
on overall survival (OS) (Figure 8). The results showed that
CRC patients with high CXCL3 (𝑝 = 0.0015), ELF5 (𝑝 =
0.0094), and TIMP1 (𝑝 = 0.0017) expression had a signifi-
cantly shorter OS (Figures 8(a)–8(d)), whereas, for patients
with low PHLPP2 expression, a longer OS was observed (𝑝 =
0.0091).

3. Discussion

CRC is a disease caused by cumulative genetic, epigenetic,
somatic, and endocrine aberrations [28]. Understanding the
molecular mechanism of CRC is of critical importance for
CRC diagnosis and treatment. Since microarray and high-
throughput sequencing provide expression levels of thou-
sands of genes in human genome simultaneously, it has
been widely used to predict the potential therapeutic targets
for CRC [29–31]. However, gene expression profiling about

DEGs showed markedly different in previous studies. For
example, Liang et al. [11] identified 3500 DEGs in CRC
including 1370 upregulated genes and 2130 downregulated
genes. In contrast, another research which also focused
on DEGs showed a total of 4937 differentially expressed
genes, among which 2974 genes were upregulated while
1963 genes were downregulated in cancer samples [32].
These inconsistencies about DEGs in different studies at
least in part may be caused by the small sample size and
methodological differences in the preprocessing. At present,
several studies have demonstrated that the low replication
of biological samples did not correctly screen DGEs because
of its insufficient statistical power [33] and also did not
preciously investigate the natural biological variability [34].
Recent researches further indicated that at least 12 replicates
were essential to identify the major DEGs in RNA-seq
experiment. Furthermore, in order to make the result cover
more than 85% of all DEGs, 20 biological replicates were
a prerequisite [35]. Obviously, many previous studies did
not yet meet the minimum standards. Although systematic
review or integrated analysis was used to determine DEGs
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Figure 7: Experiment validation and clinicopathologic features of CRC-related hub genes. (a) qRT-PCR analysis of hub genes expression in the
CRC tissues and the adjacent noncancerous tissue. (b) CRC-related hub genes expression in TCGA dataset. For boxplots, expression values
of hub genes were normalized and box width was proportional to the square root of sample size in each variant. (c–f) Relationship between
hub genes expression and clinicopathologic features. Color bar revealed the statistical significance of relationship between clinical features
and hub gens: black represents 𝑝 ≥ 0.05 and blue gradient represents 𝑝 < 0.05 in which the deeper the color, the stronger the significant
difference.

in cancer, such approach seems not rigorous due to the data
from different platforms and the different methods for data
processing. All these facts demonstrated that, in order to
accurately identify DEGs based on a large scale of paired
sample, it is essential to sequence and preprocess these data
according to the same and high criteria discussed above.

Currently, it is clearly understood that screening a CRC-
related DEG do not necessarily equate considering it as
biologically meaningful. Thus, many effective methods such
as GO and KEGG have been adopted to interpret the signif-
icance of DEGs, hoping to elucidate the role of individual
molecule in various biological processes. However, there is
still a problem that a large number of human genes have
not yet been assigned to a definitive pathway based on
enrichment analysis.The significance of these genes will thus

not be detected in the identification of individual marker
genes. Therefore, it is necessary to adopt more effective and
accurate approaches in hub genes selection. Accumulating
mechanism studies indicated that the essence of biological
process is a strict and quantifiable interaction between count-
less biomolecules [36]. Various types of networks emerge
from the sum of these interactions including PPI network
[37], phosphorylation networks [38], and signaling and
transcription regulatory networks [39]. Bionetwork studies,
particularly the study of the PPI, provide an insight into
the structures and the dynamics of the complex intercellu-
lar interactions. Based on the network theory, there were
numbers of highly connected regions (subnet) with specific
function, which is significant in the biological systems [40,
41]. More importantly, gene silencing experiments further
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Figure 8: Clinical significance of hub genes. (a–d) Kaplan-Meier survival analysis by X-tile plots cut-off point. (a) CXCL3, 𝑝 < 0.0015. (b)
TIMP1, 𝑝 < 0.0017. (c) ELF5, 𝑝 < 0.43. (d) PHLPP2, 𝑝 < 0.0096. X-tile plots are shown in the left panels. The plot showed the chi-squared
log-rank values created when the cohort was divided into two groups. The optimal cut-point highlighted by the color variations in the left
panels is shown on a histogram of the entire cohort and a Kaplan-Meier plot (right panels).

confirmed that genes within highly connected regions tend
to be significantly associated with disease status [20]. Hence,
identification of hub genes based on network analysis was
more meaningful than individual genes screened without
network information [21].

Considering all the above reasons, we performed the
present study. Firstly, we extracted the expression data from
TCGACRC cohort and identified 1335 DEGs between paired
CRC and normal tissues, among which 447 genes were
upregulated and 888 were downregulated in cancer tissues.
Enrichment analysis showed that these DEGs were mainly
involved inWnt signaling pathway, cell cycle, RNA transport,
and cell adhesion molecules. Of note, as the small sample
size andmethodological differences in the preprocessing lead
to the major inconsistence between CRC-related expression
signatures; in this study, the DEGs were obtained from a
large number of paired TCGA CRC cohort and these data
were preprocessed according to a strict and same criteria.
Moreover, edgeR and limma were used to obtain candidate
DEGs, respectively, and get intersection set. These methods
ensured the reliable and accurate results.

Since a series of studies have reported that PPI network
is of importance to identify the genes with potential clinical
value, we therefore constructed CRC-related PPI network by
the 1201 mapped DEGs from the STRING database. Subse-
quently, the top ranked genes within four highly connected
regions were extracted as hub genes, which include CXCL3,
ELF5, PHLPP2, and TIMP1. Our further experiment about
validation and clinicopathologic analysis revealed that high
expression of CXCL3, ELF5, and TIMP1 was significantly
associated with lymphatic invasion, distance metastasis, and
advanced tumor stage. Besides that, high CXCL3 and ELF5
expression was also significantly related to vascular invasion,
and low PHLPP2 expression was significantly associated
with vascular invasion and tumor stage. Similar to what we
observed in the current study, a recent research demonstrated
that CXCL3 was overexpressed in most cases of aggressive
prostate and breast tumors, and its expression was associated
with poor prognosis [42]. the upregulated ELF5 expression
in endometrial carcinoma was also related to higher dis-
ease stage [43]. Moreover, low expression of PHLPP2 was
significantly related to the advanced tumor stage, poor
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differentiation, and increased lymph node metastasis in
patients with hypopharyngeal squamous cell carcinoma [44].
PHLPP2 was also described as a survival and proliferation
related suppressor in various cancers [45]. More importantly,
according to the findings of Song et al., the clinical feature of
aberrant expression of TIMP1 in CRC patients was consistent
with our results [46]. Taking together all these previous data
combined with our present results, at least in part, confirmed
that PPI network analysis is an effective method to identify
hub genes with clinical significance.

Another important finding of the current study was the
prognostic value of the hub genes in CRC. Survival analysis
showed that CRC patients with high CXCL3, ELF5, and
TIMP1 expression had a significantly shorter OS, whereas,
for patients with low PHLPP2 expression, a longer OS was
observed. These findings further validate the clinical sig-
nificance of hub genes identified by PPI network. More
significantly, besides the aberrant expression of TIMP1 being
confirmed by previous study, it is a marker of clinical signif-
icance in the diagnosis and prognosis of patients with colon
carcinomas [46]; to the best of our knowledge, the current
study is the first to report the prognostic value of CXCL3,
ELF5, and PHLPP2 in CRC.

In conclusion, our present study performed a PPI net-
work analysis of differential expression signature between
paired CRC and normal control to obtain hub genes. More
importantly, our further clinicopathologic and prognostic
investigation revealed that all of these hub genes were of
important clinical significance. PPI network analysis was
an effective method to identify hub genes with clinical sig-
nificance. However, further clinical and mechanism studies
focusing on these hub genes are required to uncover the
underlying mechanisms in tumorigenesis of CRC.

4. Materials and Methods

4.1. Clinical Information and RNA-Seq Dataset in TCGA.
RNA-Seq data and corresponding clinical data for 645 CRC
patients were obtained from The Cancer Genome Atlas
(TCGA) data portal (July 2016) [12]. Both the RNA-Seq data
and clinical data including outcome and clinicopathologic
information of TCGA CRC patients were deposited at the
Data Coordinating Center (DCC), and these data are publicly
available and open access. TCGA data are classified by
data type and data level, to allow structured access to this
resource with appropriate patient privacy protection. This
study meets the publication guidelines provided by TCGA
[13]. Samples and corresponding clinical data were cross-
referenced by tumor barcodes. The patients were included in
the study to meet the following criteria: (1) patients with fully
clinical information (clinicopathological data and expression
profiles); (2) patients documented overall survival.

4.2. Screening of Differential Expression Genes (DEGs) and
Enrichment Analysis. To identify DEGs between CRC and
normal tissues, the raw counts of expression data obtained
from the TCGA dataset (645 CRC samples and 50 normal
tissue) were normalized by a weighted trimmed mean of the
log expression ratios. The batch effect was removed using

a generalized linear model [39]. The expression differences
were characterized by log FC (log 2 fold change) and asso-
ciated 𝑝 values. The log FC ≥ 2 and log FC ≤ −2 with
𝑝 < 0.05, respectively, represented upregulated and down-
regulated mRNAs. The analysis was performed using the
R/Bioconductor package of limma (version 3.32.3) and edgeR
(version 3.18.1). Eventually, the genes identified to be differ-
ential expression by both of the algorithms were selected as
DEGs.

To further assess the signaling pathway of the gene
signatures, we performed a pathway analysis based on Kyoto
Encyclopedia of Genes and Genomes (KEGG) database
(http://www.genome.jp/kegg/). DEGs were applied to this
database in order to investigate the biological pathways that
might be involved in the occurrence and development of
CRC.The analyses were performed by clusterProfiler package
(version 3.4.4). KEGG enrichment with parameter set as
nPerm = 1000, minGSSize = 120, 𝑝 < 0.05, was screened to
further analysis.

4.3. PPI Network Construction and Analysis. The protein
interaction data were selected from the Search Tool for
the Retrieval of Interacting Genes/Proteins (STRING) 9.1
database and a networkwas constructed by linking causal dis-
ease genes with the selected gene signatures using Cytoscape
3.1.0, a free software package for visualizing, modeling,
and analyzing the integration of biomolecular interaction
networks with high-throughput expression data and other
molecular states [47]. Subsequently, we investigated the sub-
structure of the giant protein interaction network extracted
from the above constructed network and focused on highly
connected nodes known as subnet using the MCODE clus-
tering algorithm [26], including vertex weighting, complex
prediction, and optional postprocessing. The regulation rela-
tionships among various genes in each subnet were analyzed
through calculating the topological properties of the network
such as degree and MCODE score. Moreover, highest inter-
acting genes in each subnet were identified as hub genes.

4.4. Experimental Validation and Clinical Value of Hub Gene.
To validate the results of integrated bioinformatics analysis,
25 pairs of fresh CRC and adjacent noncancerous tissues
were obtained from 25 patients by experienced surgeons and
examined by experienced pathologists at the First Affiliated
Hospital of Chongqing Medical University between July and
December, 2016. Written informed consent was obtained
from all patients or their guardians. The samples were frozen
immediately and stored until use. Then, quantification of
hub genes was performed by real-time PCR as described
previously [48]. For survival analysis, we used the Kaplan-
Meier method to analyze the correlation between overall
survival and the hub genes, and the log-rank test was used
to compare survival curves. The optimum cut-off value for
the hub genes using X-tile plots based on the association with
mortality of the patients. X-tile plots provides a single and
intuitive method to assess the association between variables
and survival. The X-tile program can automatically select
the optimum data cut-point according to the highest 𝜒2
value (minimum 𝑝 value) defined by Kaplan-Meier survival

http://www.genome.jp/kegg/
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analysis and log-rank test [27]. We did the X-tile plots using
the X-tile software version 3.6.1 (Yale University School of
Medicine, New Haven, CT, USA).
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