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Abstract: Advances in nanotechnology have unlocked exclusive and relevant capabilities that are
being applied to develop new dental restorative materials. Metal oxide nanoparticles and nan-
otubes perform functions relevant to a range of dental purposes beyond the traditional role of filler
reinforcement—they can release ions from their inorganic compounds damaging oral pathogens,
deliver calcium phosphate compounds, provide contrast during imaging, protect dental tissues
during a bacterial acid attack, and improve the mineral content of the bonding interface. These capa-
bilities make metal oxide nanoparticles and nanotubes useful for dental adhesives and composites, as
these materials are the most used restorative materials in daily dental practice for tooth restorations.
Secondary caries and material fractures have been recognized as the most common routes for the
failure of composite restorations and bonding interface in the clinical setting. This review covers the
significant capabilities of metal oxide nanoparticles and nanotubes incorporated into dental adhesives
and composites, focusing on the novel benefits of antibacterial properties and how they relate to their
translational applications in restorative dentistry. We pay close attention to how the development
of contemporary antibacterial dental materials requires extensive interdisciplinary collaboration to
accomplish particular and complex biological tasks to tackle secondary caries. We complement our
discussion of dental adhesives and composites containing metal oxide nanoparticles and nanotubes
with considerations needed for clinical application. We anticipate that readers will gain a complete
picture of the expansive possibilities of using metal oxide nanoparticles and nanotubes to develop
new dental materials and inspire further interdisciplinary development in this area.

Keywords: antibacterial; adhesives; bioactivities; nanoparticles; resin composite

1. Introduction

Dental caries has been classified as the most common oral disease as it affects around
60–90% of adolescents and 100% of grownups around the world [1,2]. Dentists use a
variety of restorative materials to treat dental decay cavities. Currently, dental restora-
tions, created with dental adhesives and composites, are the most used materials for this
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purpose [3]. However, the inherent composition of dental adhesives and composites has
a high affinity for dental plaque (biofilms) accumulation, leading to the recurrence of
cavitation (secondary caries) after the tooth has been restored with these materials [4].
Additionally, resin-based restorative materials are highly susceptible to degradation, which
may compromise the strength of such dental restorations over time [5]. As a result, sec-
ondary caries and restoration fractures are the most common reasons for the premature
failure of dental restorations created with dental adhesives and composites [6] (Figure 1).
The restorations often need to be replaced within 5–7 years, leading to more extensive
restorations weakening the tooth [7–10].
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Figure 1. Clinical photos illustrate the two most common pathways for the failure of resin-based materials, secondary caries
(A) and restoration fracture (B). (A) The arrow in the photo shows the lesion’s location at the tooth-restoration interface
presented by yellow to brown discoloration. (B) The arrow in the photo shows the fracture location at the proximal wall of
the tooth structure, most probably due to the high mechanical load induced by the masticatory force.

New investigations on restorative materials address the use of metal oxide nanoparti-
cles and nanotubes to impart antibacterial properties and enhance the mechanical proper-
ties of materials, such as dental bonding agents, cements, and resin composites. Up to date,
nanostructures present two pathways to impart an antibacterial effect into resin-based ma-
terials: the release of ions that interact with oral pathogens inhibiting bacterial growth and
the release of ions that decrease tooth demineralization [11–13]. However, when combining
an antibacterial agent with resin-based materials, several factors must be considered to
avoid turning down the materials’ mechanical properties or increasing their toxicity [14].

As the range of applications of metal oxide nanoparticles and nanotubes has dra-
matically increased over time, they have unsurprisingly reached the dental field. Here,
we primarily focus on the contributions of metal oxide nanoparticles and nanotubes to
restorative dentistry, emphasizing the capability to convey the dental adhesives and com-
posites with antibacterial activity. We begin with a discussion of the ongoing burden of the
premature failure of composite restorations. From there, we provide a general discussion
on the use of nanotechnology to improve the field of restorative dentistry. We then review
the cutting-edge investigations of metal oxide nanoparticles and nanotubes incorporated
into dental materials. The following Section summarizes key considerations for designing
new dental materials meant to reduce premature failure. Finally, we round out our discus-
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sion on these nanostructures with a perspective of future directions and challenges for the
clinical application. Overall, we anticipate that readers will gain a greater perspective on
the range of possibilities available for metal oxide nanoparticles and nanotubes and the
need for a vibrant interdisciplinary collaboration to fully translate this potential into new
dental materials.

2. How Long Do Composite Restorations Last?

One of the objectives of restorative treatment is the faithful reproduction of the charac-
teristics of natural teeth, such as the color and shape. The search for materials for direct
restoration with properties similar to the hard dental tissues led to the development of
composite resins. With the advent of adhesion to hard dental tissues, the resin composites
were also improved with adhesive systems.

With the introduction of enamel acid etching by Buonocore in 1955 [15], there was
a paradigm shift in restorative dentistry. Previously, the restorative material defined the
cavity preparation, especially using dental amalgam. Currently, it is possible to work with
a minimally invasive perspective using adhesive systems and composite resins. Based on
that, the tooth cavity can be prepared considering only the irreversibly compromised dental
tissue since the material will be bonded to the sound tooth, and additional retention for
the materials is not required. In addition, the resin composites can reinforce the remaining
tooth structure, provide a greater possibility of restoration repair, the expansion of aesthetic
options, and expansion of clinical indications.

Regarding the longevity of composite resin treatments on posterior teeth, a review
selected clinical trials that investigated restorations during at least five years of follow-up,
published between 1996 and 2011. A total of 90% of clinical studies indicated an annual
failure rate between 1% and 3% for Class I and II, depending on factors such as the type and
location of the tooth, operator, and socioeconomic, demographic, and behavioral elements.
The main reasons for long-term failure were recurrent caries and fractures, related to caries
risk and parafunctional habits, respectively [16].

Another article on the longevity of posterior teeth restorations performed a systematic
review with a meta-analysis with longitudinal studies with at least five years of follow-up
between 1990 and 2013 [17]. The development of caries as a cause of failure of restorations,
specifically composite resin, is the essential factor starting five years after restoration
placement. In this scenario, patients at high risk of caries had an annual failure rate of 4.6%
in ten years, while those at low risk of caries showed a value of 1.6% in the same period.
Thus, the annual failure rate of patients at high risk of caries was almost three times higher
than those at a low caries risk. This same study showed that, while low-risk patients had
about a 60% survival of restorations, those at high risk of caries had a survival of only 35%
in 20 years [17].

A 29-year follow-up study revealed a cumulative survival rate of 91.7% at six years,
81.6% at 12 years, and 71.4% at 19 years. The average annual failure rate was 1.92% [18].
Another study with an extended follow-up showed a similar failure rate and survival
time [19]. Class II restorations were evaluated, totaling an annual failure rate of 1.6%.
In this context, 54% of failures were caused by recurrent caries. While low-risk patients
showed a probability of the survival of restorations of 66%, patients at high risk of caries
showed a probability of only 35% [19].

Therefore, the survival of restorations depends not only on the material, but also
on factors related to the patient and the operator. As caries is a biofilm-sugar-dependent
disease, with social class, income, knowledge, education, and behavior as factors that
modify the severity of the disease, clearly patient-centered clinical approaches should
always focus on the maintenance and greater longevity of restorations [19].

As for the longevity of treatments with composite resin on anterior teeth, the results
are also satisfactory. A retrospective longitudinal clinical study that considered only
permanent tooth restorations performed by general practitioners showed an annual failure
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rate of 4.6% in ten years of follow-up for approximately 70,000 anterior tooth restorations
evaluated [20].

In general, composite resins and dental adhesives support a long-lasting and reliable
treatment, the leading choice for anterior and posterior tooth restoration. However, factors
related to patients and dentists influence the outcome. Therefore, the development of
restorative materials with improved therapeutic properties, such as antimicrobial activity
and bioactivity, has been researched. Thus, it is expected that these materials will help
maintain treatments, especially for patients in a risk group.

Several approaches were followed to integrate bioactivity into resin-based restora-
tive materials, including contact-killing and protein-repelling agents, inorganic metallic
particles, and ion-releasing materials [3,4,21–23]. Contact-killing Quaternary ammonium
methacrylates (QAMs) were copolymerized in resins to accomplish antibacterial activi-
ties [13,24,25]. With the increase in the alkyl chain length (CL) in its chemical structure,
the antibacterial capability of QAMs could be increased [21]. A salivary proteins coating
on the surface of the resin provides the medium for bacterial adhesion to the compos-
ite [26,27]. Thus, it is important to repel the salivary proteins from the composite surface.
2-methacryloyoxyethyl phosphorylcholine (MPC) is a common biopolymer with phospho-
lipid polar groups [28,29]. Resins containing MPC had favorable protein-repellent proper-
ties, which enhanced the inhibition efficacy of the resins against cariogenic biofilms [30,31].

Release-based antibacterial materials such as silver nanoparticles (Ag) show the abil-
ity to retain a long-lasting antimicrobial effect [32,33] and have less bacterial resistance
than antibiotics [34]. Several studies had integrated nanoparticles of silver (Nag) into
dental composites, which effectively inhibited the growth of Streptococcus mutans [35].
For remineralization purposes, bioactive composites enclose nanoparticles of amorphous
calcium phosphate (NACP), which exhibited long-lasting calcium (Ca) and phosphate (P)
ion releases [36–38]. The resins containing NACP have an acid-neutralization capability to
shield the tooth surfaces from acid challenges. In addition, the released ions stimulated
tooth remineralization, resulting in mineral regeneration in the tooth lesions [36–38]. It
is essential to mention that some of these antibacterial agents showed limited long-term
effects. In contrast, others showed a satisfactory ability to reduce tooth demineralization,
inhibit artificial secondary caries, and improve long-term bond strength. However, most
of the available studies lack the clinical evaluation for those combined materials. There-
fore, it is highly recommended to continue developing those antibacterial materials and
investigate their performance clinically.

In addition to the fact that composite resins can be modified to provide bioactivity
and antibacterial activity, adhesive systems also play an essential role in maintaining
composite resin restorations. Therefore, these materials are also being modified. The
most extensive study evaluating the clinical efficacy of adhesive systems was published in
2014. The study is a systematic review of papers in which adhesive systems were used in
randomized clinical trials in non-carious cervical lesions from 1950 to 2013. The authors
divided the adhesive systems into three-step conventional, two-step conventional, two-step
self-etching, and one-step self-etching. The self-etching products were further divided
according to pH into light and moderately strong, with pH ≥ 1.5; strong, with pH < 1.5 [39].
The lowest annual failure rate was observed for the two-step self-etching adhesive system
with a moderate pH (2.5 (±1.5)), followed by the conventional three-step adhesive system
(3.1 (±2)) and the one-step self-etching adhesive system with a moderate pH (3.6 (±4.3)),
with no statistically significant difference between these systems. Higher annual failure
rates were observed for strong one-step self-etching adhesive systems (5.4 (4.8)), two-
step conventional adhesive system (5.8 (4.9)), and strong two-step self-etching adhesives
(8.4 (7.9)), with no statistical difference between these three adhesive systems [39].

Regarding universal adhesive systems, the follow-up time is short compared to other
systems. However, there are good results so far. The study with the most extended
follow-up randomized clinical trial dates back to 2020 [40], and analyzed the survival of
restorations in non-carious cervical lesions using a universal adhesive and different acid
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etching strategies. After five years, retention/fracture rates were between 81.4 and 93%.
The purpose of reporting these data is to highlight the importance of dental adhesives
in improving the survival rate of resin composite restorations. As a result, several inves-
tigations were reported to modify dental adhesives to enhance their performance and
impart bioactivity.

3. Nanotechnology in Dentistry

Nanotechnology is defined as the presentation of scientific knowledge to employ
and control matter primarily in the nanoscale to obtain the benefit of size and structure-
dependent properties and phenomena distinct from those connected with individual atoms,
molecules, or extrapolation from bigger sizes of the same material [41]. Recently, this tech-
nology has been utilized in medicine. It is known as nanomedicine, which has broadened
the horizons toward new pathways in human diseases diagnosis and treatment [42]. The
dental field was also included in this era using nanoparticles [43]. They were used in dental
fillings, dental implants, caries prevention, and teeth whitening [44].

Nanoparticles were inserted into many products to improve the properties of resin-
based composites, such as polishability and gloss stability. The size of these nanoparticles
ranges from 1 nm to 100 nm [45]. As a result, they were promising in antibacterial therapies
due to their high chemical reactivity, unique ultra-small size, and a large surface area
to mass ratio [46]. In addition to the elevated charge density, this large surface area has
assisted the nanoparticles in interacting with the negatively charged surface of bacterial
cells to a superior extent, boosting the antimicrobial activity [47]. Additionally, combining
the nanoparticles with polymers or coating them into biomaterial surfaces increased their
antimicrobial properties [46].

Nanoparticles investigated for dental applications were divided into metal and organic
particles. They showed a broad spectrum of bactericidal properties that led to expansion
in their use [48]. As a result, a plethora of investigations was designed for this purpose.
Studies had divided the antibacterial mechanisms of nanoparticles into (1) cell lysis due to
the interaction with the peptidoglycan cell wall and membrane, (2) disturbance in protein
synthesis due to bacterial interaction with proteins, and, lastly, (3) the prevention of DNA
replication when the bacterial cytoplasms interact with DNA [49–51]. Moreover, the use
of nanoparticles was implemented to improve the mechanical and physical properties of
restorative materials, such as restorations’ strength and optical properties.

4. The Use of Metallic Oxide Particles in Restorative Dentistry

Metal oxide particles are widely used in industry and medical fields. These particles
are mainly manipulated in size, shape, crystallinity, and functionality to obtain desirable
properties in the synthesized material [52]. Moreover, despite the size scale, the high
density of corners and edges of these metal oxides provides a wide range of desired
chemical and physical properties [53]. In restorative dentistry, metallic oxide particles
have gained much attention, as they can be used to improve the materials’ properties and
bioactivity. Table 1 summarizes the most recent findings related to the use of different
metal oxides in restorative dentistry.

Table 1. The list and potential applications of metallic oxide compounds used in restorative dentistry.

Metallic Oxide Potential Applications

Titanium Dioxide (TiO2)

- TiO2 nanoparticles improved the antibacterial properties against caries-related
pathogens [54]

- TiO2 enhanced the hardness and strength of resin-based materials [55]
- TiO2 enhances the polymerization kinetics [56] and photo-catalytic activities [57]

Zinc Oxide (ZnO)

- ZnO nanoparticles improved the antibacterial properties against single [58] and
multispecies biofilms [59]

- Tetrapod-like zinc oxide whisker improved the mechanical properties of the designed
resin composite [60]
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Table 1. Cont.

Metallic Oxide Potential Applications

Copper Oxide (CuO)
- Copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC)-based resins reduced the

growth of S. mutans biofilms [61] and improved the mechanical and polymerization
properties [62]

Iron Oxide (Fe2O3) - Fe2O3 improved the µ-tensile [63] and shear bond strength [64] of a dental adhesive

Cerium Oxide (CeO2) - CeO2 significantly improved the radiopacity of dental adhesive [65], which can
facilitate the differentiation between secondary caries and the adhesive layer

Tantalum Oxide (Ta2O5)
- Ta2O5 improved the fracture toughness of the designed materials [66,67]
- Ta2O5 improved the radiopacity of a dental adhesive [68]
- Ta2O5 quantum dots in dental adhesive inhibited the growth of S. mutans biofilm [69]

Niobium Pentoxide (Nb2O5) - Nb2O5 improved the radiopacity of a dental adhesive [70]

Zirconium Oxide (ZrO2) - ZrO2 can enhance the optical properties of resin composite restorations [71]
- ZrO2 improved µ-tensile bond strength of dental adhesive [72]

4.1. Titanium Dioxide (TiO2)

Nanostructures of titanium dioxide (TiO2) are one of the most abundant emerged ele-
ments in numerous medical and nonmedical technology fields [73]. TiO2 is a poorly soluble
white material with different medical, pharmaceutical, and cosmetics applications [74–76].
Two crystalline structures form TiO2, rutile and anatase. The rutile form of TiO2 is less
active than the anatase form regarding cytotoxic properties and photo-catalytic activity [76].
Mixed polymorphs of TiO2 have demonstrated improved outcomes for biomedical use
than the use of one crystal. Titanium dioxide nanostructures are cost-effective non-toxic
substances with a wide range of potential uses [76]. Nanostructured TiO2 was approved
for use in food and drug-related products by the American Food and Drug Administration
(FDA) in 1966 [77].

In dentistry, caries is one of the most widespread chronic diseases worldwide. Dental
caries affects the oral and general health and creates considerable public healthcare and
economic burdens [78]. To overcome this difficulty, TiO2 nanoparticles have been used
in dental resin. According to previously published studies, the use of TiO2 nano in the
resin matrix has yielded a potent antibacterial result in composites, sealants, bases, liners,
adhesive, and cement [73,79]. In research conducted by Sodagar et al. [54], they evaluated
the antimicrobial and mechanical properties of resin campsites modified by adding different
concentrations of nanoparticles of TiO2 (0%, 1%, 5%, and 10%) to be used as an adhesive.
They found that all concentrations of TiO2 nanoparticles significantly reduced the colony
counts of S. mutans and Streptococcus sanguinis.

Moreover, all experimental groups had a significant effect on the formation and
extension of the inhibition zone. Thus, the shear bond strength of composite containing 1%
and 5% nanoparticles was still in an acceptable range. On the other hand, the composite
with 10% nanoparticles showed significantly lower results than other groups.

TiO2 nanoparticles are extremely small particles that are difficult to disperse in an or-
ganic solvent and can agglomerate easily in practical uses [80]. To overcome this drawback,
Xia et al. [55] modified TiO2 nanoparticles with organosilane allyltriethoxysilane (ATES)
and blended them into dental resin-based composites. They found that surface coatings
with the organosilane ATES improved the linkage and dispersion of TiO2 nanoparticles
within a resin-based composite. Moreover, the microhardness and flexural strength of
the dental resin-based composite were improved by adding the modified nanoparticles
compared to the control.

Another promising feature of TiO2 nanoparticles is the unique photo-catalytic activ-
ities (PCAs). PCAs make TiO2 nanoparticles attractive to be used in high-performance
dental resin-based materials [1–4]. TiO2 nanoparticles use energy from light irradiation
to generate electrons and convert water and oxygen into powerful free radicals and oxi-
dation agents [81]. Sun et al. [56] incorporated acid-modified nanoparticles of TiO2 into a
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dental adhesive at a mixture of bis-phenol-A-dimethacrylate (BisGMA) and triethylene
glycol dimethacrylate (TEGDMA) (mass ratio 1:1) at mass fractions (0%, 0.02%, 0.03%,
0.05%, 0.06%, 0.08% and 0.5%). The distribution of the acid-modified TiO2 nanoparticles in
ethanol was found to agglomerate with relatively narrow sizes. By adding a small amount
of acid-modified TiO2 nanoparticles, the outcome of the resin mixture was enhanced con-
siderably. The hardness and elastic modulus of the BisGMA and TEGDMA resins were
improved significantly by adding a 0.06% mass fraction of modified TiO2 nanoparticles by
around 48% for the elastic modulus and more than double for the hardness compared to
nanoparticle-free resin. The degree of resin conversion was improved by approximately
5% by adding a 0.08% mass fraction of nanoparticles. The mean shear bond strength was
improved by about 30% when a 0.1% mass fraction of nanoparticles was incorporated.

Another study by Sun et al. [57] found that the functionalization of TiO2 nanoparticles
improved photo-catalytic activities in producing free radicals under visible light irradiation.
TiO2 nanoparticles at a tiny fraction in the resins can achieve a dramatic performance
enhancement. Moreover, through the functional groups, including carboxyl and hydroxyl
groups, their uses can be tuned.

4.2. Zinc Oxide (ZnO)

Zinc oxide (ZnO) is a white inorganic compound insoluble in water with a ZnO
formula [82]. In dentistry, ZnO macro and micro-sized particles have been examined
as an inorganic filler in restorative materials. Composites, adhesive resins, sealers, and
cement are among the materials studied by ZnO [59,83]. Smaller particles of ZnO nanopar-
ticles demonstrated a superior antimicrobial activity than larger particles against both
Gram-negative and Gram-positive bacteria [84]. In addition, nano-sized particles have a
high surface area to volume ratio; therefore, they have a higher percentage of atoms on
the material’s surface, leading to an increased surface reactivity [85]. Nano-sized ZnO
particles through bioactivity can enable mineral growth and negatively affect bacteria
growth [85–87]. Consequently, their biological properties could be mainly related to their
higher reactivity and low dimensionality.

In research conducted by Garcia et al. [59], nano-sized ZnO was incorporated at 0,
2.5, 5, and 7.5 wt.% in an experimental dental adhesive (Figure 2A). They found that
ZnO nanoparticles at 7.5% demonstrated a substantial bacterial reduction against a 48h
mature saliva-derived oral microcosm biofilm. The chemical and mechanical properties
of the dental adhesive were affected by the addition of 7.5 wt.% of ZnO nanoparticles.
Nevertheless, the flexural strength was within the ISO recommended range, and the degree
of conversion was comparable to the reported values of commercial adhesives [59]. Another
study evaluated the mechanical properties and the antibacterial activity of resin composites
containing 0–5 wt.% ZnO nanoparticles against S. mutans. It found that the addition of
all ZnO nanoparticles with a concentration up to 5 wt.% into a flowable resin composite
would significantly inhibit the growth of S. mutans. However, only the incorporation of
the nanoparticles up to 1 wt.% would not adversely affect the mechanical properties of the
composite [58]. Recently, different methods allowed the cost-effective synthesis of different
nanostructures with various morphologies of ZnO nanoparticles [60,88]. Grown ZnO
nanoparticle structures, such as needles, tetrapods, etc., have exhibited an exciting step to
achieve better dental materials. Collares et al. [88] evaluated the effect of needle-like zinc
oxide nanostructures (ZnO-NN) at 0, 20, 30, and 40 wt.% on the antibacterial, physical, and
chemical properties of experimental methacrylate-based dental sealers. They found that all
concentrations of ZnO-NN (20, 30, or 40 wt.%) decreased the E. faecalis growth without a
significant detrimental effect on the physical and chemical functionality of the material.
Another study investigated a composite resin’s antibacterial and mechanical properties
containing a 0, 3, 5, 10 wt.% of tetrapod-like zinc oxide whisker (T-ZnOw). The results
revealed that incorporating T-ZnOw fillers improved both the antibacterial activity and the
mechanical properties of the experimental composite resin. Furthermore, incorporating
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5% wt.% of T-ZnOw into the resin was optimum for enhancing mechanical properties,
antibacterial action, and long-term antibacterial efficiency [60].
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Figure 2. Transmission electron microscopy (TEM) image of oxide nanoparticles. Image (A) shows ZnO nanoparticles
(Sigma-Aldrich Chemical Company, St. Louis, MI, USA) using 80.0 kV and 42,000× magnification. In the previous study,
these ZnO nanoparticles were used as inorganic fillers to confer antibacterial activity for a dental adhesive. Image (B) shows
Fe3O4 (Sigma-Aldrich Chemical Company, St. Louis, MI, USA) using 80.0 kV and 26,000× magnification. In a previous
study, these ZnO nanoparticles were used as inorganic filler of a dental adhesive to improve the µ-tensile bond strength
under simulated pulpal pressure and magnetic field application.

4.3. Copper Oxide Nanoparticles

Copper is a primary trace component in living organisms and is found in more
than 30 kinds of proteins. Copper oxide (CuO) is a monoclinic semiconducting inorganic
compound and represents the simplest member of the family of copper. CuO exhibits a
range of potentially useful physical properties. CuO crystal structures provide beneficial
photo-catalytic properties as well as photoconductive functionalities through their narrow
band-gap. In addition, copper ions are antimicrobial by generating reactive hydroxyl free
radicals and reducing sulfhydryls within cells [78,79]. Previous studies demonstrated
that copper and copper alloy could kill those bacteria, yeasts, and viruses through direct
contact with the material surface. Ren et al. investigated CuO nanoparticles’ antimicrobial
properties and found that populations of Gram-negative (×3 strains) organisms and Gram-
positive (×4 strains) organisms were reduced by 68% and 65%, respectively, in the presence
of 1000 ug/mL nano CuO using time-kill assays [89]. Another study by Zajdowicz et al.
investigated in vitro biofilm formation on the surface of novel copper(I)-catalyzed azide-
alkyne cycloaddition (CuAAC)-based resins and found that CuAAC resins and CuAAC-
based microfilled composites significantly (p < 0.05) reduce S. mutans biofilm formation by
around 1–2-log compared to BisGMA-based polymers. Moreover, CuAAC-based resins
have superior mechanical properties and reduced shrinkage stress [61].

CuAAC crosslinked networks could provide resin-based materials enhanced strength
and low polymerization shrinkage stress with quantitative conversion, which could elimi-
nate difficulties associated with BisGMA-based dental resins [62]. In one study, the flexural
strength, flexural modulus, flexural toughness, and polymerization shrinkage stress of
photo-curable CuAAC resin-based composites with varying filler loadings were tested
and compared to a conventional BisGMA/TEGDMA-based composite. It was found that
CuAAC composites with 60 wt.% microfiller generated an equivalent flexural strength
of 107 ± 9 MPa, a more than twice equivalent flexural modulus of 6.1 ± 0.7 GPa, lower
shrinkage stress of 0.43 ± 0.01 MPa, and more than ten times greater energy absorption
of 10 ± 1 MJ m−3 when strained to 11% compared to BisGMA-based composites at the
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same filler level. Moreover, the photo-CuAAC polymerization of composites containing
between 0 and 60 wt.% microfiller achieved a comparable conversion to BisGMA-based
composites [90]. Another study concludes that photo-CuAAC polymerizations can form
tough, glassy, low-stress homogeneous glassy crosslinked networks, achieving a high to
complete conversion at an ambient temperature upon light irradiation. CuAAC polymers
considerably reduced polymerization shrinkage stress and exhibited a dramatic ability to
absorb energy without fracturing. Though photo-CuAAC polymerization has a slower
polymerization rate compared to methacrylate-based free-radical photopolymerization, a
comparable volumetric shrinkage and flexural modulus could be achieved [62].

4.4. Iron Oxide (Fe2O3)

Iron oxide (Fe2O3) particles have gained much attention recently as a potential material
to carry and guide therapeutic agents. Several investigations have demonstrated the appli-
cability of Fe2O3 in tissue engineering [91], cancer therapy [92], and imaging [93]. In restora-
tive dentistry, Fe2O3 nanoparticles (Figure 2B) were used to improve the bonding strength
of dental adhesives [63,64]. In one study, a dental adhesive containing 66.66 wt.% of bisphe-
nol A glycidyl dimethacrylate (BisGMA) and 33.33 wt.% of 2-hydroxyethyl methacrylate
(HEMA) as a resin matrix was modified to contain 0.0195%, 0.039%, 0.0781%, 0.1563%,
0.3125%, and 0.625% of Fe2O3 nanoparticles by weight [63]. It was found that incorporating
0.0781 and 0.1563 wt.% of Fe2O3 nanoparticles significantly improved the µ-tensile bond
strength when the dental adhesives were subjected to a magnetic field with a degree of
conversion and ultimate tensile strength values comparable to the control. Even when a
pulpal pressure simulation model was used, the bond strength was improved by more
than 15% in the Fe2O3 adhesive. The scanning electron microscopy analysis showed that
the resin tags in the Fe2O3 adhesive were longer and higher in quantity than their control
counterparts. The designed magnetic adhesives had shown good biocompatibility when
they were exposed to human keratinocytes. Such findings may present a new pathway to
improve the bonding durability of dental adhesives [63].

The same concept was applied in another study, where the incorporation of Fe2O3
nanoparticles and the magnetic force improved the dentin shear bond strength by 59%
compared to the control [64]. Moreover, an antibacterial monomer and nano-sized amor-
phous calcium phosphate (NACP) fillers were added to the magnetic adhesive to impart
antibacterial and remineralization properties. The designed antibacterial, remineralizing,
and magnetic adhesives significantly reduced the growth and activities of saliva-derived
biofilms [64]. The findings suggest using more than one agent to impart different character-
istics in the designed restorative material. A further analysis of magnetic nanoparticles in
dental adhesive may investigate the bonding durability after thermocycling or water aging.

4.5. Cerium Oxide (CeO2)

Cerium is a rare metal that belongs to a lanthanide group with an atomic number of 58
and several biological and biomedical applications [94]. Cerium oxide (CeO2) nanoparticles
have shown antibacterial and anti-inflammatory properties due to their capability in
regenerating ROS and inducing radical scavenging and regeneration mechanisms [95,96].
In dentistry, CeO2 has been used in ceramic materials due to its ability to mimic the
tooth enamel’s fluorescence [97]. Furthermore, CeO2 has a high atomic number, allowing
good attenuation when the particles are subjected to dental X-ray [98]. Therefore, these
particles have been suggested to improve the radiopacity of dental adhesives to facilitate
the differentiation between the adhesive layer and recurrent caries (Figure 3).

In one study, the incorporation of CeO2 micro-particles ranging from 0.36 to 5.76 vol.%
into a dental adhesive was attempted [65]. The parental dental adhesive contained 50 wt.%
bisphenol A glycol dimethacrylate (BisGMA), 25 wt.% triethylene glycol dimethacrylate
(TEGDMA), and 25 wt.% 2-hydroxyethyl methacrylate (HEMA) as a resin matrix. Then,
CeO2 particles were added at 0.36, 0.72, 1.44, 2.88, 4.32, and 5.76 vol.%. It was found that
increasing the CeO2 concentration was associated with an increased radiopacity (Figure 3).
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However, the degree of conversion was reduced as the concentration increased, but the
values were clinically acceptable. An amount of 1.44 vol.% of CeO2 was associated with
the most appropriate radiopacity and degree of conversion values in the other groups [65].
A future investigation may explore the antibacterial properties of CeO2 particles and their
influence on other mechanical and physical properties.
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Figure 3. Image (A) illustrates a dental radiograph that shows a radiolucent line of interface between the tooth and the
composite. The radiolucent area is the adhesive layer, formed by a dental adhesive without or with a low quantity of
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oxide particles. Different letters indicate statistical differences among groups (p < 0.05). Adapted from reference [65], with
permission from Garcia et al., 2020.

4.6. Tantalum Oxide (Ta2O5)

Due to its antibacterial properties and biocompatibility, tantalum has adverse uses
in medicine such as spine and foot, and ankle surgeries [99–101]. In addition, tantalum
demonstrates the capability to deposit apatite over its surface, allowing the growth of
hydroxyapatite and osteoblasts [102]. In dentistry, metal alloys containing tantalum were
designed to improve the fracture toughness of the designed materials, such as dental
implants [66,67]. Moreover, tantalum, as an opaque material, has been suggested to
improve the radiopacity of dental adhesives. In one study, tantalum oxide (Ta2O5) particles
were incorporated into a dental adhesive at 1, 2, 5, and 10 wt.% [68]. The parental adhesive
contained 50 wt.% Bis-GMA, 25 wt.% TEGDMA, and 25 wt.% HEMA. It was found that
dental adhesives containing 5 and 10 wt.% of Ta2O5 were associated with a significant
increase in their radiopacity without compromising the adhesive’s degree of conversion
and microhardness [68]. As in other metallic oxide particles, more studies are required
to assess the antibacterial and bioactivity of Ta2O5 particles. In another investigation,
tantalum oxide quantum dots (Ta2O5QDs) incorporated into dental adhesives were found
to be very effective in reducing the growth of an S. mutans biofilm [69].

4.7. Niobium Pentoxide (Nb2O5)

Niobium pentoxide (Nb2O5) is a biocompatible material that has been used in several
studies to improve alloys’ biocompatibility and corrosion resistance [103,104]. Moreover,
Nb2O5 presents bioactivity as it was shown to improve osteoblast-like cells adhesion
to implants containing Nb2O5 [105]. Similar to CeO2 and Ta2O5, Nb2O5 particles were
incorporated into different restorative materials to improve their radiopacity. In one
study, 5, 10, and 20 wt.% of Nb2O5 particles were added into a dental adhesive composed
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of 50 wt.% Bis-GMA, 25 wt.% TEGDMA, and 25 wt.% HEMA [70]. Their radiopacity
values were increased as the concentration of Nb2O5 increased without compromising the
polymerization features of the adhesive. Moreover, adding 20 wt.% of Nb2O5 significantly
improved the microhardness of the material.

In another investigation, Nb2O5 particles were added into three commercially avail-
able glass ionomer cements (GIC) at 5, 10, and 20 wt.%. The surface microhardness, acid
resistance, and compressive strength were slightly reduced as the Nb2O5 concentration
increased [106]. On the contrary, the radiopacity values of the Nb2O5 adhesives were signif-
icantly improved. It was concluded that the 5 wt.% concentration of Nb2O5 was associated
with acceptable mechanical properties and a slightly elevated radiopacity. Thus, it seems
that Nb2O5 in GIC had an inferior performance than Nb2O5 in resin-base materials.

4.8. Zirconium Oxide (ZrO2)

Zirconium oxide (ZrO2) has antibacterial effects against several bacterial and fungal
species [107,108]. It can also mimic the natural appearance of the tooth structure [109].
Thus, multiple commercially available resin composite products contain ZrO2 in their
formulations to enhance dental restorations’ optical and esthetic properties [71]. ZrO2 was
also found to improve the µ-tensile bond strength when added at 5, 10, 15, and 20 wt.%
to a dental primer and adhesive. For example, when it was added to a dental primer at
20 wt.%, the highest µ-tensile bond strength of 41.1 ± 12.9 MPa was achieved, significantly
higher than the control (25.1 ± 10.9 MPa) [72].

5. The Use of Nanotubes in Restorative Dentistry

Nanotubes have been used in the health area, especially for controlled drug re-
lease [110,111]. It is possible to use the chemical structure of nanotubes to chemically
bond drugs on their surface, but they are more frequently used to carry molecules in their
lumen. In the area of restorative dental materials, nanotubes have been used purely to
confer bioactivity or improve physicochemical properties or carry antimicrobial molecules.
Table 2 summarizes the different applications of nanotubes in restorative dentistry. Details
about these purposes are described below.

Table 2. The list and potential applications of nanotubes materials used in restorative dentistry.

Nanotubes Potential Applications

Titanium dioxide nanotubes (nt-TiO2)
nt-TiO2 were found effective in carrying
1,3,5-Trimethylhexahydro-1,3,5-triazine in a dental adhesive to exert
antibacterial properties and improve the µ-tensile bond strength

Halloysite nanotubes (HNT)

HNT may deliver bioactive components around the incorporated materials
by depositing calcium phosphate compounds, which may contribute to
remineralization [112]. HNT can act as a drug delivery system with
triclosan [113], quaternary ammonium compound [114], chlorhexidine [115],
and doxycycline [116] in different resin-based materials

Boron nitride nanotubes (BNNTs)
BNNTs were found to increase the contact angle, decrease the surface energy,
improve the mechanical properties [117], and preserved the bonding
interface in a dental adhesive [118]

5.1. Titanium Dioxide Nanotubes

Titanium dioxide (TiO2) has bioactivity, which was observed when this oxide was
incorporated into polymers and stored in a simulated body fluid. In addition, calcium
phosphates were observed on the surface of the polymer after storage [119]. TiO2 can be
prepared as nanoparticles or nanotubes (Figure 4). Titanium dioxide nanotubes (nt-TiO2)
provide osseointegration [120], inducing a proper osteoinduction and differentiation of
pulp mesenchymal stem cells and adipose tissue in osteoblasts [121]. Moreover, nt-TiO2
already induced cell proliferation, alkaline phosphatase activity, and the expression of
osteogenic proteins in an animal model [122].
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Nanoparticles of TiO2 are the nanostructures of titania more tested in dental materials
so far. In restorative materials, nanoparticles of TiO2 improved the hardness, flexural
strength, degree of conversion, elastic modulus, shear bond strength, and antibacterial ac-
tivity [123–127]. Currently, nt-TiO2 have also been tested because they have the advantage
of presenting a hollow structure able to carry drugs, acting as a nanocarrier.
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Figure 4. Transmission electron microscopy (TEM) image of titanium dioxide nanotubes. The image
was acquired using 80.0 kV and 67,000× magnification. It is possible to observe the lumen of the
elongated structures. These nanotubes were used purely and carried an antibacterial molecule in a
dental adhesive in a previous study [126].

Nanocarriers are suitable for controlling the drug release and delivering it to specific
sites [128,129]. nt-TiO2 have been shown to be an exciting platform to deliver therapeutic
agents [128,130]. In a recent study, nt-TiO2 were added into a dental adhesive. These fillers
carried a triazine-based molecule called 1,3,5-Trimethylhexahydro-1,3,5-triazine [126]. The
nt-TiO2 loaded with the triazine-based molecule assisted in maintaining the µ-tensile bond
strength over time and provided antibacterial activity. From future perspectives, this
platform may be helpful to convey bioactivity for the adhesive.

5.2. Halloysite Nanotubes

Aluminosilicate nanoclays (Al2Si2O5(OH)4·nH2O) can be naturally found. Nanotubes
of aluminosilicate nanoclays (halloysite nanotubes, HNTs) were already tested as filler for
dental resins [112–115]. This material has a tubular structure, its outer surface is comprised
of Si-O and silanol (SiH4O) groups, and the inner surface is composed of aluminol groups
(Al-OH) [131]. The presence of silicon on the outer surface provides bioactivity for HNT.
Therefore, the use of HNTs in methacrylate resins improved the biological properties of
the polymer. Micro-Raman and Scanning Electron Microscopy (SEM) with an Energy
Dispersive X-Ray Analysis (EDX) showed the presence of calcium phosphates on the
surface of the dental resins doped with HNT when the polymers were immersed in
artificial saliva [112] after 28 days. This result was attributed to the silanol and hydroxyl
groups on HNTs’ outer surface due to their ability to induce mineral nucleation when they
contact supersaturated fluids [112]. The reasons for the bioactivity provided by HNTs are
described by the following [132]:

(1) The H+ exchange and modification of silica network, creating a layer highly doped
with SiO2;



Bioengineering 2021, 8, 146 13 of 19

(2) The layer of SiO2 stimulates the precipitation of calcium and phosphate ions from the
artificial saliva or SBF;

(3) Differences in electronegativity between HNTs and the environment, which is rich
in calcium and magnesium cations, induce the mineral nucleation and formation of
apatite-like particles on the surface of the polymer doped with HNTs.

As aforementioned for nt-TiO2, HNTs can also carry drugs. This nanoclay was used
as a drug delivery system with triclosan [113], a quaternary ammonium compound [114],
chlorhexidine [115], and doxycycline [116] in dental resins for restoration. These platforms
induced antibacterial properties and bioactivity for the resins.

5.3. Boron Nitride Nanotubes

Boron nitride nanotubes (BNNTs) have been investigated in the biomedical field due
to their bioactivity [133] and ability to improve materials’ physical properties due to their
high elastic modulus and superhydrophobic property [134]. They present biocompatibility
and can be used to carry organic molecules, such as proteins [135], on their surface.

BNNTs were already tested in restorative resin-based materials. First, BNNTs were
incorporated into an experimental adhesive [117], being tested regarding their physico-
chemical properties. While the degree of conversion remained stable, there was an increase
in the contact angle and a decrease in the adhesives’ surface free energy. Furthermore, the
mechanical properties and the resistance against softening in solvent improved with BNNT
addition. The polymers doped with this material showed calcium phosphates on their
surface after immersion for seven days in a simulated body fluid.

Another study analyzed the µ-tensile bond strength of adhesives after six months
of aging [118]. The incorporation of BNNTs up to 0.1 wt.% into the adhesive improved
the stability of the dental interface after six months compared to the adhesive without
BNNTs. The bioactivity of dental resins with BNNT was shown in another research, and
the proper biocompatibility was already demonstrated against pulp fibroblasts [118] and
keratinocytes [136].

6. Future Perspectives and Conclusions

Advanced nanotechnology and basic science strategies have opened the doors for
resin-based materials to reach a high level of bioactivity and mechanical performance.
While the current data in using metal oxides and nanotubes are promising, essential points
need to be emphasized. First, most of the conducted studies implemented immediate
testing when the synthesized materials were investigated. It is critical to monitor the
long-term performance of such new materials via the use of thermomechanical or hy-
drolytic aging [137]. Materials with excellent performance upon immediate testing may
experience a significant deterioration following aging [137]. Thus, applying different aging
approaches to re-examine such materials is recommended to obtain comprehensive data
before in vivo investigations.

Another aspect that should be fully investigated is the cytotoxicity of the metal oxides
and nanotube compounds. While several nanoparticles were investigated in the literature,
studies to illustrate their effects after exposure and to report their potential toxicity are few.
In dental practice, there is no exposure to nanoparticles when managing unset materials.
Dental practitioners are mainly exposed to nanoparticle dust produced by grinding and
polishing [138]. The lungs are the prime target organ. A risk assessment has shown a very
low risk from inhaling nanoparticles as dust for currently available materials. However,
there is a lack of data for a long-time exposure of dental nanoparticles for dental personnel.
Although their exposure has been researched for many decades, no reports have been
found on increased lung diseases for dental personnel [138]. Future investigations should
consider evaluating the immediate and long-term cytotoxicity of different metal oxide
nanoparticles and nanotubes in restorative materials. In the past, the level of mercury in
human fluids and organs was investigated in the dental literature to explore the potential
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risk of dental amalgam [139]. Similar approaches could be implemented to investigate the
potential cytotoxicity of the discussed materials in this review.

The absence of a full evaluation of the designed resin-based materials was noted in
most of the conducted studies. While the authors covered some aspects, other essential
elements as well were not investigated. These aspects included the complete characteriza-
tion and optimization of the material and other mechanical and physical properties that
must be investigated. Moreover, the performance of the designed materials in different
conditions, such as different pH environments, should be considered. More investigations
are required to draw the full and optimum evaluation of such materials as well as to deter-
mine the potential metal oxide nanoparticles and nanotubes to be used in vivo. Another
point to consider is the great difference between in vitro and in vivo conditions, especially
in microbiology assays, where the bioactivity of materials is examined [140]. Therefore,
using a clinical translational model to attempt these materials inside the oral cavity should
be considered as an advanced strategy for a material’s evaluation.
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