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Abstract

In the context of infectious disease transmission, high heterogeneity in individual infectious-

ness indicates that a few index cases can generate large numbers of secondary cases, a

phenomenon commonly known as superspreading. The potential of disease superspread-

ing can be characterized by describing the distribution of secondary cases (of each seed

case) as a negative binomial (NB) distribution with the dispersion parameter, k. Based on

the feature of NB distribution, there must be a proportion of individuals with individual repro-

duction number of almost 0, which appears restricted and unrealistic. To overcome this limi-

tation, we generalized the compound structure of a Poisson rate and included an additional

parameter, and divided the reproduction number into independent and additive fixed and

variable components. Then, the secondary cases followed a Delaporte distribution. We

demonstrated that the Delaporte distribution was important for understanding the character-

istics of disease transmission, which generated new insights distinct from the NB model. By

using real-world dataset, the Delaporte distribution provides improvements in describing the

distributions of COVID-19 and SARS cases compared to the NB distribution. The model

selection yielded increasing statistical power with larger sample sizes as well as conserva-

tive type I error in detecting the improvement in fitting with the likelihood ratio (LR) test.

Numerical simulation revealed that the control strategy-making process may benefit from

monitoring the transmission characteristics under the Delaporte framework. Our findings

highlighted that for the COVID-19 pandemic, population-wide interventions may control dis-

ease transmission on a general scale before recommending the high-risk-specific control

strategies.
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Author summary

Superspreading is one of the key transmission features of many infectious diseases and is

considered a consequence of the heterogeneity in infectiousness of individual cases. To

characterize the superspreading potential, we divided individual infectiousness into two

independent and additive components, including a fixed baseline and a variable part.

Such decomposition produced an improvement in the fit of the model explaining the dis-

tribution of real-world datasets of COVID-19 and SARS that can be captured by the clas-

sic statistical tests. Disease control strategies may be developed by monitoring the

characteristics of superspreading. For the COVID-19 pandemic, population-wide inter-

ventions are suggested first to limit the transmission at a scale of general population, and

then high-risk-specific control strategies are recommended subsequently to lower the risk

of superspreading.

This is a PLOS Computational BiologyMethods paper.

1 Introduction

The response to infectious disease epidemics can be improved by understanding the character-

istics defining the potential to transmit infections between individuals [1]. An intriguing aspect

of infectious disease transmission is the circumstances under which the etiological agent is

transmitted to a large number of secondary cases from merely a proportion of primary cases

[2–6]. The number of secondary transmissions per index case shows levels of heterogeneity

[7], while overdispersion refers to transmission with high heterogeneity [8]. Such situations

are considered consequences of heterogeneity in individual infectiousness and stochasticity in

disease transmission [9, 10] as documented by numerous superspreading events [3, 11–16].

For example, superspreading potentials and traceable events of COVID-19 transmission have

frequently been reported in terms of a scale of k estimates [12, 17–19], which appear similar to

those of previous epidemics of SARS and Middle East respiratory syndrome coronavirus

(MERS-CoV) [5, 20–22]. The heterogeneity in transmission is determined by many factors

including the characteristics of the host and the pathogen [23], the mode and setting of trans-

mission [17, 24], the contact patterns [25], the viability of the pathogen, and the environmental

components [8, 26–28]. Risk management and disease control strategies may vary and may be

adjusted in response to different levels of individual heterogeneity in transmission [11, 29–31].

Thus, methods used to characterize heterogeneity in transmission are a public health priority

to better understand patterns in infectious disease transmission [32] and in specifying

informed control strategies [29, 33–36].

On one hand, the reproduction number R is commonly adopted to measure the average (or

expected) number of secondary cases generated by a typical infectious individual [37]. The

scales of R were sometimes given unwarranted priority in the assessment of pandemic poten-

tial [2, 38, 39], which means that R cannot reflect the scale of heterogeneity in individual infec-

tiousness [40–43]. On the other hand, by acknowledging the heterogeneity in disease

transmission patterns, a negative binomial (NB) distribution has been widely applied as a

model for count data [44], particularly for offspring cases data that exhibit overdispersion [29],

that is, with variance that is greater than the mean values. As such, the heterogeneity in
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transmission can be quantified by describing the distribution of secondary cases generated by

each index case as the NB distribution with dispersion parameter, k [44]. The conceptualiza-

tion of a NB distribution incorporates the stochastic effects of disease transmission [9] and the

variability in individual infectiousness [29]. Mathematically, the framework for the NB distri-

bution was formulated by compounding a Poisson distribution with a Gamma-distributed

rate parameter, where the dispersion parameter k accounts for the variation in individual

infectiousness reflected in the Gamma distribution [45]. This NB framework was widely

adopted and yielded better fitting performance (against the Poisson distribution) in governing

real-world observations of offspring cases or cluster sizes [17, 29, 40, 46]. A smaller k value sug-

gests that transmission is more dispersive, and therefore outbreaks are likely to involve super-

spreading events [3]. When R is fixed, a smaller k corresponds to a lower effectiveness of non-

pharmaceutical interventions in controlling epidemics [30, 47].

Regarding the description of heterogeneity in transmission from a theoretical standpoint,

candidate models have been compared based on their fitting performances to real-world

observations [29]. Inspired by the compounding relationship between Poisson and NB distri-

butions, we considered that the composition of the Poisson rate can be modelled using a more

generalized framework. In this study, to explain the heterogeneity in the distribution of off-

spring, we propose the application of the Delaporte distribution, which is a generalized version

of the NB distribution and can also be derived by compounding the Poisson rate [48, 49]. By

fitting several datasets of offspring (or secondary) cases, we illustrated that the Delaporte distri-

bution led to an improved or equivalent fitting performance compared to the NB distribution,

and this improvement becomes more evident as the sample size increases. For model selection

using the likelihood ratio (LR) test, the Delaporte distribution demonstrated increasing statis-

tical power but a conservative type I error rate for a wide range of sample sizes. We highlight

the potential of the Delaporte distribution in quantifying the superspreading characteristics of

infectious diseases and for recommending disease control strategies.

2 Methods

2.1 Decomposition of the variation in individual infectiousness

Following the classic theoretical framework of disease transmission [9], stochastic effects

in transmission are considered to have a Poisson distribution [50], which is denoted

X ~ Poisson(λ). Here, the random variable X denotes the number of secondary cases caused

by a randomly-selected primary case, and the parameter λ is the Poisson rate. To account for

the variation in individual infectiousness, the Poisson rate λ is a variable attribute among dif-

ferent hosts, and thus the distribution of X becomes a Poisson mixture, as proposed previ-

ously in [29].

We then decomposed the offspring number (X) of each index case into two components,

including a fixed part (XF) and variable part (XV), such that XF + XV = X. Here, XF and XV

were assumed to be independent variables and followed the compound Poisson distributions

with rate parameters (λF and λV) that followed two Gamma distributions, so that λF ~ Gamma

(mean = RF, dispersion = kF), and λV ~ Gamma(mean = RV, dispersion = kV). This was equiva-

lent to the Poisson rate λ that was directly decomposed into two independent additive compo-

nents denoted by λ = λF + λV [49], where both λF and λV are nonnegative values. As such, X is

the sum of two independent negative-binomial distributed variables. Referring to the defini-

tion in [29], λ was conceptualized as the individual reproduction number [51], which is a ran-

dom variable and represents the expected number of secondary cases caused by a

(particularly) given primary case.
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For the fixed component (XF), we modelled kF!1 assuming there was no variation in the

fixed part (λF) of individual infectiousness. By denoting the probability mass function (PMF)

of X as fD(X), the probability of generating function (PGF), gD(�), was as follows:

gD sð Þ ¼ E sXF½ � �E sXV½ � ¼ lim
kF!1

1þ
RF

kF
1 � sð Þ

� �� kF
� 1þ

RV

kV
1 � sð Þ

� �� kV

¼ exp � RF 1 � sð Þ½ � � 1þ
RV

kV
1 � sð Þ

� �� kV

Because the term kF vanishes, we denoted kV by k for convenience. The λF is the fixed compo-

nent, which is a constant, and we defined RF = λF. The λV is the variable component, which fol-

lows a Gamma distribution with a mean RV and dispersion (or shape) parameter k.

Mathematically, X ~ Poisson(λF + λV) on the condition that λV ~ Gamma(mean = RV, disper-

sion = k). Then, the PGF gD(�) is defined as shown in Eq (1):

gD sð Þ ¼ exp � RF 1 � sð Þ½ � � 1þ
RV

k
1 � sð Þ

� �� k

ð1Þ

By identifying the PGF gD(�), we find that the distribution of X was a Delaporte distribution,

denoted by fD(�), with parameters RF, RV, and k.

If we define R = RF + RV, R is the population reproduction number as the expected (or aver-

age) number of secondary cases caused by a (typical) primary case [52, 53], and thus we have R
= E[X] = E[λ], where E[�] is the expectation function. The RF and RV account for the fixed and

variable components of the reproduction number (R), and thus we have R = E[X] = E[XF] +

E[XV] = E[λ] = E[λF] + E[λV] = RF + RV, which is the mean of the Delaporte distribution

fD(X). As such, XF and XV are components of the (observable) number of offspring cases X, λF

and λV are components of the (latent) individual reproduction number λ, which is a variable,

and RF and RV are components of the population reproduction number R, which is considered

as a constant. In particular, the distribution function of λ has both a discrete part and a contin-

uous part.

2.1.1 Delaporte distribution. Under the formulation of a Delaporte distribution [48],

the probability mass function (PMF) fD(X) has three parameters, RF, RV, and k, and is given

in Eq (2).

fD X ¼ xð Þ ¼
Xx

a¼0

G kþ að Þ

G kð ÞG aþ 1ð Þ

k
RV þ k

� �k RV

RV þ k

� �a

�
Rx� aF � exp � RFð Þ

G x � aþ 1ð Þ

" #

¼
Xx

a¼0

G kþ að Þ �
RV
k

� �a
� Rx� aF � exp � RFð Þ

G kð ÞG aþ 1ð Þ � 1þ
RV
k

� �kþa
� G x � aþ 1ð Þ

ð2Þ

Here, Γ (�) denotes the Gamma function, and the integer x denotes the number of secondary

cases. Eq (2) can be considered as a ‘convolution’ between an NB distribution and a Poisson

distribution.

Compared to the classic NB distribution proposed in [29], the Delaporte distribution can

be restricted to an NB distribution if RF = 0, or equivalently RV = R. Similarly, if RV = 0 or k!
1, the Delaporte distribution is restricted to a Poisson distribution [49]. Thus, either the NB

or Poisson distribution is a special case of Delaporte distribution. Let the fraction of the fixed

component ρ be defined as ρ = RF / R, and straightforwardly, we have 0� ρ� 1. Equivalently,

fD(X) in Eq (2) can also be formulated in an alternative version by replacing RF with ρR and RV
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with (1 – ρ)R, which is expressed in Eq (3),

fD X ¼ xð Þ ¼
Xx

a¼0

G kþ að Þ

G kð ÞG aþ 1ð Þ

k
1 � rð ÞRþ k

� �k
1 � rð ÞR

1 � rð ÞRþ k

� �a

�
rRð Þ

x� a
� exp � rRð Þ

G x � aþ 1ð Þ

" #

¼

Xx

a¼0

G kþ að Þ �
1 � rð ÞR
k

� �a

� rRð Þ
x� a
� exp � rRð Þ

G kð ÞG aþ 1ð Þ � 1þ
1 � rð ÞR
k

� �kþa

� G x � aþ 1ð Þ

ð3Þ

Here, the three parameters for the Delaporte distribution change to R, ρ, and k. As such, the

Delaporte distribution becomes a Poisson distribution when ρ = 1, or a NB distribution when

ρ = 0, that is, fNB xð Þ ¼
G kþxð Þ

G kð ÞG xþ1ð Þ

k
Rþk

� �k
R
Rþk

� �x
.

The variance of X is derived as Var Xð Þ ¼ rRþ 1 � rð ÞR 1þ
1� rð ÞR
k

� �
under the formula in

Eq (3), or Var Xð Þ ¼ RF þ RV 1þ
RV
k

� �
using the formula in Eq (2) in alternative. We derive

dVar Xð Þ
dr � 0 for 0� ρ� 1, and

dVar Xð Þ
dk < 0. Because Var[X] reflects the scale of variation in indi-

vidual infectiousness, a smaller value for either ρ or k indicates a higher level of transmission

heterogeneity or superspreading potential.

The implementation of Delaporte distribution is considered a generalization of the frame-

work proposed in [29], and thus the interpretation of the dispersion parameter k generalizes

its meaning in the NB distribution [45]. As the fixed part (RF) of R vanishes in the NB distribu-

tion, 1=
ffiffiffi
k
p

is the coefficient of variation (CV) of the Gamma distribution followed by the indi-

vidual reproduction numbers (λ). In the context of the Delaporte distribution, the effect of k
on shaping the variation of λ is restricted to the CV of its variable part (λV), which is also

Gamma-distributed.

Differences in the PMF of Poisson, NB, and Delaporte distributions are shown in Fig 1.

2.1.2 Epidemiological measurements of heterogeneity in transmission. In epidemiolog-

ical studies [3, 4, 17, 54], the heterogeneity in disease transmission is frequently reported as a

general ‘20/80’ rule [21, 55], that is, according to the Pareto principle, whereby 20% of primary

cases cause 80% of secondary cases [56]. With the three parameters of the Delaporte distribu-

tion, the transmission distribution profiles can be translated in the form of the ‘20/80’ rule. Fol-

lowing the framework proposed in [3, 57], the proportion (0� Q� 1) of secondary cases can

Fig 1. Probability mass functions (PMF) of Poisson (in orange), negative binomial (in blue), and Delaporte (in purple) distributions. In each

panel, the dispersion parameter k is fixed at 0.5, and the fraction of fixed component ρ is fixed at 0.3.

https://doi.org/10.1371/journal.pcbi.1010281.g001
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be determined by the transmission contributed by a proportion (0� P� 1) of the most infec-

tious primary cases [33], and vice versa, which was formulated in Eq (4).

1 � P ¼
R Z

0
fDðX ¼ zb cÞdz, and the variable Z satisfies

1 � Q ¼
R Z

0
bzc � fD X ¼ bzcð Þdz
P1

x¼0
z � fD X ¼ xð Þ

ð4Þ

Here, b�c denotes the floor function, which outputs the largest integer less than or equal to the

given number. Note that the
X1

x¼0
z � fDðX ¼ xÞ at the denominator is the mean of the Dela-

porte distribution, i.e., RF + RV or R. Conventionally, Q is fixed at 0.8, and the value of P is of

interest. A smaller P indicates that a smaller but core proportion of high-risk cases may gener-

ate most offspring cases, indicating a higher level of heterogeneity in transmission.

Generally, Q is considered a function of P, which is bound between 0 and 1 for both Q and

P. The concaveness of this ‘Q-P’ function is positively related to the level of transmission het-

erogeneity [29], which is constructed in the same manner as the Lorenz curve [58, 59]. For a

perfectly homogeneous scenario, where X = R is a constant, we have Q = P.

Another important measurement of transmission heterogeneity is the proportion of pri-

mary cases that generate 0 secondary cases, which is given as fD(0) = fD(X = 0) based on Eqs

(2) or (3). With the reproduction number R fixed, a larger value of fD(0) implies a higher level

of heterogeneity in transmission.

2.2 Datasets

We adopted six sets of contact tracing data and extracted the observations of offspring cases

generated by each seed case for further exemplification. These included five COVID-19 data-

sets collected in mainland China (dataset #1), South Korea (datasets #2a and b), Hong Kong

(dataset #3), and Tianjin, China (dataset #4), and one SARS dataset collected in Beijing, China

(dataset #5). The transmission chains within each dataset were screened and then recon-

structed with systematic and strict ‘inclusion-and-exclusion’ screening criteria based on plausi-

ble epidemiological evidence and rigorous consistency checks. All datasets were previously

published and adopted for analysis in peer-reviewed studies.

2.2.1 Dataset #1: COVID-19 data in mainland China. For dataset #1, we used the

COVID-19 contact tracing data published in [12], which was accessed freely via the public

repository https://github.com/linwangidd/covid19_transmissionPairs_China/blob/master/

transmission_pairs_covid_v2.csv. The same dataset was also adopted to estimate the disper-

sion parameter in [30].

Dataset #1 contains 1407 transmission pairs that were identified and reconstructed in previ-

ous studies, governmental news release, and official situation reports from 15 January to 29

February 2020 in mainland China. We identified 807 infectors with at least one secondary case

and extracted the number of offspring infectees generated by each infector. A total of 1241 spo-

radic or terminal cases with 0 secondary cases were identified. Thus, dataset #1 includes obser-

vations of secondary case numbers with a sample size of 2048.

2.2.2 Datasets #2a and #2b: COVID-19 data in South Korea. For datasets #2a and #2b,

we used the COVID-19 contact tracing data published in [33], which were shared by the

authors. Both datasets shared the same source of information from the local public health

authorities in South Korea, excluding the Daegu-Gyeongsangbuk region, where the data were

not publicly reported.
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Referring to [33], the original dataset was divided into different periods according to the

onset dates of infectors. Dataset #2a contains 571 infectors with at least one secondary case

and 830 sporadic or terminal cases during the epidemic period from 20 April to 16 October

2020. Dataset #2b contains 104 infectors and 240 sporadic or terminal cases occurring during

the epidemic period from 19 January to 19 April 2020. As such, datasets #2a and #2b include

observations of secondary case numbers with sample sizes of 1401 and 344, respectively.

2.2.3 Dataset #3: COVID-19 data in Hong Kong. For dataset #3, we used the COVID-19

contact tracing data published in [17], which was accessed freely via public repository, https://

github.com/dcadam/covid-19-sse/blob/master/data/transmission_pairs.csv. Dataset #3 con-

tains 169 transmission pairs that were identified and reconstructed according to governmental

news releases and official situation reports published on 7 May 2020 in Hong Kong [60, 61].

There were 91 infectors, 153 terminal cases, and 46 local sporadic cases identified, and we

extracted information on the number of offspring infectees generated by each infector. As

such, dataset #3 included observations of secondary case numbers with a sample size of 290

cases.

2.2.4 Dataset #4: COVID-19 data in Tianjin, China. For dataset #4, we used the

COVID-19 contact tracing data published in [19], which was freely obtained from the supple-

mentary materials, accessed via https://www.mdpi.com/1660-4601/17/10/3705/s1. Dataset #4

contained 36 clusters of cases, including 47 cases of COVID-19, which were identified and

reconstructed according to a governmental news releases and official situation reports between

21 January and 26 February 2020 in Tianjin, China [62], and each cluster was caused by a pri-

mary case. We identified seven infectors with 11 associated terminal cases and 29 local spo-

radic cases. Thus, dataset #4 contains observations of secondary case numbers with a sample

size of 47.

2.2.5 Dataset #5: SARS data in Beijing, China. For dataset #5, we used the SARS contact

tracing data of superspreading events from April to May 2003 previously published in [5],

which was also attempted to estimate the dispersion parameter in [29]. The 34 cases in the first

and second generation were considered the source cases, and we extracted the number of off-

spring infectees generated by each source case. Thus, dataset #5 contained observations of sec-

ondary case numbers with a sample size of 34.

2.3 Likelihood framework and statistical inference

We considered the number of secondary cases observed from each primary case with a sample

size N. Considering the infector who generates j (� 0) secondary cases, or equivalently a clus-

ter of cases with size (j + 1) in one transmission generation, we denoted the number of these

infectors by nj. Then, similar to previous studies [3, 17], the likelihood of observing nj clusters

with size (j + 1) was fDðX ¼ jÞ½ �
nj . Thus, we construct the overall log-likelihood function, ℓ, in

Eq (5).

‘ ¼ log Lð Þ ¼ log
Y

j�0
fD X ¼ jð Þ½ �

nj
h i

ð5Þ

Hence, ∑j�0 nj = N.

To match the real-world observations, we adopted a Bayesian fitting procedure with a

Metropolis–Hastings Markov chain Monte Carlo (MCMC) algorithm with non-informative

prior distributions for parameter estimation. Based on the likelihood in Eq (5), the MCMC

was conducted with five chains and 100,000 iterations for each chain, including 40,000 itera-

tions for the burn-in period, to obtain the posterior estimates. The convergence of each

MCMC chain was visually checked using trace plots and the Gelman–Rubin–Brooks diagnos-

tic quantitatively [63]. The median and 95% credible intervals (95%CrI) of the posterior
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distributions of RF, RV, and k were calculated and summarized for comparison with the previ-

ous estimates and across each dataset.

For comparisons with the classic Poisson or NB framework, we also repeated the estimation

procedures by restricting RF = R (i.e., RV = 0) for the Poisson distribution, or RF = 0 (i.e., RV =

R) for the NB distribution.

2.4 Evaluation of fitting and testing performance

In accordance with previous study [17], the Akaike information criterion (AIC) of MLE was

used to measure the fitting performance of the Poisson, NB, and Delaporte distributions. Sta-

tistical evidence supporting the improvement in the fitting performance is claimed when the

AIC units are reduced by 2 or more [40, 64].

The likelihood ratio (LR) test was adopted to assess the statistical significance of the

improvement (in goodness-of-fit) of the Delaporte distribution versus the NB distribution.

The test statistic (π�) of the LR test was given as follows.

p� ¼ 2 � log Lð Þ � log LNBð Þ½ � � Chi df ¼ 1ð Þ

where LNB denotes the likelihood of the NB distribution and L denotes the likelihood of the

Delaporte distribution. Therefore, the p-value was calculated as the percentile of the Chi-

squared distribution with degree of freedom df = 1 [11], which was expressed as follows:

p-value ¼ pChi p�jdf ¼ 1ð Þ:

Here, pChi (�) denotes 1 minus the cumulative distribution function (i.e., survival function) of

the Chi-squared distribution. Similar frameworks have also been adopted in previous studies

[46, 64–66]. We considered p-value < 0.05 as a statistically significant improvement of the

Delaporte distribution compared to the NB distribution, and thus the Delaporte distribution

was selected as an optimization. Note that this appears statistically equivalent to having a sig-

nificant estimate of 0< ρ< 1, or both RF and RV > 0.

To test performance, the power and type I error of the LR test were evaluated. The testing

power is calculated as the probability of p-value < 0.05 for fitting Delaporte distribution to the

real-world observations compared to the NB distribution. We generated pseudo-datasets with

different sample sizes by random sampling with replacement, a method similar to non-

parametric bootstrapping, from the datasets described in Section 2.2. The type I error rate was

calculated as the probability of p-value< 0.05 for fitting Delaporte distribution to the NB dis-

tributed datasets against the NB distribution. We generated the NB-distributed datasets with

Monte Carlo random sampling from NB distributions. Note that statistically, the p-

value < 0.05 from the LR test here was (roughly) equivalent to the AIC-based model selection

with a cutoff of 2 units.

The parameter estimation of NB, and Delaporte distribution was obtained for each pseudo-

or NB-distributed dataset using the approach described in Section 2.3. We summarized the

test statistic (π�), power, and type I error rate based on the different sample sizes.

2.5 Extension of other types of real-world observations

Although helpful in estimating superspreading potentials, the number of offspring cases per

index case in our dataset section was not always accurately reported [46]. In many situations, it

is time or financially consuming for surveillance procedures to collect these datasets [67], and

it is also difficult to maintain the consistency of reporting standards or secure sufficient sam-

ples [68]. Alternatively, the cluster size of next transmission generation, i.e., the one-generation

cluster size, and the final outbreak size including a few seed cases are also commonly adopted
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to inform the characteristics of transmission. Thus, the theoretical frameworks in the following

two sections were formulated to associate both types of real-world observations with the Dela-

porte distribution.

2.5.1 Next-generation cluster size. Cluster size data are frequently adopted to construct a

statistical estimation [3, 40, 66]. Each one-generation cluster size observation is reported as the

numbers of primary and secondary cases within a single transmission generation, which can

also be simply translated into a number of primary cases and the cluster size of next-generation

secondary cases. We discuss below the mathematical formulation of the distribution and likeli-

hood function of a next-generation case cluster produced by a certain number of seed cases.

For a one-generation cluster of cases with size (i + j), that is, within a single transmission

generation, where i (> 0) infectors generate j (� 0) infectees, we consider the summation of i
independent and identically distributed (IID) random variables following the Delaporte distri-

bution. Then, given the values of RF, RV, and k, the probability of observing an event in which i
(� 0) infectors generate j (� 0) infectees can be formulated by employing the probability gen-

erating function (PGF) gD(�) in Eq (1). Thus, the PGF of the PMF of infectees number (j) gen-

erated by i infectors, hD(�), was as follows:

G sð Þ ¼ gD sð Þ½ �
i
¼ exp � RFið Þ 1 � sð Þ½ � � 1þ

RVi
ki

1 � sð Þ

� �� ki

By identifying the PGF G(�), we found that the distribution of the number infectees j generated

by i infectors was also a Delaporte distribution, hD(j|i), with the parameters RFi, RVi, and ki,
which was formulated as in Eq (6).

hD jjið Þ ¼
Xj

a¼0

G kiþ að Þ

G kið ÞG aþ 1ð Þ

k
RV þ k

� �ki RV

RV þ k

� �a

�
RFið Þ

j� a
� exp � RFið Þ

G j � aþ 1ð Þ

" #

ð6Þ

Alternatively, hD (�) in Eq (6) could also be transformed by replacing RFi with ρRi and RV

with (1 – ρ)R, which was expressed as follows,

hD jjið Þ ¼
Xj

a¼0

G kiþ að Þ

G kið ÞG aþ 1ð Þ

k
1 � rð ÞRþ k

� �ki
1 � rð ÞR

1 � rð ÞRþ k

� �a

�
rRið Þ

j� a
� exp � rRið Þ

G j � aþ 1ð Þ

" #

It should be noted that for the new Delaporte distribution here, or in Eq (6), the fraction of

fixed component (ρ) holds unchanged. As such, the likelihood function can be directly con-

structed by rearranging Eq (6) when one-generation cluster size observations were used to

infer superspreading characteristics, that is, ρ and k.

When ρ approaches 0, the Delaporte distribution reduces to the NB distribution [49], and

thus the ‘convolution’ in the equation above vanished, i.e., a = j. Then, the distribution of the

number of infectees j generated by i infectors was from the NB distribution (hNB),

hNB jjið Þ ¼ lim
r!0þ

hD jjið Þ ¼
G kiþ jð Þ

G kið ÞG jþ 1ð Þ

k
Rþ k

� �ki R
Rþ k

� �j

which was also derived or adopted in previous studies [3, 4, 11, 17, 19, 22, 40, 46, 69]. Likewise,

by using the branching process approach to characterize the size distribution introduced in

[40, 69, 70], the formulation of Eq (6) can also be derived by obtaining the j-th derivative of
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gD(�) at 0 according to the property of PGF [71], which means the following relationship holds.

1

G jþ 1ð Þ
�
dj gD sð Þ½ �

i

dsj

�
�
�
�
�
s¼0

¼ hD jjið Þ

which can be shown algebraically or by mathematical induction (details omitted).

2.5.2 Final outbreak size with subcritical transmission. Many outbreaks occur in the

form of isolated cases, short chains of transmission, or small clusters [3, 72], for example, dis-

eases with weak human-to-human transmission [68] or vaccine-preventable infections in a

vaccine-available setting [73]. Thus, offspring cases observations like those in our data section

are limited and difficult to access because the transmission is unlikely to be sustained. These

outbreaks are recognized as subcritical (or self-limited) outbreaks when the population repro-

duction number appears to be less than 1 [11, 69], that is, R< 1, namely a weakly transmitting

disease. Although the final outbreak size is frequently linked to subcritical transmission, the

final outbreak size may also be observable for supercritical transmission (R> 1), which we will

introduce below more rigorously. Each self-limited outbreak includes a group of cases con-

nected by an unbroken series of transmission events (or chains), which was named the ‘stutter-

ing transmission chain’ in [11].

Except for the first i seed (or imported) cases, each case in a self-limited outbreak must be

produced by one of the total cases with size denoted by c. According to [11], each secondary

case must be linked to one of the other cases. Thus, the probability of observing a stuttering

chain (or self-limited outbreak) size c (� i) including i (> 0) cases is (i/c) and multiplies the

probability of c primary cases causing (c–i) secondary cases in one generation, i.e.,
i
c � hD c � ijcð Þ. In other words, under the independent and identically distributed assumption

of the branching process [71], the probability of having a stuttering chain of size c including i
cases, denoted by ωD(c, i), is the (c − i)-th coefficient of i

c � gD sð Þ½ �
c� �

, which is equivalent to
i
c � hD c � ijcð Þ. Hence, we have

oD c; ið Þ ¼
i
c
�

1

G c � iþ 1ð Þ
�
dc� i gD sð Þ½ �

c

dsc� i

�
�
�
�
�
s¼0

¼
i
c
� hD c � ijcð Þ

The term i
c is the normalization factor for the correction that i out of c cases are seed cases.

This equation matches the relation derived in [40], which was also adopted in [57].

Rearranging the expression algebraically, we derive the exact formula of ωD(c, i) in Eq (7).

oD c; ið Þ ¼
i
c

Xc� i

a¼0

G kcþ að Þ

G kcð ÞG aþ 1ð Þ

k
RV þ k

� �kc RV

RV þ k

� �a

�
RFcð Þ

c� i� a
� exp � RFcð Þ

G c � i � aþ 1ð Þ

" #

ð7Þ

By replacing RFi with ρRi and RVi with (1 – ρ)Ri, an alternative version of ωD(c, i) was

expressed as follows,

oD c; ið Þ ¼
i
c

Xc� i

a¼0

G kcþ að Þ

G kcð ÞG aþ 1ð Þ

k
1 � rð ÞRþ k

� �kc
1 � rð ÞR

1 � rð ÞRþ k

� �a

�
rRcð Þ

c� i� a
� exp � rRcð Þ

G c � i � aþ 1ð Þ

" #

Therefore, the likelihood function can be constructed based on Eq (7) when stuttering

chain size observations are available. When ρ approaches 0, the Delaporte distribution reduces

to the NB distribution [49], and thus a = c − i. Thus, the probability of observing the final
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outbreak size c including i cases based on the NB distribution (ωNB),

oNB c; ið Þ ¼ lim
r!0þ

oD c; ið Þ ¼
i
c
�

G kcþ c � ið Þ

G kcð ÞG c � iþ 1ð Þ

k
Rþ k

� �kc R
Rþ k

� �c� i

¼
i
c
� hNB c � ijcð Þ

Alternatively, the form below of ωNB(c, i) was previously adopted, which was mathemati-

cally equivalent.

oNB c; ið Þ ¼
ki

kcþ c � ið Þ
�

kcþ c � ið Þ

c � i

 !

�
k

Rþ k

� �kc R
Rþ k

� �c� i

Here, ic �
G kcþc� ið Þ

G kcð ÞG c� iþ1ð Þ
¼ i

c �
kc

kcþc� i �
G kcþc� iþ1ð Þ

G kcþ1ð ÞG c� iþ1ð Þ
¼ ki

kcþ c� ið Þ
� kcþ c� ið Þ

c� i

� �
, and kcþ c� ið Þ

c� i

� �
is the combination

function calculating number of elements’ combinations with size (c − i) can be selected from a

population of elements with size [kc + (c − i)]. This formula was also adopted previously in

[57].

As reported in [11, 69], with adjustment, the formula in Eq (7) is also applicable for super-

critical transmission. When R> 1, there is a chance of 1 �
P1

c¼i oDðc; iÞ
� �

that the outbreak

will never be extinct, which means the final outbreak size c becomes a defective random vari-

able. Based on the property of the branching process, we may calculate the probability of out-

break extinction ε by solving ε = [gD(ε)i] [69]. Thus, the likelihood function can also be

constructed by adjusting ε as the denominator for supercritical transmission.

Of particular interest is the final size of the outbreak generated by single seed case, i.e., i = 1,

which is the probability of c (� 1) primary cases causing (c − 1) secondary cases, i.e., hD (j = c
− 1|i = c) = hD (c − 1|c), as in Eq (8).

oD c; 1ð Þ ¼
1

c

Xc� 1

a¼0

G kcþ að Þ

G kcð ÞG aþ 1ð Þ

k
RV þ k

� �kc RV

RV þ k

� �a

�
RFcð Þ

c� a� 1
� exp � RFcð Þ

G c � að Þ

" #

ð8Þ

which was translated by rearranging Eq (6) and can alternatively be expressed as follows,

oD c; 1ð Þ ¼
1

c

Xc� 1

a¼0

G kcþ að Þ

G kcð ÞG aþ 1ð Þ

k
1 � rð ÞRþ k

� �kc
1 � rð ÞR

1 � rð ÞRþ k

� �a

�
rRcð Þ

c� a� 1
� exp � rRcð Þ

G c � að Þ

" #

When ρ approaches 0, we have the NB version, ωNB(c, 1), as follows,

oNB c; 1ð Þ ¼
1

c
�
G kcþ c � 1ð Þ

G kcð ÞG cð Þ
k

Rþ k

� �kc R
Rþ k

� �c� 1

which is consistent with the formula derived or used in previous studies [3, 11, 33, 40, 69].

Note that c � Γ(c) = Γ(c + 1).

2.6 Theoretical framework of different control schemes

We formulated the following two control schemes (I) and (II) with same reduction amount in

reproduction number and compared their respective control efficacies in reducing the risks of

superspreading [outcome (I)] or outbreak [outcome (II)]. For both schemes, we considered

the control effect (ξ) in terms of the fractional reduction in the reproduction number (R),

where ξ = 0 reflects no control and ξ = 1 reflects complete blockage of transmission.

2.6.1 Scheme (I): Population-wide control. Population-wide control measures include

intervention measures for all individuals, such as wearing a facemask [74], routine sterilization

[75], social distancing [76], ‘work-from-home’ policy [77], and mass vaccination programs.
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Following [29], this control scheme (I) is expected to have the least efficacy in risk reduction

and thus is treated as the baseline scenario.

In population-wide control measures, we consider that each individual reproduction num-

ber (λ) is reduced by a factor ξ (0� ξ< 1) for fixed and variable components (λF and λV),

namely a relative reduction in the reproduction number. Then, on the population scale, the

reproduction number (R) is also reduced by factor ξ, and thus the fixed and variable compo-

nents become (1 − ξ)RF and (1 − ξ)RV, respectively. The controlled reproduction is (1 − ξ)R.

Thus, the PMF of offspring cases (x) generated by one seed case is the following Delaporte dis-

tribution, f ð1ÞD xjxð Þ.

f 1ð Þ

D xjxð Þ ¼
Xx

a¼0

G kþ að Þ

G kð ÞG aþ 1ð Þ

k
1 � xð ÞRV þ k

� �k
1 � xð ÞRV

1 � xð ÞRV þ k

� �a

�
1 � xð ÞRF½ �

x� a
� exp � 1 � xð ÞRFð Þ

G x � aþ 1ð Þ

" #

The superscript ‘(1)’ is merely for labeling purposes rather than powering.

For the final outbreak size (c� 1) generated by a single case under the control scheme (I),

the PMF o
ð1Þ

D cjxð Þ can be derived as follows,

o
1ð Þ

D cjxð Þ ¼
1

c

Xc� 1

a¼0

G kcþ að Þ

G kcð ÞG aþ 1ð Þ

k
1 � xð ÞRV þ k

� �kc
1 � xð ÞRV

1 � xð ÞRV þ k

� �a

�
1 � xð ÞRFc½ �

c� a� 1
� exp � 1 � xð ÞRFcð Þ

G c � að Þ

" #

which incorporated Eq (8) with f ð1ÞD xjxð Þ.

2.6.2 Scheme (II): High-risk-specific control. High-risk-specific control measures target

individuals with higher risk of superspreading potentials, e.g., individuals who frequently

travel and contact others, and staff members sharing common facilities in the workplace.

Thus, interventive measures such as city lockdowns and travel bans [78, 79], digital contact

tracing at public places [80, 81], and gathering restrictions may interfere with the potential

risks of spreading the disease by targeting high-risk individuals.

High-risk-specific control measures prioritize the variable component of the individual

reproduction number (λV). Despite λF being unchanged, the value of λV is reduced so that

individuals with higher risks of superspreading are less likely to achieve their potential for

spreading diseases. To guarantee comparability with the population-wide control scheme, we

maintain that controlled reproduction is (1 − ξ) R, and thus the value of RV reduces ξR units.

Then, on the population scale, the reproduction number (R) is reduced by factor ξ. In the sce-

nario that ξR> RV, equivalently ξ> RV / R = 1 – ρ or ξ + ρ> 1, the reduction will lead to RV =

0, the remaining amount (ξR − RV) for the reduction is then passed to the fixed component RF,

and the Delaporte distribution reduces to the Poisson distribution with rate RF − (ξR − RV) =

(1 − ξ)R. Thus, the PMF of offspring cases (x) generated by one seed case is formulated as fol-

lows, f ð2ÞD xjxð Þ.

f 2ð Þ

D xjxð Þ

¼

Xx

a¼0

G kþ að Þ

G kð ÞG aþ 1ð Þ

k
RV � xRð Þ þ k

� �k RV � xRð Þ

RV � xRð Þ þ k

� �a

�
Rx� aF � exp � RFð Þ

G x � aþ 1ð Þ

" #

; for x < 1 � r

1 � xð ÞR½ �
x
� exp � 1 � xð ÞRð Þ

G xþ 1ð Þ
; for x � 1 � r

8
>>>>><

>>>>>:

The superscript ‘(2)’ is merely for labeling purposes instead of powering.
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For the final outbreak size (c� 1) generated by a single case under the control scheme (II),

the PMF o
ð2Þ

D cjxð Þ can be derived as follows,

o
2ð Þ

D cjxð Þ

¼
1

c

Xc� 1

a¼0

G kcþ að Þ

G kcð ÞG aþ 1ð Þ

k
RV � xRð Þ þ k

� �kc RV � xRð Þ

RV � xRð Þ þ k

� �a

�
RFcð Þ

c� a� 1
� exp � RFcð Þ

G c � að Þ

" #

; for x < 1 � r

RFcð Þ
c� 1
� exp � RFcð Þ

G cð Þ
; for x � 1 � r

8
>>>>><

>>>>>:

which incorporated Eq (8) with f ð2ÞD xjxð Þ.

In particular, when the Delaporte distribution is restricted to the NB distribution, the distri-

butions f ð1ÞD xjxð Þ and f ð2ÞD xjxð Þ become equivalent. When ξ = 0,

f ð1ÞD xjx ¼ 0ð Þ ¼ fD xð Þ ¼ f
ð2Þ

D xjx ¼ 0ð Þ, and o
ð1Þ

D cjx ¼ 0ð Þ ¼ oD c; 1ð Þ ¼ o
ð2Þ

D cjx ¼ 0ð Þ.

2.6.3 Risk outcome (I): Superspreading event. The superspreading event is defined as

the situation where an index case produces more secondary cases than the superspreading

threshold (y). Following [29], when given R, the superspreading threshold y is calculated as the

99th percentile of the Poisson distribution with rate R [17]. Mathematically, y satisfies Pr(X�
y | X ~ Poisson(R)) = 0.99. For example, with the reproduction number in the range from 1.5

to 3 for COVID-19 [41, 82–85], the superspreading threshold (y) ranges from 5 to 8 secondary

cases.

Because y can be determined for a given R, the risk of having a superspreading event is the

probability that a seed case generates offspring cases equal to or greater than the superspread-

ing threshold. When the control measures have no effect on reducing the reproduction num-

ber, i.e., ξ = 0, the risk of superspreading event rD is

rD ¼ 1 �
Xy� 1

x¼0
fD xð Þ

Under control schemes (I) and (II), the risks of a superspreading event are as follows.

r 1ð Þ

D xð Þ ¼ 1 �
Xy� 1

x¼0
f 1ð Þ

D xjxð Þ; and r 2ð Þ

D xð Þ ¼ 1 �
Xy� 1

x¼0
f 2ð Þ

D xjxð Þ;

respectively. Therefore, the control efficacies can be compared within or between control

schemes given the same values of R or ξ.
2.6.4 Risk outcome (II): Large-scale outbreak. A large-scale outbreak is defined as an

outbreak with a final size (c) greater than 100, of which the threshold was adopted in [3, 29,

33]. Seeded by an index case, the final outbreak size c (� 1) is modelled in Eq (8) and is trans-

lated into hð1ÞD cjxð Þ and hð2ÞD cjxð Þ under control schemes (I) and (II), respectively.

When ξ = 0, the risk of large-scale outbreak rD is

rD ¼ 1 �
X100

c¼1
oD c; 1ð Þ

Under control schemes (I) and (II), the risks of large-scale outbreak are

r 1ð Þ

D xð Þ ¼ 1 �
X100

c¼1
o

1ð Þ

D cjxð Þ; and r 2ð Þ

D xð Þ ¼ 1 �
X100

c¼1
o

2ð Þ

D cjxð Þ;

respectively.

2.6.5 Control efficacy. To compare different control strategies, the relative reduction in

risk or relative efficacy approach was adopted [35]. For overdispersed transmission, most

infected individuals do not contribute to the expansion of the epidemic, the final size of the
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outbreak could be drastically controlled by preventing relatively rare superspreading events

[29]. Therefore, we measure the efficacy of control as the relative risk reduction (RRR) of hav-

ing a superspreading event or leading to a large-scale outbreak in each seed case. As such, the

following calculation applies to both risk outcomes (I) and (II).

Given R, the RRRs of control schemes (I) and (II) are

RRR 1ð Þ xð Þ ¼ 1 �
r 1ð Þ

D xð Þ

rD
; and RRR 2ð Þ xð Þ ¼ 1 �

r 2ð Þ

D xð Þ

rD
;

respectively. As such, both RRR(1)(ξ) and RRR(2)(ξ) should be interpreted as the control effi-

cacy when there is a reduction in R by factor ξ against that there is no change in R.

For the comparison between two control schemes, the RRR of control scheme (II) against

control scheme (I) is

RRR 2;1ð Þ xð Þ ¼ 1 �
r 2ð Þ

D xð Þ

r 1ð Þ

D xð Þ

Specially, when ρ = 0, that is, under the NB framework, RRR(1)(ξ) and RRR(2)(ξ) are equal or

RRR(2,1)(ξ) = 0 for both risk outcomes (I) and (II).

We solved RRR(2,1)(ξ) as function of both ρ and ξ numerically for both outcomes with the

dispersion k fixed at 0.2 for COVID-19.

3 Results and discussion

By definition, the Delaporte distribution allows the decomposition of the individual reproduc-

tion number (λ) into two independent and additive components (i.e., λF and λV). Although

the offspring cases (XF) generated from the λF part are variable, the fixed component λF = RF is

constant. In contrast, the variable component λV is a Gamma-distributed variable that

accounts for the differences between individual cases and shares the same definition and inter-

pretation as in the NB distribution [29, 45]. As a generalization of the NB distribution, the

Delaporte distribution appears different from the Poisson and NB distributions given the same

mean R and dispersion k (see Fig 1), which is due to the effect of the additional parameter ρ.

The term ρ quantifies the fraction of the mean reproducibility that is fixed (or the same) across

different cases. The classic NB model restricted the fixed (baseline) fraction λF to be 0, indicat-

ing that there must be a proportion of individuals with (almost) 0 transmissibility, which

appears unrealistic. Conversely, the Delaporte distribution allowed λF to be a non-negative

value, which is more flexible for complex situations. Theoretically, a lower value of either ρ or

k indicates a higher scale of variability in individual infectiousness [29], that is, variance in the

distribution of offspring. With other parameters fixed, a smaller ρ leads to a larger (smaller)

proportion of the most infectious primary cases (P) that produce the most (zero) secondary

cases (Figs 2 and 3). The consistent negative relationship between ρ and superspreading poten-

tial was demonstrated, and this relationship appears stronger as k decreases. The most hetero-

geneous transmission occurs when both k and ρ are small, and the Delaporte distribution

approaches the NB distribution. With the same R and k, the Lorenz curve of the Delaporte dis-

tribution falls between those of the Poisson and NB distributions (Fig 4), where the position of

the Delaporte distribution depends on ρ.

Fitting to several datasets of offspring (or secondary) cases, our estimates of NB parameters

were consistent with previous studies (Table 1). When the RF estimate was greater than 0 for

the Delaporte distribution, the dispersion k estimate became greater than the k estimate of the

NB distribution. We found that the Delaporte distribution led to an improved or equivalent

fitting performance compared to the NB distribution in terms of AIC values. The
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improvement in fitting performance was also reflected by the estimates of RF, or equivalently ρ
(not shown as the main result). When the sample size is large, for example, datasets #1-#3, the

Delaporte distribution has a higher goodness-of-fit in terms of likelihood values. The Dela-

porte distribution more accurately captures the observed offspring data than the NB distribu-

tion (Fig 5). In datasets #1-#3, the high-density regions of posterior distributions of ρ were

roughly skewed from 0.1 to 0.5. However, the improvement in explaining the real-world data-

set becomes weak, or even not evident as sample size decreases, for example, datasets #4 and

#5, where the NB distribution also yields satisfactory fitting performance. For datasets #2b and

#2a, collected from 19 January to 19 April 2020 and from 20 April to 16 October 2020, respec-

tively. It is worth noting that the estimated medians of ρ increased from 0.21 to 0.56, while k
only had minor changes. With the same scales of k and R, the increase in ρ would lead to a

decrease in the overdispersiveness of disease transmission, as well as a reduction in the risk of

Fig 2. Simulation results of the proportion (P) of the most infectious cases that cause (Q =) 80% of secondary cases as a function of fraction of

fixed component (ρ) generated from Delaporte distributions. The ‘NB’ in the horizontal axis label stands for negative binomial (distribution).

https://doi.org/10.1371/journal.pcbi.1010281.g002

Fig 3. Simulation results of the proportion of cases, i.e., fD(0), that cause 0 secondary case as a function of fraction of fixed component (ρ)

generated from Delaporte distributions. The ‘NB’ in the horizontal axis label stands for negative binomial (distribution).

https://doi.org/10.1371/journal.pcbi.1010281.g003
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superspreading. This finding was consistent with the conclusion in [33], which also discussed

the impact of various local nonpharmaceutical interventions on the transmission characteris-

tics of COVID-19 in South Korea.

Fig 4. Simulation results of the expected proportion of secondary cases (Q) due to the proportion of the most infectious cases (P), i.e., Lorenz

curve, generated from Poisson (in orange), negative binomial (in blue), and Delaporte (in purple) distributions. In each panel, the diagonal line

shows the scenario of perfect homogeneity (i.e., uniform distribution). In each panel label, ‘fixed frac.’ is the fraction of fixed component (ρ), and ‘disp.’

is the dispersion parameter (k).

https://doi.org/10.1371/journal.pcbi.1010281.g004
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Table 1. The summary of parameter estimates of offspring distribution in the existing literature and this study. The ‘−2�log(L)’ denotes twice of the negative log-like-

lihood. The highlighted estimates are considered as main results for Delaporte distribution (in red) and negative binomial (NB) distribution (in blue).

disease dataset model

distribution

reproduction number components of Poisson rate fitting

performance

reference of

estimation

label source fixed variable −2�log

(L)

AIC

mean dispersion

COVID-

19

(#1) Xu et al. [12]

(n = 2214)

Poisson equals the fixed

component

0.69 (0.65,

0.72)

none 5137.46 5139.46 this study

negative

binomial

equals the mean of

variable component

none 0.69 (0.62,

0.77)

0.70 (0.59,

0.98)

not reported He et al. [30]

0.69 (0.64,

0.74)

0.74 (0.62,

0.89)

4658.85 4662.85 this study

Delaporte 0.69 (0.64, 0.74) 0.26 (0.16,

0.33)

0.43 (0.35,

0.54)

0.24 (0.15,

0.40)

4635.37 4641.37 this study

(#2a) Lim et al. [33]

(n = 1401)

Poisson equals the fixed

component

0.68 (0.64,

0.72)

none 3486.90 3488.90 this study

negative

binomial

equals the mean of

variable component

none not

reported

0.85 (0.70,

1.05)

not reported Lim et al. [33]

0.68 (0.62,

0.74)

0.85 (0.70,

1.06)

3175.24 3179.24 this study

Delaporte 0.68 (0.62, 0.75) 0.38 (0.30,

0.45)

0.30 (0.22,

0.40)

0.11 (0.06,

0.20)

3134.44 3140.44 this study

(#2b) Lim et al. [33]

(n = 344)

Poisson equals the fixed

component

0.81 (0.71,

0.90)

none 1234.96 1236.96 this study

negative

binomial

equals the mean of

variable component

none not

reported

0.23 (0.15,

0.28)

not reported Lim et al. [33]

0.81 (0.64,

1.06)

0.23 (0.17,

0.30)

764.62 768.62 this study

Delaporte 0.81 (0.61, 1.18) 0.17 (0.03,

0.27)

0.65 (0.43,

1.00)

0.09 (0.05,

0.19)

751.66 757.66 this study

(#3) Adam et al. [17]

(n = 290)

Poisson equals the fixed

component

0.58 (0.50,

0.68)

none 699.85 701.85 this study

0.58 (0.50,

0.69)

699.85 701.85 Adam et al. [17]

negative

binomial

equals the mean of

variable component

none 0.58 (0.45,

0.72)

0.43 (0.29,

0.67)

589.93 593.93

0.58 (0.45,

0.73)

0.43 (0.29,

0.63)

589.92 593.92 this study

Delaporte 0.59 (0.46, 0.78) 0.17 (0.04,

0.30)

0.42 (0.25,

0.63)

0.16 (0.06,

0.40)

585.80 591.80 this study

(#4) Zhang et al. [19]

(n = 47)

Poisson equals the fixed

component

0.71 (0.49,

1.01)

none 126.42 128.42 this study

negative

binomial

equals the mean of

variable component

none 0.67 (0.54,

0.84)

0.25 (0.13,

0.88)

not reported Zhang et al. [19]

0.71 (0.39,

1.77)

0.28 (0.10,

0.80)

95.35 99.35 this study

Delaporte 0.72 (0.36, 1.70) 0.00 (0.00,

0.08)

0.72 (0.34,

1.69)

0.23 (0.10,

0.54)

95.21 101.21 this study

SARS (#5) Shen et al. [5]

(n = 34)

Poisson equals the fixed

component

1.76 (1.37,

2.24)

none 274.88 276.88 this study

negative

binomial

equals the mean of

variable component

none 1.88 (0.41,

3.32)

0.12 (0.08,

0.42)

not reported Lloyd-Smith

et al. [29]

1.96 (0.67,

4.37)

0.10 (0.02,

0.19)

78.78 82.78 this study

Delaporte 2.07 (0.52, 3.23) 0.06 (0.00,

0.31)

2.00 (0.51,

3.01)

0.05 (0.01,

0.17)

78.18 84.19 this study

Note: All parameter estimates were summarized in the ‘median (95% credible interval)’ of posterior distribution format.

https://doi.org/10.1371/journal.pcbi.1010281.t001

PLOS COMPUTATIONAL BIOLOGY Superspreading and decomposition of individual transmissibility

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010281 June 27, 2022 17 / 29

https://doi.org/10.1371/journal.pcbi.1010281.t001
https://doi.org/10.1371/journal.pcbi.1010281


The likelihood ratio (LR) test has been proposed for model selection between the NB and

the Delaporte distributions [11, 66], and yields satisfactory testing performance. We found an

increasing statistical power of the LR test for identifying the improvement of Delaporte distri-

bution as the sample size increased. The simulation results of the testing power show consis-

tent trends as observed in datasets #1-#5 (Fig 6A). To secure a power larger than 0.80,

surveillance may require a sample size above 400, see Fig 6B. Although the type I error rate

appears slightly high around 0.03 when sample size ranges from 100 to 300 (Fig 6D–6E), while

the type I error rate is generally conservative for a wide range of sample sizes from 30 to 3000

(Fig 6F). Similar non-monotone trends of the type I error rate have also been previously

reported for other testing purposes [40]. The testing performance of increasing power and

conservative type I error suggest that the LR test is informative in capture the true characteris-

tics of over-dispersed offspring distribution with a low chance of false alarms.

In practical analysis, one may also be interested in obtaining estimators for R and k given

the parameter estimates of the Delaporte distribution. Because the closest theoretical formula

may be complex to derive, a convenient approximation using moments of the Delaporte distri-

bution could be considered. To distinguish the dispersion parameters, we denote kNB and kD

for the NB and Delaporte distributions, respectively. For a given Delaporte distribution, the

first moment (i.e., mean) is RF + RV, and the second central moment (i.e., variance) is

Fig 5. Fitting results of offspring distributions using the medians of posterior distributions for model parameters. In each panel, probability mass

functions (PMF) of negative binomial (NB, in blue), and Delaporte (in purple) distributions are shown in dots and lines, and the observations of

number of secondary cases per infector (in grey) are in histogram.Note: The PMFs of NB and Delaporte distributions were shifted horizontally in each

panel with slight jitters at −0.05 and +0.05, respectively to aid visualization and comparison.

https://doi.org/10.1371/journal.pcbi.1010281.g005
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RF þ RV 1þ
RV
kD

� �
. Thus, if let the NB distribution have the same value of mean and variance,

for the approximated NB distribution, we have bR ¼ RF þ RV, and

ckNB ¼
bR
RV

� �2

� kD ¼
RFþRV
RV

� �2

� kD ¼
kD

1� rð Þ2
. Although this approximation can be directly calcu-

lated rapidly, by using the estimates of the example offspring datasets, we note that ckNB here

appears slightly lower than the posterior estimates of kNB in Table 1.

The real-world datasets adopted in this study were offspring cases per seed case observa-

tions, but more generally, the Delaporte distribution can be extended to describing one-gener-

ation cluster or final outbreak size observations. For the one-generation cluster size j
distribution, we derived that hD(j|i) also follows a Delaporte distribution with parameters not

only determined on the original parameter set of fD(X) but also by the number of seed cases i.
Specifically, fD(X) can be translated into hD(j|i) by multiplying parameters ρ and R by i, see Eq

(6). A previous study determined that one-generation cluster size follows a NB distribution

hNB(j|i) under the NB-distributed offspring assumption [40], which is similar to our extension

of this finding to the situation of the Delaporte distribution. To assess the impact of ρ on

Fig 6. The power and type I error rate of the likelihood ratio (LR) test for Delaporte distribution against negative binomial (NB) distribution.

Panels (A) and (D) show the test statistics (dots) from LR test, and the critical threshold (red horizontal dashed line) for p-value< 0.05. In panel (A), the

‘+’ dots are 10000 pseudo datasets generated by random sampling with replacement from the real-world datasets, and the circle dots represent datasets

#1-#5. Panels (B) and (E) summarized the power and type I error rate of LR test for Delaporte distribution against NB distribution as a function of

sample size. Panels (C) and (F) summarized the power and type I error rate of LR test with sample size reciprocal-distributed from 30 to 3000. In panel

(D), the ‘×’ dots are generated by 10000 datasets generated by Monte Carlo sampling from NB distributions. In panels (B) and (C), the horizontal

dashed line is the threshold of power at 0.80. In panels (E) and (F), the horizontal dashed line is the threshold of type I error rate at 0.05.

https://doi.org/10.1371/journal.pcbi.1010281.g006
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disease outbreaks, the final outbreak size c distribution can be used to evaluate pandemic

potentials seeded by i source (or imported) cases [2, 38, 73, 86]. Thus, ωD(c, i)was derived in

Eq (7), and appeared to be an extension of the NB version ωNB(c, 1) in [3, 33], see the special

case of Eq (8).

To illustrate the translation from the final outbreak size probability in Eq (7) to the likeli-

hood-based estimation, we adopted the final outbreak size observations of the Middle East

respiratory syndrome coronavirus (MERS-CoV infection in the Middle East region, which

was reported in [87]. The dataset has a sample size of 55 outbreaks, including a total of 104 lab-

oratory confirmed MERS cases, and all final outbreaks were seeded by single cases, as also

summarized and studied in [3]. Hence, Eq (8) was used to construct the likelihood function

for the Delaporte distribution. We estimated RF at 0.17 (95%CrI: 0.03, 0.45), RV at 0.32 (95%

CrI: 0.01, 1.53), and k at 0.04 (95%CrI: 0.00, 0.19) with an AIC of 114.60. We also repeated the

estimation using the NB distribution, which leads to R at 0.47 (95%CrI: 0.30, 0.78) and k at

0.27 (95%CrI: 0.10, 0.98) with an AIC of 115.68. For the previous estimates using NB in [3], it

was estimated that R was 0.47 (95%CrI: 0.29, 0.80) and k was 0.26 (95%CrI: 0.09, 1.24), which

was in line with our estimates. The k estimate appears lower in the Delaporte distribution, and

the ρ estimate at 0.33 (95%CrI: 0.05, 0.98) was greater than 0, thus the fixed part of R was evi-

dent, which was also indicated by the difference in the AIC values.

Fig 7. The relative risk reduction (RRR) of outcome (I): Having superspreading event as a function of the relative reduction in reproduction

number (ξ). The RRR of control scheme (I) RRR(1)(ξ) is dashed cyan curve, and the RRR of control scheme (II) RRR(2)(ξ) is bold orange curve. In each

panel, the dispersion parameter k is fixed at 0.2, and the shading region indicates the situation that ξ� 1 − ρ. In each panel label, ‘R’ is the reproduction

number, and ‘fixed frac.’ is the fraction of fixed component (ρ).

https://doi.org/10.1371/journal.pcbi.1010281.g007
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Aside from the impact of k in determining the probability of risk outcome (I): in super-

spreading events, as described in [3, 29], the parameter ρ also has an similar impact, and fur-

ther influences the efficacy of different control strategies. With the same among (ξ) of

reduction in R, the control efficacies (RRR) of both population-wide and high-risk-specific

control schemes increased with ξ (Fig 7). To compare the two control schemes, we found that

the control scheme (II) has a higher control efficacy than scheme (I) in terms of the RRR of

superspreading event, i.e., RRR(2,1)(ξ). Effective control efforts may allow us to anticipate

highly infectious source cases or the contexts in which a seed case may likely expose many sus-

ceptible individuals in advance. Then, the scale of the variable component of the reproduction

number was reduced efficiently under the control scheme (II), such that a substantial propor-

tion of superspreaders can be controlled. With ξ< 1 − ρ, the general (or linear) tendency of

RRR(2,1)(ξ) increased rapidly as ξ or ρ increased (Fig 8). The largest value of RRR(2,1)(ξ) can be

reached when ξ is close (but not necessarily approaching) to 1 − ρ. When ρ = 0, we illustrated

that RRR(1)(ξ) = RRR(2)(ξ) (Fig 7A–7D), which indicated that RRR(2,1)(ξ) = 0. In other words,

with the effects of ρ (> 0), the outperformance of high-risk-specific control scheme may

become evident in terms of achieving RRR(2,1) > 0 for some values of ξ (Fig 8).

Fig 8. The relative risk reduction, RRR(2,1)(ξ), of outcome (I): Having superspreading event under control scheme (II) against scheme (I) as a

function of the fraction of fixed component (ρ). In each panel, the dispersion parameter k is fixed at 0.2, the shading region indicates the situation that

ξ� 1 − ρ, and the bold red segment highlights the range of ρ from 0.1 to 0.5, which characterizes the feature of COVID-19. In each panel label, ‘R’ is the

reproduction number, and ‘reduction in R’ is the relative reduction in reproduction number (ξ). The ‘NB’ in the horizontal axis label stand = s for

negative binomial (distribution).

https://doi.org/10.1371/journal.pcbi.1010281.g008
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For effective control strategies aiming to reduce the risk of outcome (II): large-scale out-

break, the RRR was determined by ξ, ρ, and R. Consistent with the trends of risk outcome (I)

in Fig 7, a large-scale outbreak was less likely to occur as ξ increased despite control schemes

(Fig 9). When ρ = 0, we illustrated that RRR(1)(ξ) = RRR(2)(ξ), see Fig 9A–9E, which indicated

RRR(2,1)(ξ) = 0. Unlike SSE, the population-wide control scheme outperformed the high-risk-

specific control scheme with RRR(2,1) < 0 when R was large and ξ was small, but the direction

(or sign) may change to RRR(2,1) > 0 for small R or large ξ (Fig 10). On one hand, the high-

risk-specific control scheme was more effective in reducing the outbreak risks under subcriti-

cal transmission. In self-limited (or stuttering) outbreak, although SSEs rarely occur, they have

a significant contribution to the expansion of transmission [57]; thus, the risk of outbreak can

be drastically reduced by targeting high-risk individuals [36]. On the other hand, this implied

that when the epidemic curve is growing in terms of reproduction numbers larger than 1, a

substantial proportion of transmission is due to the fixed part (λF = RF) of individual infec-

tiousness, that is, subspreading events [88]. Despite the variable part RV, a large RF results in

stable reproducibility of infections, and RRR(2,1) < 0 with a moderate scale of ρ (from 0.1 to

0.5 for COVID-19) (Fig 10T). Therefore, population-wide interventions may successfully con-

trol disease transmission on a general scale before the implementation of high-risk-specific

control strategies subsequently.

Conversely, under extremely intensive control measures in terms of ξ! 1, the chance of

large-scale outbreak diminishes despite different control schemes. For example, mainland

Fig 9. The relative risk reduction (RRR) of outcome (II): Having outbreak with final size c> 100 as a function of the relative reduction in

reproduction number (ξ). The RRR of control scheme (I) RRR(1)(ξ) is dashed cyan curve, and the RRR of control scheme (II) RRR(2)(ξ) is bold orange

curve. In each panel, the dispersion parameter k is fixed at 0.2, and the shading region indicates the situation that ξ� 1 − ρ. In each panel label, ‘R’ is the

reproduction number, and ‘fixed frac.’ is the fraction of fixed component (ρ).

https://doi.org/10.1371/journal.pcbi.1010281.g009
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China has achieved satisfactory COVID-19 control outcomes [89]. Although Chinese authori-

ties relaxed population-wide policies in recent months, high-risk-specific control measures

secured intensive and compulsory digital contact tracing efforts to monitor the risks of infec-

tion at the level of an individual’s daily routine [90, 91]. In our theoretical framework, this

indicates a high value of ξ for control scheme (II), which leads to a remarkably low risk of out-

breaks (Fig 9).

This study has limitations. First, although the Delaporte distribution is a theoretical gener-

alization of the NB distribution, our data analysis focused on determining whether there is sta-

tistical evidence supporting the improvement in fitting performance without investigating the

mechanistic side of the decomposition of the reproduction number. For example, population-

level factors such as contact size and frequency (e.g., household size) [25], and heterogeneity of

population density, or individual-level factors such as biological determinants (e.g., evolution-

ary adaptation and in-host viral kinetics) [92, 93], behavioral or social factors [32], and lifestyle

habits might contribute to establishing superspreading potentials [29, 40]. Second, with regard

to the parameter estimation part, we assumed that all offspring observations were accurately

reported without selection bias, which might not always be acceptable [85, 94–97]. In cases of

considerable reporting or selection bias, adjustments on statistical inference can resolve such

issues to some extent by modifying the likelihood framework, for example, by truncation and

compounding [11, 46, 57]. Lastly, for the evaluation of control effects, although the final

Fig 10. The relative risk reduction, RRR(2,1)(ξ), of outcome (II): Outbreak with final size c> 100 under control scheme (II) against scheme (I) as a

function of the fraction of fixed component (ρ). In each panel, the dispersion parameter k is fixed at 0.2, the shading region indicates the situation that

ξ� 1 − ρ, and the bold red segment highlights the range of ρ from 0.1 to 0.5, which characterizes the feature of COVID-19. In each panel label, ‘R’ is the

reproduction number, and ‘reduction in R’ is the relative reduction in reproduction number (ξ). The horizontal dashed grey line marked the level of

RRR = 0. The ‘NB’ in the horizontal axis label stand = s for negative binomial (distribution).

https://doi.org/10.1371/journal.pcbi.1010281.g010

PLOS COMPUTATIONAL BIOLOGY Superspreading and decomposition of individual transmissibility

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010281 June 27, 2022 23 / 29

https://doi.org/10.1371/journal.pcbi.1010281.g010
https://doi.org/10.1371/journal.pcbi.1010281


outbreak size (c) distribution was formulated under two schemes, we failed to find an analyti-

cal form for the condition with respect to R and ξ, such that RRR(2,1) > 0 or otherwise. Instead,

we performed numerical simulations to check the sign of RRR(2,1) (shown visually in Fig 10),

regarding the most feasible parameter ranges of COVID-19. Hence, the Delaporte distribution

needs to be considered as a tool to monitor the three parameters to understand the transmis-

sion characteristics of infectious diseases and to provide information for strategic decision-

making processes involving control measures.

In summary, as a generalization of the classic NB distribution, the Delaporte distribution

can be adopted to decompose the reproduction number from the individual level to the popu-

lation level and to characterize the transmission of infectious disease. The Delaporte distribu-

tion demonstrates statistical improvement in fitting the distributions of the real-world

offspring cases’ distributions against the NB distribution, and it presents increasing power and

conservative type I error rates in detecting such an improvement in the goodness-of-fit with

the LR test. Numerical simulation illustrated that the three parameters of the Delaporte distri-

bution are important in understanding disease transmission characteristics and for advising of

appropriate control strategies and providing new insights distinct from the NB model.
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