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Abstract This study was aimed at developing a polymeric drug
delivery system for a steroidal aromatase inhibitor, exemestane
(exe) intended for sustained targeted delivery of drug through
intravenous route. Carboxylated polycaprolactone (cPCL)
was synthesized by ring opening polymerization of
caprolactone. Exe-loaded cPCL nanoparticles (NPs) were pre-
pared by interfacial deposition of preformed polymer and
characterized. A 3-factor, 3-level Box—Behnken design was
used to derive a second-order polynomial equation and con-
struct contour and response plots for maximized response of
percentage drug entrapment (PDE) with constraints on particle
size (PS). The independent variables selected were ratio of
exe/cPCL, amount of cPCL, and volume of organic phase.
Polymerization of caprolactone to cPCL was confirmed by
Fourier transform infrared (FTIR) and gel permeation chro-
matography. The prepared NPs were evaluated for differential
scanning calorimetry (DSC), transmission electron microsco-
py (TEM), and in vitro release studies. Optimum formulation
based on desirability (1.0) exhibited PDE of 83.96 % and PS
of 180.5 nm. Check point analysis confirmed the role of the
derived polynomial equation and contour plots in predicting
the responses. Zeta potential of optimized formulation
was —33.842.1 mV. DSC studies confirmed the absence of
any interaction between drug and polymer. TEM image
showed non-aggregated and spherical shaped NPs. Drug re-
lease from NPs showed sustained release and followed
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Korsmeyer—Peppas model, indicating Fickian drug release.
Thus, preparation of exe-loaded cPCL NPs with high PDE
and desired PS suitable for providing passive targeting could
be statistically optimized using Box—Behnken design.
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Abbreviations

Exe Exemestane

PCL  Polycaprolactone

cPCL Carboxylated polycaprolactone
NPs  Nanoparticles

BBD Box—Behnken design

DSC  Differential scanning calorimetry
TEM  Transmission electron microscopy
PDE  Percentage drug entrapment

PS Particle size
FM Full model
RM Reduced model

1 Background

Breast cancer is the leading cause of death among women,
with one million new cases in the world each year (McPherson
etal. 2000), out of which one third are reported to be hormone
dependent (Henderson and Canellos 1980; Theobald 2000).
Growth of breast cancer cells is often estrogen dependent.
Continuous estrogen suppression in patients with hormone-
sensitive breast cancer prevents proliferation of tumor.
Aromatase is the key enzyme that converts androgens to
estrogens both in pre- and postmenopausal women (Lonning
1998; Strassmer-Weippl and Goss 2003). Exemestane (exe) is
a third generation, potent irreversible type I steroidal aroma-
tase inhibitor approved by the Food and Drug Administration
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for the treatment of breast cancer (Johannessen et al. 1997). It
acts as a false substrate for the aromatase enzyme and is
processed to an intermediate that binds irreversibly to the
active site of the enzyme causing its inactivation, an effect
also known as suicide inhibition (Dowsett 1998). Although
treatment with orally administered exe has been shown to be
well tolerated by patients, the most common adverse events
consist of hot flashes, nausea, fatigue, dizziness, increased
sweating, headache, body weight change, vaginal dryness,
arthralgias, and myalgias (Scott and Wiseman 1999; Clemett
and Lamb 2000). The problem with the oral delivery of exe is
its inability to target the tumor site. This problem can be
overcome by employing delivery systems capable of provid-
ing targeted drug delivery. Poly(lactic-co-glycolic acid)
(PLGA) nanoparticles (NPs) are already reported to provide
passive targeting of anticancer drugs to tumor site (Yallapu et
al. 2010; Fonseca et al. 2002).

Polymeric NPs with a diameter of less than 200 nm are
one of the carrier systems used for passive targeting and
sustained release of drug. NPs regroup both nanocapsules
and nanospheres. Polycaprolactone (PCL) is a biodegrad-
able polyester and is prepared by ring opening polymeriza-
tion of e-caprolactone. PCL is degraded by hydrolysis of its
ester linkages in physiological conditions and has therefore
received a great deal of attention for use as a biomaterial for
sustained release drug delivery systems (Lam et al. 2008;
Aberturas et al. 2011). Different methods reported for pre-
paring NPs using biodegradable polymers include monomer
polymerization, interfacial deposition, salting out,
nanoprecipitation, emulsification solvent evaporation, etc.
(Quintanar-Guerrero et al. 1998). Interfacial deposition of
preformed polymer technique is based upon interfacial de-
position of a polymer followed by diffusion of a semi-polar
and miscible solvent in aqueous medium containing surfac-
tant (Fessi et al. 1989; Barichello et al. 1999). Moraes et al.
used this method for preparation of PLGA nanocapsules
with particle size (PS) of 123 nm and 69 % drug loading
(Moraes et al. 2009). Formulation of NPs by this method
involves many important factors which contribute to the
outcome of experiment in terms of drug entrapment and
PS. Different process variables include stirring speed, tem-
perature, rate of addition of organic phase to aqueous phase,
etc. Different formulation variables include drug/polymer
ratio, concentration of polymer in organic phase, surfac-
tants, surfactant concentration, volume of aqueous and or-
ganic phase, organic solvents, etc.

Optimization by changing one-variable-at-a-time is a
complex method to evaluate the effects of different variables
on an experimental outcome. This approach assesses one
variable at a time instead of all simultaneously. The method
is time consuming, expensive, and often leads to misinter-
pretation of results when interactions between different
components are present. Another approach is to accurately
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evaluate the impact of the independent variables on the
dependent variables by varying all the important factors
simultaneously in a systematic manner. This approach is
known as response surface methodology (RSM). RSM is a
statistical technique which can address the present scenario
and can be used to establish relationships between several
independent variables and one or more dependent variables
(Myer and Montogomery 2002; Ray et al. 2009). RSM
optimizes multiple variables by systematic variation of all
variables in a well-designed experiment with a minimum
number of experiments. The RSM optimization process in-
volves the following steps: (1) performing statistically
designed experiments, (2) estimating the coefficients of a
mathematical model using regression analysis technique,
and (3) predicting the response and checking the adequacy
of the model. Among the available statistical design
methods, a full factorial design (FFD) involves a large
number of experiments for accurately predicting the re-
sponse. At the same time, it is often considered unpractical
due to its requirement of more number of experiments as
compared with other designs (Box et al. 1978; Myer et al.
1989). Fractional factorial design lacks the ability to accu-
rately predict all positions of the factor space that are equi-
distant from the centre (rotatability). Based upon the
desirable features of orthogonality and rotatability, central
composite design (CCD), and Box—Behnken design (BBD)
are commonly chosen for the purpose of response optimi-
zation (Bae and Shoda 2005; Ray 2006). BBD was success-
fully used by Rahman et al. for optimization of risperidone-
loaded solid lipid NPs (Rahman et al. 2010).

The BBD was specifically selected since it requires fewer
runs than three-factor, three-level FFD and CCD when three
or more variables are involved. This cubic design is charac-
terized by a set of points lying at the midpoint of each edge
and a replicate centre point of the multidimensional cube
(George Box 1960). The BBD technique is a three-level
design based upon the combination of two-level factorial
designs and incomplete block designs. BBD is a spherical
design with excellent predictability within the spherical
design space. Compared with the CCD method, the BBD
technique is considered as the most suitable for evaluating
quadratic response surfaces particularly in cases when pre-
diction of response at the extreme level is not the goal of the
model. In addition, the BBD technique is rotatable or nearly
rotatable regardless of the number of factors under consid-
eration (Myer and Montogomery 2002; Bae and Shoda
2005; Ray 2006). However, it is a very time-consuming
method. Hence, deriving a quantitative mathematical rela-
tionship between the variables to evaluate its effect on
dependent variables is of utmost importance (Seth and
Misra 2002; Mehta et al. 2007).

In the present study, exe-loaded carboxylated polycaprolactone
(cPCL) NPs were prepared by interfacial deposition of
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preformed polymer technique and optimized using three-
factor, three-level Box—Behnken design. The prepared
NPs were characterized for percentage drug entrapment
(PDE), particle size, zeta potential, compatibility, mor-
phology, in vitro drug release studies, and release kinet-
ics. It was hypothesized that cPCL-based NPs of exe would
be capable of passive targeting to the tumor due to PS of less
than 200 nm and provide sustained drug release. This would
help to improve clinical utility, decrease the dose and frequen-
cy of dosing, reduce side effects, and improve therapeutic
efficacy of exe in cancer management.

2 Materials and methods
2.1 Materials

Exe was obtained as a gift sample from Sun Pharma
Advanced Research Centre, Vadodara, India. Poloxamer 188
was a gift sample from BASF, Ludwigshafen, Germany.
Capric/caprylic triglyceride (Capmul MCM, C8) was obtained
as gift sample from Abitec Corporation, Janesville, WI.
Caprolactone monomer was purchased from Sigma-Aldrich,
Mumbai, India. All other chemicals were of analytical grade
and obtained commercially.

2.2 Synthesis of cPCL

Synthesis of carboxylated PCL was carried out by ring open-
ing polymerization of caprolactone monomer in presence of
succinic acid as reported by Zhang et al. (1994) with some
modifications. Reaction was carried out at room temperature
in presence of tertiary butoxide (4 g) for 24 h instead of
heating reaction mixture at 225 °C for 3 h. Polymerization
was carried out in a flask sealed with a ball filled with
nitrogen. The reactant mixture of succinic acid (23.5 mg)
and caprolactone (3.65 g) was added to about 15 ml of
dichloromethane in the flask for initiation of polymerization
reaction. The reaction was catalyzed using tertiary butoxide
(4 g). The reaction was allowed to continue for 24 h. The
reaction mixture was precipitated in ice-cold water and pre-
cipitates were dissolved in acetone for re-precipitation and
purification to remove excess succinic acid. Each reaction step
as well as purification step was monitored by TLC using
100 % ethyl acetate as a mobile phase and iodine as a spotting
reagent. The reaction was considered to be complete when
there was absence of spots for caprolactone monomer and
succinic acid from the reaction mixture.

2.3 Fourier transform infrared spectroscopy

The sample (2 mg) was finely grounded with purified potas-
sium bromide (200 mg; to remove scattering effects from large

crystals). This powder mixture was then pressed in a mechan-
ical die press to form a pellet. These pellets were scanned and
spectra were recorded on Fourier transform infrared (FTIR;
Bruker Corporation, Billerica, MA). The scanning range was
400—4,000 cm ! with the resolution of 2 cm .

2.4 Molecular weight determination

Gel permeation chromatography (GPC) was carried out to
determine the molecular weight of the formed polymer
(Behan et al. 2001). A GPC (Perkin Elmer, Series 200,
Shelton, CT) equipped with a Waters 510 pump, 50°, 10-3°,
and 10-4°A Phenogel columns serially set (Phenomenex,
Torrance, CA) and a Waters 410 differential refractometer
were used. The mobile phase was tetrahydrofuran (THF) at a
flow rate of 1.0 ml/min; 50 ul of a 2 % polymer solution in
THF was injected into the system, and size exclusion chro-
matogram was recorded.

2.5 Preparation of exe-loaded cPCL NPs

cPCL NPs loaded with exe were prepared by interfacial
deposition of preformed polymer (Fessi et al. 1989). Exe
(5 mg) was dissolved in oil (400 ul capric/caprylic triglyc-
eride mixture) and added to acetone (8 ml) in which cPCL
(100 mg) was dissolved along with sorbitan monooleate
(Span 60, 0.05 ml), under moderate magnetic stirring. This
solution was then added to an aqueous phase (40 ml distilled
water) containing Poloxamer 188 (0.5 %) with continuous
stirring on magnetic stirrer at room temperature. Stirring was
continued for 3—4 h to allow complete evaporation of organic
solvent. The NPs suspension was centrifuged at 50,000xg
for 30 min at 4 °C (3K30, Sigma Centrifuge, Osterode,
Germany), supernatant was alienated, nanoparticulate pellet
was re-dispersed in water (10 ml) and lyophilized (Heto
Drywinner, Allerod, Denmark) using sucrose as cryoprotec-
tant (NPs (one part) and cryoprotectant (two parts)). Empty
NPs were prepared by the method described above with the
exception of adding exe. Based on preliminary experiments,
variables like drug/polymer ratio (X;), amount of polymer
(X3), and volume of organic phase (X;) were selected as
independent variables and PDE and PS were taken as depen-
dent variables. Effect of independent variables on dependent
variables was studied using 3 %3 Box—Behnken design.

2.6 Lyophilization and optimization of cryoprotectant

Lyophilization is the process in which freeze-drying is done to
remove solvent from the formulation and therefore improve its
stability upon storage. The process of freeze drying is stressful
and hence a cryoprotectant is added in the process, which also
helps in re-dispersibility of the freeze-dried NPs in a suitable
solvent (Chacon et al. 1999). One of the main challenges
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during the freeze-drying process is preserving or rather in-
creasing the re-dispersibility of the NPs upon reconstitution
with distilled water or buffered saline. Cryoprotectants are
generally added to the NPs prior to the drying step and also
act as re-dispersants. Cryoprotectants such as trehalose, su-
crose, and mannitol can be used to increase the physical
stability of NPs during the freeze-drying process (Paolicelli
et al. 2010). In the present study, trehalose, sucrose, and
mannitol were investigated in different ratios and change in
PS upon re-dispersion was observed. Nanoparticulate suspen-
sion (2 ml) was dispensed in 10 ml semi-stoppered glass vials
with rubber closures and frozen for 24 h at —60 °C. Thereafter,
the vials were lyophilized (Heto Drywinner, Allerod,
Denmark) using different cryoprotectants like trehalose, su-
crose, and mannitol in different concentrations. Finally, vials
were sealed under anhydrous conditions and stored until being
re-hydrated. Lyophilized NPs were re-dispersed in exactly the
same volume of distilled water as before lyophilization. NP
suspension was subjected to PS measurement as described
earlier. Ratio of final PS (Sy) and initial PS (S;) was calculated
to finalize the suitable cryoprotectant based on lowest S¢S;
ratio.

2.7 HPLC analysis

Quantitative estimation of exe was done by HPLC as
reported by Breda et al. with slight modification in mobile
phase which consisted of a filtered and degassed mixture of
acetonitrile/0.02 M phosphate buffer (pH 4.0; 75:25) (Breda
et al. 1993). The equipment consisted of Shimadzu ultravi-
olet (UV)-vis detector and reversed phase C-18 column,
Lichro Cart-RP8 (250%4.6 mm, 5 p). The mobile phase
was delivered at a flow rate of 1.0 ml/min, the injection
volume was 20 ul, the effluent was monitored at UV detec-
tion at 247 nm, and the retention time for exe was 5.0 min.

2.8 Drug content and percentage drug entrapment

The drug content in the NPs was determined by dissolving
10 mg of lyophilized NPs in 10 ml of acetonitrile for analysis
by HPLC after filtration through 0.22 p and appropriate
dilution with mobile phase. Drug loading was calculated as
follows:

DL(%) :A/B % 100

where, A is the drug content in the NPs and B is the weight of
NPs. It was confirmed from preformulation studies that cPCL,
Poloxamer 188, and sucrose did not interfere in the analysis of
exe. PDE was estimated by calculating amount of drug
entrapped in NPs with respect to total drug added during
preparation of formulation and free drug which was estimated
from the supernatant after centrifugation at 50,000x g.
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The PDE was calculated according to following formula:

PDE — (TD—FD / TD) % 100

where, TD is total amount of drug added and FD is amount
of drug in supernatant.

2.9 Particle size and zeta potential

The size analysis and polydispersity index of the NPs
were determined using a Malvern Zetasizer Nano ZS
(Malvern Instrument, Worcestershire, UK). Each sample
was diluted ten times with filtered distilled water to avoid
multiscattering phenomena and placed in disposable sizing
cuvette. Polydispersity index was noted to determine the
narrowness of the PS distribution. The size analysis was
performed in triplicate, and the results were expressed as
mean size+SD.

Zeta potential distribution was also measured using a
Zetasizer (Nano ZS, Malvern instrument, Worcestershire,
UK). Each sample was suitably diluted ten times with fil-
tered distilled water and placed in a disposable zeta cell.
Zeta limits ranged from —200 to +200 mV. The electropho-
retic mobility (um/sec) was converted to zeta potential by
in-built software using Helmholtz-Smoluchowski equation.
Average of 3 measurements of each sample was used to
derive average zeta potential.

2.10 Experimental design

A three-factor, three-level Box—Behnken statistical design
was employed to optimize the process and formulation
parameters in preparation of exe-loaded ¢cPCL NPs and
evaluate main effects, interaction effects, and quadratic
effects of the process parameters on the PDE and PS.
The independent variables selected were drug/polymer
ratio (X;), amount of cPCL (X), and volume of organic
phase (X3). A design matrix comprising 13 experimental
runs was constructed. The design was used to explore
quadratic response surfaces and constructing second-order
polynomial models and contour plots to predict responses
with Design Expert (Version 8.0.3, Stat-Ease Inc.,
Minneapolis, MN).

2.11 Contour plots

Contour plots are diagrammatic representation of the values
of the response. They are helpful in explaining the relation-
ship between independent and dependent variables. The
reduced models were used to plot two-dimensional contour
plots. Two contour plots for PDE and PS were established
between X, and X; at fixed levels (—1, 0, and 1) of X;.
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2.12 Response surface plots

To understand the main and the interaction effects of two
variables, response surface plots were used as a function of
two factors at a time, maintaining the third factor at fixed level
(Mak et al. 1995). These plots were obtained by calculating
the values obtained by one factor where the second varied
(from —1 to 1 for instance) with constraint of a given Y value.

2.13 Check point analysis

A check point analysis was performed to confirm the utility of
the established contour plots and reduced polynomial equa-
tion in the preparation of NPs. Values of independent variables
(X and X3) were taken from three check points on contour
plots plotted at fixed levels of —1, 0, and 1 of Xj, and the
values of PDE (Y;) and PS (¥;) were calculated by substituting
the values in the reduced polynomial equation. Exe-loaded
NPs were prepared experimentally by taking the amounts of
the independent variables (X; and X3). Each batch was pre-
pared three times and mean values were determined.
Difference in the predicted and mean values of experimentally
obtained PDE and PS was compared by using student’s ¢ test.

2.14 Normalized error determination

The quantitative relationship established by BBD was con-
firmed by evaluating experimentally prepared exe-loaded
NPs. PDE and PS predicted from the BBD were compared
with those generated from prepared batches of check point
analysis using normalized error (NE). The equation of NE
(Eq. 1) is expressed as follows:

1 / 2
NE = [2{(Pre - Obs)/Obs} } (1)
where, Pre and Obs represent predicted and observed re-

sponse, respectively.
2.15 Desirability criteria

For simultaneous optimization of PDE and PS, desirability
function (multiresponse optimization technique) was applied
and total desirability was calculated using Design Expert
software. The desirability lies between 0 and 1, and it repre-
sents the closeness of a response to its ideal value. The total
desirability is defined as a geometric mean of the individual
desirability for PDE and PS (Derringer and Suich 1980).

D= (dPDEXdps)l/ ? (2)

where, D is the total desirability, dppg and dpg are individ-
ual desirability for PDE and PS. If both the quality

characteristics reach their ideal values, the individual de-
sirability is 1 for both. Consequently, the total desirability
is also 1. Our criteria included highest possible PDE and
PS of less than 200 nm.

2.16 In vitro drug release studies

In vitro release of exe from cPCL NPs was evaluated by the
dialysis bag diffusion technique in phosphate buffered saline
(PBS; pH 7.4) (Yang et al. 1999). The aqueous nanoparticulate
dispersion equivalent to 2 mg of exe was placed in a dialysis
bag (cut-off 12,000 Da; Himedia, Mumbai, India), which was
previously soaked overnight in water, cleaned next morning
and sealed at both ends. The dialysis bag was immersed in the
receptor compartment containing 50 ml of PBS (pH 7.4),
which was stirred at 100 rpm and maintained at 37+2 °C.
The receptor compartment was covered to prevent the evapo-
ration of release medium. Samples (2 ml) were withdrawn at
regular time intervals; the same volume was replaced by fresh
release medium and measured for amount of exe released
using previously described HPLC method (Breda et al. 1993;
Mendes et al. 2007). All the experiments were performed in
triplicate, and the average values were taken. Exe suspension
prepared in PBS (pH 7.4) was used as a control. The kinetic
analysis of the release data was done using Korsmeyer and
Peppas equation or the Power law equation (Peppas 1985):

M,/Mw — k" (3)

Where, M,/M.,, is the fractional amount of drug released, &
is the release constant, # is the release exponent, and ¢ is the
time of release.

2.17 Transmission electron microscope studies

A sample of NPs (0.5 mg/ml) was suspended in water and
bath sonicated for 30 s; 2 pl of this suspension was placed
over a Formvar-coated copper transmission electron micros-
copy (TEM) grid (150 meshes) and negatively stained with
2 pl uranyl acetate (1 %) for 10 min, allowed to dry, and the
images were visualized at 80 kV under TEM (FEI Tecnai G2
Spirit Twin, Czech Republic) and captured using Gatan
Digital Micrograph software.

2.18 Differential scanning calorimetric studies

All the samples were dried in desiccators for 24 h before
thermal analysis. Differential scanning calorimetry (DSC)
studies on pure exe, cPCL, physical mixtures of drug and
cPCL and drug-loaded NPs were performed in order to char-
acterize the physical state of drug in the NPs. Thermograms
were obtained using DSC model 2910 (TA Instruments, New
Castle, DE). Dry nitrogen gas was used as the purge gas
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Fig. 1 FTIR spectra of cPCL

through the DSC cell at a flow rate of 40 ml/min. Samples (4—
8 mg) were sealed in standard aluminum pans with lids and
heated at a rate of 10 °C/min from 20 to 300 °C. Data were
analyzed using TA Universal Analysis 2000 software (TA
Instruments, New Castle, DE).

3 Results and discussion

Successful polymerization of caprolactone to cPCL was con-
firmed by FTIR spectra of polymer (Fig. 1). The peak at
1,727.81 ¢cm™' corresponding to carboxylic group and
3,441 cm ' for OH stretching of COOH group confirmed
the conversion of caprolactone to cPCL (Zhang et al. 1994).
Molecular weight of cPCL was found to be 17,487+276 Da
using GPC (Fig. 2) which was found to be close to theoreti-
cally predicted molecular weight (17,814 Da). Thirteen
batches of exe-loaded cPCL NPs were prepared as per BBD
changing three independent variables, drug/polymer ratio
(X1), amount of polymer (X>), and volume of organic phase
(X3). Coded values and actual values of the three independent
variables, drug/polymer ratio (X;), surfactant concentration
(X3), and volume of organic phase (X3) are represented in
Table 1. Batches prepared using BBD were evaluated for
PDE and PS as the dependent variables and recorded in
Table 2. The obtained PDE and PS were subjected to multiple
regression to yield second-order polynomial equations (Eqs. 4
and 5, for PDE and PS, respectively). Linear coefficients (b,
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b,, and b5 of X7, X, and Xj, respectively) represent extent of
effect by changing individual variable. Positive or negative
sign in equation against different coefficients indicate increase
or decrease in individual-dependent response. The value of
coefficients against interactions terms (XX, X1.X3, and X5X3)
shows how the PDE and PS changes when two variables were
simultaneously changed. The values of all the 13 batches
showed wide variation of 23.94+1.25 to 82.68+1.31 % and
115.03£3.60 to 350.03+7.21 nm for PDE and PS, respective-
ly as shown in Table 2. This variation is reflected by the wide
range of coefficients of the terms representing the individual
and combined variables. The significance of each coefficient
of Egs. 4 and 5 was determined by student’s ¢ test and p value,
which are listed in Tables 3 and 4, respectively. The larger the
magnitude of the # value and the smaller the p value, the more
significant is the corresponding coefficient (Akhnazarova and
Kafarov 1982; Adinarayana and Ellaiah 2002). Small values of
the coefficients of the terms X;, X;:X5, X;.X3, and X, in Eq. 4
and X7, X1.X5, X1.X;, Xzz, and X32 in Eq. 5 implied that all these
terms were least contributing in the preparation of exe-loaded
cPCL NPs. These small values of coefficients had p>0.05.
Hence, these terms were neglected from the full model consid-
ering nonsignificance and reduced polynomial equations
(Egs. 6 and 7, for PDE and PS, respectively) were obtained
following regression analysis of PDE and PS. From reduced
model, it was evident that drug/polymer ratio did not affect any
of the dependent variables significantly (p>0.05). The interac-
tion effects of X;X, and X;X; was also found to be
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Fig. 2 Gel permeation chromatogram of cPCL showing molecular weight of synthesized polymer as 17,507 Da

Table 1 Coded values of the formulation parameters of exemestane-
loaded cPCL NPs

Coded values Actual values

Xi X (mg) X; (ml)
-1 1:15 50 6
0 1:20 100 8

1:25 150 10

X, drug/polymer ratio, X, amount of polymer (in milligrams), X;
volume of organic phase (in milliliters)

nonsignificant (p>0.05) for both PDE and PS. For PDE, the
quadratic effect of drug/polymer ratio, while for PS, the qua-
dratic effect of amount of polymer and volume of organic
phase were insignificant (Tables 3 and 4). PS distribution of
NPs and HPLC chromatogram of drug is shown in Figs. S-1
and S-2, respectively, in the Electronic supplementary material.

Y, =82.68+3.26X, -6.84X, + 13.25X3
+2.51X X, +6.63X X3

+7.98X,X5—4.27X7-10.98X5 - 15.07X5  (4)
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Table 2 Box—Behnken experi-

mental design with measured Sr. No. Xi X5 X; Y, (PDE, mean+SD) Y, (PS, mean+SD)

responses for exemestane-loaded

¢PCL NPs 1 0 -1 -1 56.32+1.738 224.10£7.213
2 0 -1 1 73.36+2.081 115.03+3.595
3 0 1 -1 23.94+1.254 263.67+4.549
4 0 1 1 72.89+1.437 256.27+5.387
5 -1 0 -1 57.93+1.728 284.77+4.879
6 -1 0 1 64.68+1.921 185.00+4.424
7 1 0 -1 48.71+£0.713 302.63+2.875
8 1 0 1 82.00+1.101 212.40+3.050
9 -1 -1 0 70.91+1.788 185.93+3.502
10 -1 1 0 54.94+1.806 340.43+8.334
11 1 -1 0 74.89+2.644 235.80+6.777
12 1 0 68.95+3.235 350.03+7.214
13 0 0 0 82.67+1.310 207.40+2.035

Y, =207.41 + 13.08.X,
+56.19X, —38.32X35—10.06 XX, +2.38X X3

+25.42X,X; + 51.04X7 + 19.61.X5 - 12.25X73 (5)

Y1 =77.79-6.84X, + 13.25X;
+7.98X,X3 - 9.14X3 — 13.23.X3 (6)

Yo =213.29 +56.19X,-38.32. X3 + 25.42X,X;
1 48.83X3 (7)
The results of ANOVA of the second-order polynomial

equation of PDE and PS are given in Tables 5 and 6, respec-
tively. Since the calculated F value (1.3911) is less than the

Table 3 Model coefficients estimated by multiple regression analysis
for PDE of exemestane-loaded cPCL NPs

tabulated F value (9.0135; «=0.05, V;=5, and V,=3) for
PDE, and calculated F value (2.2086) is less than the tabu-
lated F value (9.1172; «=0.05, V;=4, and V»,=3) (Bolton and
Bon 1997) for PS, it was concluded that the neglected terms
did not significantly contribute in the prediction of PDE and
PS. Thus, the results of ANOVA of full and reduced model
justified the omission of nonsignificant terms of Egs. 4 and 5.
When the coefficients of the three independent variables in
Egs. 6 and 7 were compared, the values for the variables X;
(13.25) for PDE and X, (56.19) for PS were found to be
maximum and hence these variables were considered to be
major contributing variables affecting the PDE and PS of the
NPs. The Fisher F test with a very low probability value
(Prmoder™>F=0.000001) demonstrated a very high significance
for the derived regression model.

The goodness of fit of the model was checked by the
determination coefficient (R?). In this case, the values of
the determination coefficients (R*=0.9681 and 0.9634 for

Table 4 Model coefficients estimated by multiple regression analysis
for PS of exemestane-loaded cPCL NPs

Factor Coefficients t stat p value Factor Coefficients t stat p value
Intercept 82.67 13.5711 0.0009* Intercept 207.4 8.7941 0.0031*
X 3.2596 1.5135 0.2274 X 13.0775 1.5684 0.2148
X> —6.8440 -3.1777 0.0482* X> 56.1863 6.7384 0.0067*
X3 13.2531 6.1536 0.0086* X3 —38.3225 —4.5960 0.0194*
X1X> 2.5067 0.8230 0.4708 X1X> —10.0588 —0.8530 0.4563
XX 6.6334 2.1779 0.1176 X153 2.3788 0.2017 0.8530
XX 7.9769 2.6190 0.0491* XX 25.4188 2.1556 0.0301*
X2 —4.2709 —1.0600 0.3669 X2 51.0381 3.2718 0.0467*
X2 —10.9755 —2.7240 0.0423* X2 19.6131 1.2573 0.2976
X2 —15.0662 -3.7392 0.0334* X2 —12.2444 —0.7849 0.4898

*p<0.05, significance level
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Table 5 Analysis of variance of full and reduced models for PDE of exemestane-loaded cPCL NPs

df Ss MS F R R? Adjusted R?
Regression FM 9 50,793.04 5,643.672 10.1466 0.9839 0.9681 0.8727
RM 4 46,924.29 11,731.07 16.9481 0.9457 0.8944 0.8416
Residual FM 3 1,668.632 556.2107
RM 8 5,537.387 692.1734

SSE2—-SSE1=5,537.387-1,668.632=3,868.755. No. of parameters omitted=5. MS of error (full model)=556.2107. F calculated=(SSE2—SSE1/
No. of parameters omitted)/MS of error (FM)=(3,868.755/5)/556.2107=1.3911

PDE and PS, respectively) indicated that over 96 % of
the total variations were explained by the model. After
reducing the equation, the values of the determination
coefficients (R*=0.8944 and 0.8558 for PDE and PS,
respectively) indicated that over 85 % of the total vari-
ations were explained by the model. High R® values of
full model as compared with reduced model are possibly
due to the number of factors included. The more the
number of factors, the more is the R®> value, even if
the factors are not significant (Montgomery 2004). The
values of adjusted determination coefficients (adj R>=
0.8727 and 0.8538 for PDE and PS, respectively) were
also very high (>85 %) indicating high significance of
the model. Moreover, the high values of correlation co-
efficients (R=0.9839 and 0.9815 for PDE and PS, re-
spectively) signify an excellent correlation between the
independent variables (Box et al. 1978). All the above
considerations indicate an excellent adequacy of the de-
rived regression model (Akhnazarova and Kafarov 1982;
Adinarayana and Ellaiah 2002; Box et al. 1978; Yee and
Blanch 1993).

3.1 Contour plots

Values of Xj, X5, and X5 were computed for PDE and PS,
and contour plots were established between X; vs. X5, X vs.
X;, and X, vs. X3 at fixed level (+1) of third variable as
shown in Figs. 3 and 4 for each PDE and PS, respectively.
Contour plots showed that PDE was greatly dependent on
drug:polymer ratio and amount of polymer (Fig. 3a). PDE
was found to be maximum at high level of X; and mid- to

high level of X,. PDE was found to be more than 60 % in the
whole range of —1 to +1 for both X; and X, at +1 level of X5.
Contour plot of drug/polymer ratio vs. volume of organic
phase showed maximum PDE of more than 70 % at 0 to +1
value of X and +0.1 to +1.0 value of X3 at +1 level of X,
(Fig. 3b). PDE remained to be less than 80 % in the whole
range (—1 to +1) of both variables. Contour plot of amount
of polymer vs. volume of organic phase at +1 level of
drug/polymer ratio indicated PDE of more than 80 % when
X, varied from —0.5 to 0.9 level and X5 from 0 to +1.0 level
(Fig. 3c). Lowest PS of about 175 nm was observed at —0.5
to 0 level of drug/polymer ratio, —0.8 to —1.0 level of
amount of polymer at +1 level of volume of organic phase
(Fig. 4a). When drug/polymer ratio was varied with volume
of organic phase, PS was less than 275 nm at —0.5 to 0.5
level of X; and 0.5 to 1.0 level of X3 at +1 level of X5
(Fig. 4b). From Fig. 4c, it is evident that at highest level of
drug/polymer ratio (+1.0), PS increased as the amount of
polymer increased (—1.0 to +1.0), and volume of organic
phase decreased (+1.0 to —1.0), PS increases. It was con-
cluded from the contours that high drug/polymer ratio, low
amount of polymer, and highest volume of organic phase
were required for preparation of exe NPs with highest PDE
and lowest PS.

3.2 Response surface plots

Response surface plots are very important tools in learning
both the main and interaction effects of the independent vari-
ables. Response surface plots were plotted between X; vs. X5,
Xi vs. Xz and X, vs. Xj at fixed level (+1) of third variable as

Table 6 Analysis of variance of full and reduced models for PS of exemestane-loaded cPCL NPs

df SS MS F R R? Adjusted R?
Regression FM 9 2,935.152 326.128 8.7886 0.9815 0.9634 0.8538
RM 5 2,607.316 521.4632 8.3118 0.9251 0.8558 0.7528
Residual FM 3 111.3241 37.1080
RM 7 439.1605 62.7372

SSE2—SSE1=439.1605—111.3241=327.8364. No. of parameters omitted=4. MS of error (full model)=37.1080. F calculated=(SSE2—SSE1/No.

of parameters omitted)/MS of error (FM)=(327.8364/4)/37.1080=2.2086
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Fig. 3 Contour plots showing effect of a X| vs. X (at +1 level of X3), b X| vs. X5 (at +1 level of X5), and ¢ X5 vs. X3 (at +1 level of X;) on PDE of

exe-loaded cPCL NPs

shown in Figs. 5 and 6 for PDE and PS respectively. PDE was
found to first increase with increase in amount of polymer, and
further increase caused decrease in PDE. PDE was maximum
at highest level of drug/polymer ratio and mid-level of amount
of polymer (Fig. 5a). The volume of organic phase had more
significant effect on the outcome of PDE. PDE decreased
sharply with decrease in volume of organic phase. However,
PDE was not found to be much influenced by changing the
drug/polymer ratio (Fig. 5b). PDE was found to decrease with
increase in amount of polymer. Decrease in volume of organic
phase and increase in amount of polymer resulted in overall
decrease in PDE (Fig. Sc).

Response surface plot of drug/polymer ratio vs. amount
of polymer showed nonlinear behavior. With decrease in
drug/polymer ratio, no significant change in PS was ob-
served. Simultaneous increase in both drug/polymer ratio
as well as polymer concentration showed increased PS.
Increase in PS was more influenced by change in amount

o

of polymer than drug/polymer ratio (Fig. 6a). Response
surface plot between drug/polymer ratio and volume of
organic phase showed no significant change in PS
(Fig. 6b). Plot between amount of polymer and volume of
organic phase showed increase in PS when amount of poly-
mer increased and volume of organic phase decreased at the
same time (Fig. 6¢).

3.3 Desirability criteria

From the results, the optimum levels of independent vari-
ables were screened out by regression analysis. Since PDE
and PS were taken into consideration simultaneously, the
results were unable to attend both the dependent variables at
a time. The batch with smallest PS of less than 175 nm
exhibited only about 69-71 % PDE (at X;=-0.5 to 0, X,=—0.8
to —1.0, and X3=+1.0) while that with highest PDE of more than
80 % had PS of 210 to 300 nm (at X;=+1, X,=-0.5 to 0.9, and

0

Amount of Polymer (X2)

Volume of Organic Phase (X3)

Volume of Organic Phase (X3)

Drug:Polymer Ratio (X1)

Drug-Polymer Ratio (X1)

T I
o0oo o050 Lm .1.00

Amount of Polymer (X2)

Fig. 4 Contour plots showing effect of a X vs. X5 (at +1 level of X3), b X vs. X5 (at +1 level of X5), and ¢ X5 vs. X; (at +1 level of X7) on PS of

exe-loaded cPCL NPs
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Fig. 5 Response surface plot showing effect of a X; vs. X, (at +1 level of X3), b X; vs. X3 (at +1 level of X) and ¢ X; vs. X3 (at +1 level of X7) on

PDE of exe-loaded cPCL NPs

X;3=0to +1.0) (Figs. 3 and 4). Hence, desirability criteria were
used to find out optimized formulation parameters. The
desirability criteria were obtained using Design Expert soft-
ware (version 8.0.3). Our criteria included maximum PDE
and PS not more than 200 nm. The optimum formulation
offered by the Design Expert 8.0.3 software based on
desirability was found at 0.43, —0.68, and 0.27 level of
X1, X5, and X3 respectively. The calculated desirability factor
for offered formulations was 1, which indicated suitability of
the designed factorial model. The results of dependent vari-
ables from the software were found to yield 83.96 % PDE
and 180.51 nm PS at these levels.

3.4 Checkpoint analysis and NE

Three batches were prepared for check point analysis and
evaluated for PDE and PS as shown in Table 7. Results
indicated that the measured response was more accurately
predicted by regression analysis which was proved by lower
NE value of regression analysis (0.04167 for PDE and
0.02591 for PS). Data analysis using student’s ¢ test revealed
that there was no statistically significant difference (p<0.05)
between experimentally obtained values and predicted
values by regression analysis and hence, it confirms the

utility of the established contour plots and reduced polyno-
mial equation in the preparation of NPs.

3.5 Zeta potential

Zeta potential gives information to predict the storage sta-
bility of colloidal dispersions (Thode et al. 2000). High
negative values of the zeta potential indicate that the elec-
trostatic repulsion between particles will prevent their ag-
gregation and thereby stabilize the nanoparticulate
dispersion (Feng and Huang 2001; Joshi et al. 2010). The
zeta potential values ranged between —19.6 and —34.0 mV
for all 13 formulations. The surfactant concentration affect-
ed the charge on the particle. It was seen that as the surfac-
tant concentration was increased from 0.25 to 0.75 %, there
was a decrease in the zeta potential value. This is possibly
because with increase in concentration of non-ionic surfac-
tant, total charge on the particle decreases due to increased
amount of surfactant coating which also resulted in in-
creased PS (Redhead et al. 2001). However, change in
polymer concentration had no effect on zeta potential
values. The optimized batch of exe-loaded cPCL NPs was
found to have zeta potential of —33.84+2.1 mV. Zeta poten-
tial values in the —15 to —30 mV are common for well-

Fig. 6 Response surface plot showing effect of a X; vs. X5 (at +1 level of X3), b X| vs. X5 (at +1 level of X5), and ¢ X5 vs. X5 (at +1 level of X}) on
PS of exe-loaded cPCL NPs
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Table 7 Check point analysis, ¢

test analysis, and normalized er- Batch X X X3 PDE PS
ror determination No.
Observed  Predicted Observed Predicted
(average) (average)
1 =1 (1:15) —0.3 (85 mg) 0.5 (9 ml) 84.14 85.93 225.6 222.29
2 0 (1:20) 0.2 (110 mg) -0.8 (6.4 ml) 58.63 57.08 256.4 251.12
3 1(1:25) —0.7 (65 mg) 0.8 (9.6 ml) 65.72 64.13 176.9 177.9
Lealculated 0.7267 0.3057
ltabulated 2.9199 2.9199
Normalized error 0.04167 0.02591

stabilized NPs (Musumeci et al. 2006). Hence, it was con-
cluded that the NPs would remain physically stable.

3.6 Lyophilization and optimization of cryoprotectants

Cryoprotectants are important in retaining PS upon recon-
stitution. Freeze drying causes increase in PS of NPs after
lyophilization due to aggregation of particles during the
process (Abdelwahed et al. 2006). If these aggregates are
not separated during re-dispersion, it may cause instability
to the system. In this study, different cryoprotectants (treha-
lose, sucrose, and mannitol) were used in different ratios
(1:1, 1:2, 1:3, and 1:4) and PS was recorded as shown in
Table 8. Initial PS of NPs was found to be 180.5 nm. The
ratio of PS (after lyophilization (Sf) and before lyophiliza-
tion (S;)) was found to be lowest (1.22) for sucrose in 1:2
ratio and considered optimum. Trehalose also showed less
increase in PS after re-dispersion (S¢/S; ratio of 1.39).
Trehalose and sucrose at 1:1, 1:2, and 1:3 ratio showed less
S¢/S; ratio indicating good re-dispersibility with PDI less
than 0.2. PDI is a measure of dispersion homogeneity and

Table 8 Effect of cryoprotectants and their concentration on PS of
lyophilized NPs after re-dispersion in distilled water

Cryoprotectant Ratio Final average PS in nm (Sy) S¢S;
Trehalose 1:1 254.0 1.41%
1:2 250.6 1.39%
1:3 288.4 1.60*
1:4 3159 1.75
Sucrose 1:1 232.4 1.29%
1:2 220.7 1.22%
1:3 273.5 1.52%
1:4 298.1 1.65
Mannitol 1:1 275.9 1.53
1:2 290.2 1.61
1:3 318.0 1.76
1:4 348.5 1.93

#Good re-dispersibility

@ Springer

usually ranges from 0 to 1. Values close to O indicate a
homogeneous dispersion while those greater than 0.3 indi-
cate high heterogeneity (Ahlin et al. 2002).

3.7 Transmission electron microscopy

TEM image of exe-loaded cPCL NPs is shown in Fig. 7. The
image reveals that the particles were discrete, round and
uniform in shape with diameters in the range of 80—-100 nm.
The higher hydrodynamic diameter of NPs achieved by DLS
analysis as compared with the size obtained by TEM analysis
may be contributed by the hydration of the surface associated
Poloxamer (Das and Sahoo 2012; Misra and Sahoo 2010).

3.8 Differential scanning calorimetry

DSC is a helpful technique for investigation of thermal
properties of a formulation, providing information about

Fig. 7 TEM image of exe-loaded cPCL NPs
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Fig. 8 DSC thermogram of exe-loaded cPCL NPs (a), exe (b), cPCL
(¢), sucrose (d), and physical mixture (e)

physicochemical state of drug in the delivery system. DSC
thermograms of pure exe, cPCL polymer, sucrose, physical
mixture, and exe-loaded cPCL NPs are shown in Fig. 8.
Pure exe showed an endothermic melting peak at 182.56 °C
indicating its crystalline nature. cPCL showed endothermic

peak at 47.65 °C, which was lower than the reported melting
point of PCL (60 °C) It has been reported that modifications
in polymer or polymer structure will change its melting
point (Orozco-Castellanos et al. 2011). Thus, the lowering
of melting point of PCL in cPCL can be taken as an indica-
tion of its carboxylation, which was also confirmed by FTIR
and GPC. There was no peak of exe in the thermogram of
NPs indicating that exe may be existing as a molecular
dispersion or in an amorphous phase in the polymer matrix
(Kashi et al. 2012). It is reported that no detectable endo-
therm will be observed if the drug is present in a molecular
dispersion or solid solution state in the polymeric NPs
(Dubernet 1995). However, as the drug is crystalline, total
disappearance of its peak in the thermogram of the NPs
indicate towards its existence as a molecular dispersion
rather than amorphous form.

3.9 In vitro drug release studies

In vitro release of exe from plain drug suspension and NPs
is shown in Fig. 9. Within 6 h, 99.08+0.88 % drug release
occurred from plain drug suspension, whereas only 26.36+
0.67 % drug release occurred from NPs, reaching 44.89+
1.30 % after 120 h and 70.67+1.76 % after 240 h, indicating
sustained release. Thus, it was clear that incorporation of
exe in cPCL NPs could significantly sustain its release. The
drug release from NPs followed biphasic release model with
an initial burst release for about 6 h followed by sustained
release for more than 240 h. The burst release may be
attributed to the drug molecules associated near particle
surface (Seju et al. 2011). Also, particles of nanosize range
lead to a shorter average diffusion path for the matrix
entrapped drug molecules, thereby causing faster diffusion
(Shah et al. 2009; Mainardes and Evangelista 2005). After
initial burst release, the release rate decreased, reflecting the
release of drug entrapped in the polymer matrix. The release
rate in the second phase was assumed to be controlled by

buffered saline (pH 7.4). The
values represent mean+SD of
three batches
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diffusion rate of drug across the polymer matrix (Corrigan
and Li 2009). The data obtained from in vitro drug release
studies was fitted to Korsmeyer—Peppas model. The release
constant (k) of the plot of log M,/M,, versus log ¢ for NPs
was found to be 0.9519 with value of release exponent (n) as
0.3057. The n value is the release exponent which charac-
terizes the transport mechanism and if its value is less than
0.5, it indicates Fickian release (Peppas 1985; Yadav and
Sawant 2010). Hence, it was concluded that the release of
exe from NPs was by Fickian diffusion.

4 Conclusions

Caprolactone was successfully polymerized in presence of
succinic acid to PCL by ring opening polymerization. The
present study demonstrated the use of Box—Behnken design as
data analysis approach to understand the effect of various
formulation variables in the prediction of PDE and PS of
exe-loaded cPCL NPs. No significant difference between
predicted and observed responses was observed in check point
analysis with very less NE. The optimized cPCL NPs of exe
had high entrapment and small PS. DSC studies indicated
absence of any interaction of exe with cPCL. These NPs
exhibited sustained release and followed Fickian diffusion
based release kinetics. This sustained release delivery system
of exe would reduce the side effects associated with the
conventional cancer therapy by reducing dosing frequency
and systemic side effects. Thus, our results prove that desir-
able goals can be achieved by systematic statistical approach
in shortest possible time with reduced number of experiments.
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