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Introduction: Due to the high heterogeneity of hepatocellular carcinoma (HCC), patients with non-advanced 

disease who are unsuitable for initial transarterial chemoembolization (TACE) monotherapy may have the po- 

tential to develop extrahepatic spread or vascular invasion. We aimed to develop and independently validate a 

radiomics-based model for predicting which patients will develop extrahepatic spread or vascular invasion after 

initial TACE monotherapy (EVIT). 

Materials and methods: This retrospective study included 256 HCC patients (training set: n = 136; testing set: 

n = 120) who underwent TACE as initial therapy between April 2007 and June 2018. Clinicoradiological pre- 

dictors were selected using multivariate logistic regression and a clinicoradiological model was constructed. The 

radiomic features were extracted from contrast-enhanced computed tomography (CT) images and a radiomics sig- 

nature was constructed based on a machine learning algorithm. A combined model integrated clinicoradiological 

predictor and radiomics signature was developed. The predictive performance of the two models was evaluated 

and compared based on its discrimination, calibration, and clinical usefulness. 

Results: In the training set, 34 (25.0%) patients were confirmed to have EVIT, whereas 26 (21.7%) patients 

in the testing set had EVIT. When the radiomics signature was added, the combined model showed improved 

discrimination performance compared to the clinicoradiological model (area under the curves [AUCs] 0.911 vs. 

0.772 in the training set; AUCs 0.847 vs. 0.746 in the testing set) and could divide HCC patients into three strata 

of low, intermediate, or high risk in the two sets. Decision curve analysis demonstrated that the two models 

were clinically useful, and the combined model provided greater benefits for discriminating patients than the 

clinicoradiological model. 

Conclusions: This study presents a model that integrates clinicoradiological predictors and CT-based radiomics 

signature that could provide a preoperative individualized prediction of EVIT in patients with HCC. 
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Transarterial chemoembolization (TACE) is the most widely applied

rimary treatment for unresectable hepatocellular carcinoma (HCC) in

linical practice [1] . According to the BRIDGE study, it is widely used
Abbreviations: HCC, hepatocellular carcinoma; TACE, transarterial chemoemboliza  

fter initial; TACE, monotherapy; OS, overall survival; CI, confidence interval, IQR, i
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ot only for intermediate-stage HCC, which is the standard recommen-

ation based on the Barcelona Clinic Liver Cancer (BCLC) staging sys-

em, but also for advanced and selected cases of early stage HCC [1–3] .

ue to its high heterogeneity, the prognosis of TACE for HCC varies,

ith the time to progression varying from 31 months to 135 months
ually to this study. 
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4] . Patients who are unsuitable for TACE could experience progres-

ion in the form of extrahepatic spread or vascular invasion after initial

ACE monotherapy (EVIT) [ 5 , 6 ]. This is more likely to be caused by

he complex heterogeneity of the tumor microenvironment, rather than

 failure of the TACE procedure [ 7 , 8 ]. For these patients, combination

reatment with TACE and systemic therapy (molecular targeted therapy

r immunotherapy) should be considered rather than TACE monother-

py [ 9 , 10 ]. 

Radiomics is the high-throughput extraction of quantitative features

rom medical images that could reflect underlying tissue and lesion char-

cteristics, such as tumor heterogeneity, in a non-invasive way [11–13] .

adiomics analyses with favorable predictive value for the therapeutic

esponse and prognosis of TACE have been reported [14–16] . Most ra-

iomics models based on the preoperative image predict patients’ long-

erm outcomes, which are affected by various factors that may weaken

he actual predictive performance. Few of these studies have been val-

dated by independent external institutions. To the best of our knowl-

dge, no multicenter studies have created a radiomics-based model for

redicting initial TACE-unsuitable patients to improve the management

f HCC. 

This study aimed to develop a model integrating clinical, radiologic,

nd radiomic features to preoperatively predict extrahepatic spread or

ascular invasion for non-advanced HCC patients initially treated with

ACE monotherapy. The prognostic and predictive efficacy of the model

as also evaluated externally in the independent testing set. 

aterials and methods 

atients 

This retrospective study was conducted in patients with unresectable

CC who underwent TACE between April 2007 and June 2018 at

hree institutions in China. The study protocol conformed to the ethi-

al guidelines of the 1975 Declaration of Helsinki. The study was ap-

roved by the institutional ethics review boards of the three partici-

ating institutions(2019ZDSYLL069-P01), and the requirement for writ-

en informed consent was waived due to the retrospective nature of the

tudy. 

The inclusion criteria were as follows: (a) aged 18 years or older;

b) diagnosed with HCC according to the European Association for the

tudy of the Liver (EASL) [1] or the American Association for the Study

f Liver Disease (AASLD) [2] criteria; (c) Eastern Cooperative Oncology

roup (ECOG) performance status of 0; (d) Child-Pugh grade A or B;

e) unable or unwilling to undergo surgical resection or ablation; and

f) no extrahepatic spread or vascular invasion. The exclusion criteria

ere: (a) lack of preoperative contrast-enhanced computed tomogra-

hy (CT) imaging; (b) previous HCC-related treatment; (c) Child-Pugh

 liver function or evidence of decompensated liver cirrhosis including

efractory ascites, esophageal or gastric variceal bleeding, or hepatic

ncephalopathy; and (d) missing follow-up data or lost to follow-up. 

For each patient, demographics, hepatitis history, Child–Pugh class,

reoperative liver function tests, and serum alpha-fetoprotein (AFP) lev-

ls were collected from medical records. Finally, a total of 256 patients

ere included (51 women and 205 men; median age, 60.5 years; in-

erquartile range, 52–71 years) and divided into a training set (institu-

ion 1 & 2, n = 136; 28 women and 108 men; median age, 60 years; in-

erquartile range, 52–67 years) and an independent external testing set

institution 3, n = 120; 23 women and 97 men; median age, 61 years;

nterquartile range, 53–73 years), as shown in Fig. 1 . 

ssessment 

All patients underwent routine abdominal contrast-enhanced CT and

lain chest CT scans; other CT scans were then conducted according

o individual conditions. According to the EASL guidelines, the extra-

epatic spread was defined as lymph node involvement or extrahepatic
2 
etastases, and vascular invasion was defined as macrovascular inva-

ion either segmental or portal invasion [1] . Only if there was no definite

xtrahepatic spread or vascular invasion in the preoperative CT imag-

ng, EVIT on follow-up imaging could be determined. Patients thought

o have preoperative extrahepatic spread or vascular invasion were con-

idered to have advanced HCC and were excluded from the study. 

The radiologic characteristics of tumors were assessed by two inde-

endent radiologists (reader 1 and reader 2, with 10 and 15 years of

bdominal imaging experience) who were blinded to the patients’ in-

ormation. The radiologic features of HCC, partly referring to Elsayes

t al. [17] and Yoneda et al. [18] , included (a) tumor number, the num-

er of visible lesions; (b) tumor size, defined as the diameter of the

argest lesion; (c) enhancement pattern, classified as typical dynamic

nhancement with arterial-phase hyperenhancement, and washout in

ortal-venous phase or delay phase, or atypical dynamic enhancement;

d) tumor capsule, defined as a smooth, uniform border surrounding

he mass and visible as an enhancing rim on portal venous or delayed

hase imaging, or non-enhancing rim; (e) uni- or multilobar involve-

ent; (f) tumor margin, classified as nodular HCC with a smooth margin

r non-nodular HCC with an irregular border; (g) arterial peritumoral

nhancement, defined as transient hepatic parenchymal enhancement

djacent to the tumor border in the arterial phase and return to normal

n the portal vein phase; (h) intratumor necrosis, classified as absent or

resent; and (i) intratumor hemorrhage, classified as absent or present.

hen patients had multiple nodules, the largest nodule was analyzed.

ny disagreement between radiologists was discussed to reach a final

onsensus. 

ACE procedure and follow-up 

All patients included in the study underwent the conventional TACE

rocedure performed by several interventional radiologists (with > 20

ears of experience). The emulsion of chemotherapeutic drugs (piraru-

icin, epirubicin, or cisplatin was selected according to the practice of

ach center) and lipiodol, the dosages of which were determined by

he tumor size and vascularity, was injected into feeding arteries of the

umor followed by gelatin sponge particles. The TACE procedure was

arried out in a superselective manner to increase efficacy and reduce

omplications. The patients were followed-up using dynamic CT or mag-

etic resonance imaging (MRI) at 4–8 weeks after TACE. Subsequent

ACE procedures were performed “on demand ”: If a residual tumor or

ew intrahepatic lesions were demonstrated, the patient was evaluated

or repeated TACE treatment. Systemic therapy or combined therapy

as considered when vascular invasion and extrahepatic spread were

resent. 

T image acquisition 

All contrast-enhanced CT examinations were performed within 1

onth before TACE. The detailed imaging protocols are shown in the

upplementary methods. 

umor segmentation and radiomic feature extraction 

The workflow of the radiomics analysis is shown in Fig. 1 . Three-

imensional manual segmentation was performed by a radiologist

reader 1) using ITK-SNAP software (version 380, www.itksnap.org )

19] . The regions of interest were drawn on portal venous phase im-

ges, slice by slice. To standardize the voxel spacing, all images were

esampled to a voxel size of 1 ×1 ×3 mm. Thereafter, we used a fixed

in width to discretize voxel intensity values to control image noise

nd normalize voxel intensities. In total, 1218 radiomic features (de-

ailed in the Supplementary methods) including shape ( n = 14), first-

rder ( n = 18), texture ( n = 68), Laplacian of Gaussian (LoG, n = 430),

nd wavelet ( n = 688) features were extracted automatically from each

egmented region of interest using the open-source Pyradiomics package

http://www.itksnap.org
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Fig. 1. Flow chart of study design (top) and 

workflow of radiomics analysis (below). HCC, 

hepatocellular carcinoma; TACE, transarterial 

chemoembolization; CT, computed tomogra- 

phy. 
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version 2.2.0; https://github.com/Radiomics/pyradiomics ) [20] . The

eproducibility of inter-observer segmentation was confirmed by two

adiologists (reader 1 and reader 2). Interclass correlation coefficients

ICC) values greater than 0.8 were considered for further investigation.

adiomic feature selection and signature building 

The feature matrix was normalized by scaling to the unit length

ethod. For scaling the components of a feature vector, each component

as divided by the Euclidean length of each vector. The feature vector

as then mapped to a unit vector. Pearson correlation coefficients were

sed to reduce dimensionality, and analysis of variance was used for

electing relevant features. Linear discriminant analysis (LDA) was used

s the linear classifier by fitting class conditional densities to the data

nd using Bayes’ rule to build a radiomics model. Meanwhile, the inter-

al validation set was separated from the training set by 10-fold cross-

alidation to adjust the model parameters and prove the performance

f the model. All of the above radiomic analysis processes were imple-

ented using an open-source software package, FeAture Explorer (FAE,

ersion 0.2.7; https://github.com/salan668/FAE ) [21] . The radiomics
3 
odel was converted into a probability score, namely the radiomics sig-

ature, indicating the individual relative risk for EVIT. 

odel building, performance, validation, and comparison 

For the clinicoradiological risk factors, univariate and multivariate

ogistic regression analyses were applied to determine the predictors

f EVIT in the training set. The clinicoradiological nomogram model

as built based on the results of the logistic multivariate analysis, and

he combined nomogram model was established based on the clinico-

adiological nomogram model and radiomics signature. The discrimina-

ion performance of the two models was measured using the receiver-

perating characteristic (ROC) curve based on the area under the curve

AUC), sensitivity, specificity, and accuracy. Calibration curves were

rawn to compare the probability of EVIT between the predicted and

ctual rates according to the Hosmer-Lemeshow test. Comparisons of

he AUCs of the ROC curves were performed using the Delong test. The

erformance improvement introduced by the inclusion of the radiomics

ignature was quantified using net reclassification improvement (NRI)

nd integrated discrimination improvement (IDI). The clinical useful-

https://github.com/Radiomics/pyradiomics
https://github.com/salan668/FAE
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Fig. 2. Survival curves according to EVIT sta- 

tus (A, B), and risk strata identified using the 

combined model (C, D) for the training and 

test sets, respectively. Patients without EVIT 

had a longer OS than patients with EVIT in the 

training set ( p < 0.001; A) and the testing set 

( p < 0.001; B). The combined models stratified 

patients into three risk strata (median OS, 34.5 

months, 18.9 months, and 13.0 months for low- 

, intermediate-, high-risk patients in the train- 

ing set, respectively, p < 0.001; median OS, 

38.6 months, 17.6 months, and 10.8 months, 

for low-, intermediate-, high-risk patients in the 

testing set, respectively, p = 0.003). OS, overall 

survival; EVIT, extrahepatic spread or vascular 

invasion after initial TACE monotherapy. 
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ess of the two nomograms was evaluated using decision curve analysis

DCA) by calculating the net benefit at different threshold probabilities.

tatistical analysis 

Continuous variables were compared using Student’s t-test or non-

arametric Mann-Whitney U test, and categorical variables were com-

ared using the chi-squared test or Fisher exact test. Overall survival

OS) was defined as the interval from the date of the initial TACE proce-

ure to the date of all-cause death. Patients who survived until the last

ollow-up date (March 18th, 2020) or were lost to follow-up were cen-

ored. Survival curves were constructed using the Kaplan-Meier method

nd compared using a two-sided log-rank test. The X-tile software (ver-

ion 3.6.1; Yale University School of Medicine, USA) in the training set

o determine the optimal cutoff value for risk score output from the com-

ined predictive model. A p -value ≤ 0.05 was considered statistically sig-

ificant. All statistical analyses were performed using SPSS (version 210;

BM, Somers, NY) and R software (version 3.63; R Project for Statistical

omputing, http://www.r-project.org ). 

esults 

linicoradiological characteristics 

The baseline clinical and radiologic characteristics of all patients are

hown in Table 1 . Among them, 60 (23.4%) patients with EVIT were

onfirmed on follow-up imaging (34 [25.0%] in the training set, 26

21.7%] in the testing set). The median follow-up interval after initial

ACE was 47.0 days (IQR: 37.0–61.0) in the training set and 47.0 days

IQR: 37.3–62.5) in the testing set ( p = 0.890). The median OS in the

raining set for patients with EVIT was 13.5 (95%CI: 11.3–18.8) months,

ompared with 26.9 (95%CI: 22.2–38.7) months in patients without

VIT ( p < 0.001). Significant differences in median OS were also seen

n the testing set (10.8 [95%CI: 6.0–27.6] vs. 32.8 [95%CI: 24.8–46.6];

 < 0.001; Fig. 2 ). 

After multivariate analysis, the baseline serum bilirubin level (OR

.09; 95%CI 1.04–1.15; p < 0.001), tumor number (OR 1.54; 95%CI

.16–2.03; p = 0.003), and tumor capsule (OR 0.23; 95%CI 0.08–0.64;
4 
 = 0.005) were independent predictors of EVIT (Table S1). Thereafter,

 clinicoradiological prognostic nomogram was established to predict

VIT ( Fig. 3 ). The AUCs for the clinicoradiological model was 0.772

95% CI: 0.676–0.868) in the training set and 0.746 (95% CI: 0.641–

.852) in the testing set ( Fig. 4 ). The calibration curves for the clinicora-

iological model demonstrated good agreement between the predicted

nd observed probabilities for EVIT in both the training and testing sets

 p = 0.580 and p = 0.722, respectively; Fig. 5 ). 

adiomic features and radiomics signature 

Among the 1218 features, 1106 features with an interclass correla-

ion coefficient > 0.8 were stable for further analysis (Fig. S1). Using the

DA classifier, 14 radiomic features were used to construct a radiomics

ignature (Table S2). The radiomics signature was significantly associ-

ted with EVIT ( p < 0.001) and achieved a satisfying predictive perfor-

ance, with an AUC of 0.790 (95%CI: 0.709–0.871) in the training set

nd 0.750 (95%CI: 0.640–0.861) in the testing set. The distribution of

he radiomics signature for each patient in the two sets is shown in Fig

2. 

ombined model construction and validation 

The nomograms based on the combined EVIT prediction model de-

eloped by integrating clinicoradiological factors with radiomics signa-

ure are shown in Fig. 3 . The model yielded an AUC of 0.911 (95%CI:

.862–0.961) and 0.847 (95%CI: 0.775–0.919) for EVIT prediction in

he training and testing sets, respectively ( Fig 4 ). The sensitivity, speci-

city, and accuracy of the combined model were 94.1%, 74.5%, and

9.4% in the training set and 76.9%, 79.8%, and 79.2% in the test-

ng set, respectively ( Table 2 ). The calibration curves for the com-

ined model demonstrated good agreement between the predicted and

bserved probabilities for EVIT in both the training and testing sets

 p = 0.419 and p = 0.290, respectively; Fig 5 ). By using the X-tile-

etermined optimal cutoff points, the combined models stratified pa-

ients into three risk categories of OS (median OS, 34.5 months, 18.9

onths, and 13.0 months for low-, intermediate-, high-risk patients in

he training set, respectively, p < 0.001; 38.6 months, 17.6 months, and

http://www.r-project.org
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Table 1 

Baseline clinical and radiologic characteristics of patients. 

Variable Entire set ( n = 256) Training set ( n = 136) Testing set ( n = 120) p value 

Sex 0.899 

Female 51 (20) 28 (21) 23 (19) 

Male 205 (80) 108 (79) 97 (81) 

Age (yr) 60.5 (52–71) 60.0 (52–67) 61 (53–73) 0.359 

Hepatitis infection 0.207 

absent 51 (20) 30 (22) 21 (18) 

hepatitis B 197 (77) 104 (76) 93 (78) 

hepatitis C 8 (3) 2 (1) 6 (5) 

Child-Pugh grade 0.205 

A 222 (87) 114 (84) 108 (90) 

B 34 (13) 22 (16) 12 (10) 

BCLC stage 0.060 

A 101 (39.5) 61 (44.9) 40 (33.3) 

B 155 (60.5) 75 (55.1) 80 (66.7) 

NLR 2.59 (1.77–4.01) 2.66 (1.77–4.14) 2.51 (1.86–3.49) 0.335 

ALB (g/L) 37.1 (34.0–41.0) 38.5 (34.5–42.1) 36.4 (32.3–40.0) 0.010 

Serum bilirubin ( 𝜇mol/L) 16.1 (11.2–22.4) 16.3 (11.2–22.3) 16.0 (11.2–21.4) 0.561 

ALT (U/L) 35.5 (22.8–60) 35.0 (22.8–62.4) 37.0 (22.8–58.0) 0.770 

AST (U/L) 44.0 (30–67.3) 48.3 (3.24–68.1) 40.0 (2.88–65.5) 0.132 

AFP (ng/dl) 0.216 

< 200 144 (56) 83 (61) 61 (51) 

200-400 15 (6) 6 (4) 9 (8) 

> 400 97 (38) 47 (35) 50 (42) 

Radiologic features 

Tumor number 0.032 

1 92 (35.9) 62 (45.6) 30 (25.0) 

2 72 (28.1) 29 (21.3) 43 (35.8) 

3 27 (10.5) 9 (6.6) 18 (15.0) 

4 22 (8.6) 11 (8.1) 11 (9.2) 

≥ 5 43 (16.9) 25 (18.4) 18 (15.0) 

Tumor size (cm) 6.2 (3.8–10.2) 6.7 (4.2–10.2) 6.0 (3.4–10.3) 0.398 

Arterial phase hyperenhancement 0.664 

typical 192 (75.0) 104 (76.5) 88 (73.3) 

atypical 64 (25.0) 32 (23.5) 32 (26.7) 

Tumor capsule 0.313 

absent 144 (56.3) 81 (59.6) 63 (52.5) 

present 112 (43.7) 55 (40.4) 57 (47.5) 

Multilobe involved 0.073 

absent 165 (64.5) 95 (69.9) 70 (58.3) 

present 91 (35.5) 41 (30.1) 50 (41.7) 

Tumor margin 0.777 

smooth 116 (45.3) 60 (44.1) 56 (46.7) 

nonsmooth 140 (54.7) 76 (55.9) 64 (53.3) 

Arterial peritumoral enhancement 0.939 

absent 217 (84.8) 116 (85.3) 101 (84.2) 

present 39 (15.2) 20 (14.7) 19 (15.8) 

Intratumor necrosis 0.495 

absent 81 (31.6) 40 (29.4) 41 (34.2) 

present 175 (68.4) 96 (70.6) 79 (65.8) 

Intratumor hemorrhage 0.060 

absent 15 (5.9) 12 (8.8) 3 (2.5) 

present 241 (94.1) 124 (91.2) 117 (97.5) 

Note–Data are median (IQR), n (%). BCLC, Barcelona Clinic Liver Cancer; NLR, neutrophils/lymphocytes ratio; 

ALB, albumin; ALT, alanine transaminase; AST, aspartate transaminase; AFP = alpha-fetoprotein. 

Fig. 3. Nomograms for the clinicoradiologi- 

cal and combined models. (A) Clinicoradiolog- 

ical nomogram based on three clinicoradiolog- 

ical predictors. (B) Combined nomogram based 

on three clinicoradiological predictors and ra- 

diomics signature. 

5 
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Fig. 4. Receiver operating characteristic 

curves with the area under the curve of the 

models in the training set (A) and testing set 

(B). FP, false positive; TP, true positive; AUC, 

area under the curve. 

Fig. 5. Calibration curves for the predic- 

tive performance for EVIT. Clinicoradiological 

model in the training set (A, p = 0.580) and 

testing set (B, p = 0.722). Combined model in 

the training set (C, p = 0.419) and testing set (D, 

p = 0.290). EVIT, extrahepatic spread or vascu- 

lar invasion after initial TACE monotherapy. 
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0.8 months, for low-, intermediate-, high-risk patients in the testing

et, respectively, p = 0.003; Fig 2 ). 

omparison between clinicoradiological model and combined model 

The AUCs of the combined model were greater than the AUCs of

he clinicoradiological model (0.911 vs. 0.772, p < 0.001, in the train-

ng set; 0.847 vs. 0.746, p = 0.056, in the testing set) and radiomics

ignature (0.911 vs. 0.790, p < 0.001, in the training set; 0.847 vs.

.750, p = 0.020, in the testing set). In the testing set, the combined

odel showed better predictive performance than the clinicoradiologi-

al model, with no statistical difference. The detailed diagnostic perfor-

ance of the clinicoradiological, radiomic, and combined EVIT predic-

ion models are summarized in Table 2 . The NRI and IDI of the com-

ined model showed that the improvement over the clinicoradiological

odel in the training set was 0.38 (95%CI 0.15–0.62, p = 0.001) and

.26 (95%CI, 0.18–0.34, p < 0.001), respectively; those of the testing set

ere 0.13 (95%CI -0.13 to 0.39, p = 0.329) and 0.12 (95%CI, 0.04–0.21,

 = 0.005; Table 3 ), respectively. The DCA curves demonstrated that if

he threshold probability is more than 5%, using the clinicoradiological

nd combined model to predict EVIT adds more benefit than either the

reat-all scheme or treat-none scheme. If the threshold probability of a

atient was between 2% and 85%, the net benefit in predicting EVIT us-
6 
ng the combined model was superior to that of the clinicoradiological

odel ( Fig 6 ). 

iscussion 

In this study, a radiomics-based combined model was developed and

alidated to incorporate serum total bilirubin, tumor capsule, tumor

umber, and radiomics signature for individualized, perioperative pre-

iction of early- and intermediate-stage HCC patients who developed

xtrahepatic spread or vascular invasion after initial TACE monotherapy

EVIT). Meanwhile, a clinicoradiological model that incorporated serum

ilirubin, tumor capsule, and tumor number was established to make

 comparison with the radiomics-based combined model. The perfor-

ance of the two models was validated with respect to discrimination,

alibration, and clinical application in both the training and external

esting sets. The combined model performed better than the clinicora-

iological model. The median OS of patients with EVIT in our study,

imilar to the survival time of patients with advanced HCC, was signifi-

antly worse than that of patients without EVIT. 

It is essential to identify HCC patients who are unsuitable for initial

ACE monotherapy with a high potential to develop extrahepatic spread

r vascular invasion. The initial treatment strategy should be changed

n these patients who may benefit from early combined treatment with

ACE and systemic therapy (lenvatinib/sorafenib, or immunotherapy)
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Table 3 

Comparison of combined and clinicoradiologic nomograms. 

NRI 95%CI P value IDI 95%CI P value 

Training set 0.38 0.15-0.62 0.001 0.26 0.18-0.34 < 0.001 

Testing set 0.13 -0.13–0.39 0.329 0.12 0.04–0.21 0.005 

The performance improvement of the combined model compared with the clin- 

icoradiologic model. NRI, net reclassification improvement; IDI, integrated dis- 

crimination improvement. 

Fig. 6. Decision curve analysis of clinicoradiological and combined models for 

predicting EVIT. The y-axis measures the net benefits, wherein the red and blue 

line represents the clinicoradiological model and combined model, respectively. 

The gray line represents the assumption that all patients have EVIT presence. 

The black line represents the assumption that all patients have EVIT absence. It 

shows that the two models are better than the treat-all-patients scheme. While 

if the radiomics signature is added, it results in more benefits than the clini- 

coradiological model for patients’ discrimination. EVIT, extrahepatic spread or 

vascular invasion after initial TACE. 
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7 
9] . The TACTICS trial demonstrated that the combination of TACE and

orafenib improves the clinical outcome of patients with intermediate

CC [22] . With an increasing number of systemic agents available in

ecent years, the optimal time for transition to systemic therapy and

otential opportunities for combining TACE and systemic therapies has

ecome a topic of debate. However, there is no broad consensus on when

nd in whom TACE therapy should be interrupted. The occurrence of ex-

rahepatic spread or vascular invasion after TACE could be considered

eflective of the clinical status of “untreatable progression ” or “TACE

ailure/refractoriness ” that requires the halting of TACE monotherapy

t that time [ 1 , 23 ]. Therefore, the occurrence of extrahepatic spread

r vascular invasion was selected as the endpoint of this study. We de-

eloped a combined model, incorporating clinicoradiological predictors

nd radiomics signature, to identify high-risk patients early to improve

linical decision making. The results of our study may provide a ref-

rence for patient inclusion criteria in future clinical trials that target

ombination treatment with TACE and systemic therapy, such as im-

unotherapy. 

Without appropriate patient selection, TACE does not confer survival

enefits. Nevertheless, in real-world clinical practice, TACE monother-

py is most frequently used as an initial therapy for unresectable HCC

orldwide [3] . Thus, several studies have attempted to develop tools

o optimize the appropriate selection of HCC patients for initial TACE.

he Selection for TrAnsarterial chemoembolization TrEatment (STATE)-

core was proposed and includes the preoperative serum albumin level,

-reactive protein level, and up to seven criteria trying to optimize the

ppropriate selection of HCC patients for initial TACE [24] . However, an

xternal institution with 228 patients validated the STATE-score found

hat the STATE-score was unstable in determining the suitability for ini-

ial TACE [25] . A prospective observational study included 855 patients

or investigating the long-term outcomes of different progression pat-
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erns after initial TACE [5] . Among them, 17.1% of patients had early

nd intermediate stages of extrahepatic spread or vascular invasion. 

Radiomics has been widely used as a non-invasive methodology in

ancer research [ 12 , 13 ]. With an increasing number of clinical trials

ocusing on the combined use of systemic agents with TACE in the

uture, radiomics could provide cancer microenvironment information

nd be applied as a clinical biomarker. Our study demonstrates that the

adiomic signature developed based on portal phase CT images could

reoperatively predict EVIT patients with good performance. However,

here could be a discrepancy in CT scanners and protocols in partic-

pating centers that may influence feature extraction. Voxel intensity

iscretization and voxel size resampling were used to minimize the de-

endency of radiomic features [12] . Normalization was applied on the

ray level to improve the robustness of the features. By applying the

oG filter, glrlm_RunEntropy and glszm_ZoneEntropy indicate the het-

rogeneity of the texture patterns, while glcm_Idn and glcm_Idmn are

easures of the local homogeneity of images (Table S2). The radiomic

eatures selected could indicate tumor heterogeneity and are valuable

or the prediction of prognostic factors and survival of TACE, which

s consistent with previous radiomic analysis studies [ 15 , 16 ]. With the

apid development of radiogenomics and deep-learning technology, ra-

iomics study could extract more key features and explore more possi-

ilities in precision diagnostics and therapy in HCC. 

Tumor burden was regarded as an important prognostic indicator

uantified by the number and size of nodules [26] . A recent study

howed that the number of nodules can better predict the prognosis

f TACE instead of the size of nodules [27] . In our study, tumor num-

er was an independent risk factor for EVIT. This finding aligns with the

echanism of multifocal HCC, which exhibited strong metastatic poten-

ial and diverse patterns of metastasis [28] . The proportion of solitary

umors in the training set was higher than that in the testing set, but

his did not affect the reliability of the results. Regarding tumor burden-

elated factors, tumor size was statistically significant in the multivariate

ogistic regression of the clinicoradiological model. Nevertheless, the tu-

or size was removed from the two final models due to its negligible

ontribution. 

Several previous studies found that HCC patients with a tumor cap-

ule have a better prognosis after TACE [ 29 , 30 ]. Xu et al. reported that

hese patients had a higher 3- and 5-year survival rate (44.8 vs. 59.5%

nd 13.9 vs. 26.9%, respectively) [29] . However, false-negative image

nterpretations of the tumor capsule could occur, which may affect the

omogram’s establishment and application, even if there was a final dis-

ussion between the two radiologists to reach a consensus. As a variable

eflecting liver function, serum bilirubin was included in the ALBI grade

nd could achieve good patient stratification and discrimination [31] .

or patients with higher baseline serum bilirubin levels and worse liver

unction, deterioration of hepatic function caused by TACE treatment

ay increase the risk of tumor metastasis and progression. 

The combined model provided greater prediction benefits than the

linicoradiological model with good calibration in both sets. The im-

rovement in NRI and IDI of the combined models show an increased

roper reclassification and an increased probability of correct predic-

ion. The DCA curves demonstrated that if the threshold probability is

ore than 5%, using the clinicoradiological and combined model to pre-

ict EVIT adds more benefit than either the treat-all scheme or treat-

one scheme. The discrimination of the combined model was higher

han that of the clinicoradiological model, with no statistical difference

n the testing set ( p = 0.056). The sensitivity of the combined model

ecreased from 80.8% in the clinicoradiological model to 76.9%. The

ombined model misjudged some negative cases as positive cases in the

esting set, which reduced the true positive rate, subsequently affecting

he discrimination and NRI of the model. However, this result does not

ompromise the effectiveness and robustness of the combined model for

rognostic prediction. 

Our study has several limitations. First, it is a retrospective study

ith a relatively small Asian population that suffers from inherent se-
8 
ection biases. The etiology of HCC in our study was mainly related to

BV, which differs from other regions where HCV- or alcohol-related

CC accounts for the majority of cases. Second, the radiomic features

xtracted from the arterial phase or delayed phase and feature changes

etween the two different phases were not exploited. These might be

linically significant because they correspond to the imaging pattern of

CC. Third, the radiologic interpretation of the tumor capsule could

otentially be considered subjective. 

onclusion 

This study presents the radiomic features of contrast-enhanced

T imaging and clinicoradiological risk factors that could preoper-

tively predict early- and intermediate-stage HCC patients who are

ikely to develop extrahepatic spread or vascular invasion after initial

ACE monotherapy. To identify the worst candidates for initial TACE

onotherapy, the radiomics-based combined model and clinicoradio-

ogical model may provide particular predictive value. 
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