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BACKGROUND Automated computerized electrocardiogram (ECG)
interpretation algorithms are designed to enhance physician ECG
interpretation, minimize medical error, and expedite clinical work-
flow. However, the performance of current computer algorithms is
notoriously inconsistent. We aimed to develop and validate an arti-
ficial intelligence-enabled ECG (AI-ECG) algorithm capable of
comprehensive 12-lead ECG interpretation with accuracy compara-
ble to practicing cardiologists.

METHODS We developed an AI-ECG algorithm using a convolutional
neural network as a multilabel classifier capable of assessing 66
discrete, structured diagnostic ECG codes using the cardiologist’s
final annotation as the gold-standard interpretation. We included
2,499,522 ECGs from 720,978 patients >18 years of age with a stan-
dard 12-lead ECG obtained at the Mayo Clinic ECG laboratory be-
tween 1993 and 2017. The total sample was randomly divided
into training (n = 1,749,654), validation (n = 249,951), and
testing (n = 499,917) datasets with a similar distribution of codes.
We compared the AI-ECG algorithm’s performance to the cardiolo-
gist's interpretation in the testing dataset using receiver operating
characteristic (ROC) and precision recall (PR) curves.

RESULTS The model performed well for various rhythm, conduc-
tion, ischemia, waveform morphology, and secondary diagnoses co-
des with an area under the ROC curve of >0.98 for 62 of the 66
codes. PR metrics were used to assess model performance account-
ing for category imbalance and demonstrated a sensitivity >95%
for all codes.

CONCLUSIONS An AI-ECG algorithm demonstrates high diagnostic
performance in comparison to reference cardiologist interpretation
of a standard 12-lead ECG. The use of AI-ECG reading tools may
permit scalability as ECG acquisition becomes more ubiquitous.

KEYWORDS Artificial intelligence; Convolutional neural network;
Deep learning; ECG; Electrocardiogram; Electrocardiography; Ma-
chine learning
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Introduction
The electrocardiogram (ECG) is one of the most widely
available and routinely performed diagnostic tests in modern
medicine. The first attempts for a computer program to auto-
matically extract clinically relevant measurements from an
ECG without human intervention occurred more than 50
years ago."” From its inception, the overarching aims of
automated ECG analysis were to enhance physician interpre-
tation, reduce health care costs, minimize medical error, opti-
mize clinical workflow, and facilitate clinical decision
making.” It has since become a mainstay in modern medical
practice, allowing for rapid ECG interpretation.

Most existing automated computerized algorithms were
developed using expert physicians as the gold standard.
However, the performance of current computer algorithms
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is inconsistent,” ° particularly for important conditions such
as myocardial infarction.”* Guglin and Thatai’ attempted
to examine the faulty nature of computer ECG reading and
reported that the most frequent errors were related to arrhyth-
mias, conduction disorders, and electronic pacemakers. They
noted that interpretation challenges occurred with non—sinus
rhythms, in which there were difficulties in accurately detect-
ing P waves with low amplitude, varying morphology, or
those masked by artifact or other aspects of the cardiac com-
plex. Similarly, atrial fibrillation was often difficult to detect
owing to artifact or sinus rhythm with associated premature
beats. Low-voltage pacemaker spikes were also frequently
missed, leading to multiple interpretation errors (eg, myocar-
dial infarction, left bundle branch block, left ventricular hy-
pertrophy, and intraventricular conduction delay).
Moreover, currently implemented computer algorithms
were developed on ECG databases of selected populations
that very likely do not accurately reflect all population sub-
sets and do not include all possible clinical diagnoses, which
undeniably play roles in their inaccuracies. Apart from these
issues, automated ECG interpretations significantly influence
https://doi.org/10.1016/j.cvdhj.2020.08.005
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KEY FINDINGS

An artificial intelligence-enabled electrocardiogram
(AI-ECG) algorithm demonstrates high diagnostic per-
formance in comparison to reference cardiologist
interpretation of a standard 12-lead ECG.

the over-reading clinician’s final interpretation’ '* and errors
are often not corrected.'""!? Therefore, interpretation errors
are simply propagated forward for clinical implementation.
It is clear that a more robust and accurate automated ECG
interpretation system is needed.

In recent years, significant advances have been made in
the field of machine learning.'” Convolutional neural net-
works (CNNs) represent a specific class of models that
have proven effective in image and speech recognition.'*"”
Though these computational models require some guidance,
they consist of multiple processing layers that can be
continuously trained with input data to fine tune their final
output to perform a specific task. The enormous amount of
available medical data has allowed for researchers to
harness the capabilities of machine learning to improve pa-
tient care.'®"’

With emergence of ECG-enabled smart phone and
clothing technology, the ability to capture ECG signals is
becoming ubiquitous. This sheer volume of often time-
critical ECG signals requiring interpretation exceeds the ca-
pacity of current health care systems. Fortunately, ECG
data are amenable to analysis with a CNN. The use of raw
digital ECG data allows investigators to train models capable
of ECG interpretation. These ECG signals can provide crit-
ical diagnostic information and clues for more urgent medical
therapy. A deep learning approach has been shown to identify
a host of distinct arrhythmias from single-lead ECGs,'®
detect ventricular dysfunction,'” and predict the likelihood
of developing of atrial fibrillation in sinus rhythm.’

Given the advances in deep learning in electrocardiog-
raphy, we hypothesized that a CNN would permit compre-
hensive ECG analysis with similar accuracy to that of
board-certified, practicing cardiologists. To test this hy-
pothesis, we used a large unselected dataset of standard
12-lead ECGs paired with labels applied by board-
certified practicing cardiologists to develop, validate, and
test a CNN capable of detecting 66 diagnostic ECG codes
on a total of 2,499,522 standard ECGs from 720,978
patients.

Methods

Disclosure statement

The authors are unable to make the data publicly available as
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consent to use of their anonymized records for research.
The Mayo Clinic Foundational Institutional Review Board
approved this study.

Study cohort and ECGs

Our study population included 720,978 adult patients aged
18 years or older with a standard 12-lead ECG performed
at the Mayo Clinic ECG laboratory between 1993 and
2017. From the total patient cohort, a total of 2,499,522 fully
de-identified ECGs were obtained. No patients or ECGs were
excluded from the study.

ECGs were performed with a Marquette ECG machine
(GE Healthcare, Chicago, IL) and then stored with MUSE
data management for retrieval. All ECGs included a final
expert annotation by board-certified practicing cardiolo-
gists. The annotations included primary- and secondary-
class diagnoses for a total of 66 discrete diagnostic ECG
codes attributed by expert readers, who served as the
comparative gold standard. The diagnostic ECG codes
included primary and secondary rhythms, axis deviation,
chamber enlargement, atrioventricular (AV) and intraven-
tricular conduction delays, myocardial ischemia, waveform
abnormalities, clinical disorders, and pacemaker activity.
The total sample of ECGs was randomly divided into a
training dataset (n = 1,749,654), validation dataset (n =
249.951), and testing dataset (n = 499,917)—all with a
similar distribution of ECG codes (Supplemental Table 1).
Supplemental Figure 1 demonstrates the age and gender dis-
tribution of the total population and its subgroups (ie,
testing, validation, and testing populations).

Table 1  Convolutional neural network design

ResNet Bottleneck Block, input channel = 1, output channel=16,
stride=2

ResNet Bottleneck Block, input channel = 16, output channel = 32,
stride = 2

ResNet Bottleneck Block, input channel = 32, output channel = 32,
stride = 2

ResNet Bottleneck Block, input channel = 32, output channel = 64,
stride = 2

ResNet Bottleneck Block, input channel = 64, output channel = 64,
stride = 2

ResNet Bottleneck Block, input channel = 64, output
channel = 128, stride = 2

ResNet Bottleneck Block, input channel = 128, output
channel = 128, stride = 2

ResNet Bottleneck Block, input channel = 128, output
channel = 256, stride = 2

ResNet Bottleneck Block, input channel = 256, output
channel = 512, stride = 2

ResNet Bottleneck Block, input channel = 512, output
channel = 1024, stride = 2

ResNet Bottleneck Block, input channel = 1024, output
channel = 2048, stride=2

Linear Layer, input channel = 6144, output channel = 66
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Algorithm development

We developed an artificial intelligence—enabled ECG (Al-
ECG) algorithm using a CNN as a multilabel classifier
capable of detecting 66 discrete, structured ECG codes
from the standard 12-lead ECG. The CNN takes the raw
ECG data tracings as input and outputs discrete diagnostic
ECG labels. The task was considered a multilabel problem
as each ECG can have multiple codes. As such, the model
created a binary evaluation of whether or not the code was
present on the ECG for each of the 66 codes in parallel.
The CNN used for predicting the 66 diagnostic ECG code
groups was a custom-built model using the PyTorch deep
learning library that uses bottleneck ResNet blocks
(Table 1). The network architecture contains a total of 11
bottleneck ResNet blocks, which consists of 33 convolu-
tional layers. The number of dimensions was 3. The convolu-
tional kernels are either 3 X 3 in size or 1 X 1 (ie, the
bottlenecks) with a stride of 2 for each block. The final block
has a channel output of 2048. The average length of the ECG
record was 10 seconds at 500 Hz, with the standard 12-lead
ECG representing a 5000 X 12 X 1 matrix. We found that
the deep convolution was able to counterbalance the fact
that the different ECG codes use different relevant features
while leveraging the similar features used in similar codes.
Therefore, the convolutional output was simply flattened,
and a linear layer was applied get the output results for 66
classes.

The network was trained on a training set of ECGs (n =
1,749,654). The model is initialized using Glorot initializa-
tion and optimized with the Adam optimizer.”’ The learning
rate started at 0.0001 and was manually decreased over time.
For each trial, we trained the model for as long as it took for
clear overfitting of the training set to occur. We monitored the
validation loss and stopped the training process if validated
loss stopped decreasing for 10 epochs. Thereafter, we
selected the best-performing model checkpoint on the valida-
tion set and applied it to the testing set to get the final result.
The optimal network was selected by convoluting between
the leads rather than treating all leads independently. This
confirmed that there was information between leads that
can only be captured when examined together. This sug-
gested that like cardiologists, the model is evaluating the
ECGs based on the relationships of the raw voltage values
for code classification.

Algorithm validation, testing, and statistical
analysis

Receiver operator characteristic (ROC) and complementary
precision recall (PR) curves were created using a validation
set of ECGs (n = 249,951) with area under the curve (AUC)
and PR as primary assessments of the network’s strength for
each code, respectively. This allowed for evaluation of the
model’s ability to discriminate each code. The ROC curve sum-
marized the trade-off between the true-positive rate and false-
positive rate of the model, while the PR curve summarized
the relationship between positive predictive value (precision)

and sensitivity (recall). ROC curves allowed for observations
balanced between each class, while PR curves enabled evalua-
tion of class-imbalanced datasets.

Sensitivity and specificity for every code were calculated
at binary decision thresholds to allow for equal weighting
with both ROC and PR curves. The probability thresholds
were applied post-prediction as a straightforward gauge of bi-
nary decision performance on the testing ECG dataset
(n = 499,917) given equal weighting of true-positive rate/
false-positive rate for ROC curve and precision/recall for
the PR curve. We then assessed the model’s diagnostic per-
formance (ie, ability to interpret a 12-lead ECG compared
to that of a cardiologist) by calculating the AUC, average pre-
cision score (AP), and the sensitivity and specificity for the
ROC and PR curves. We also computed the F; score, which
is the harmonic mean of PPV and sensitivity based on the
selected threshold, to compare the diagnostic performance
of the model to the expert annotation. F'; scores closer to 1
maximize both PPV and sensitivity instead of favoring 1
over the other. The F; score is less sensitive than AUC
when class imbalance is present. None of the ECGs used in
testing set were used to derive or validate the CNN.

Results

The model’s diagnostic performance, including AUC and AP
along with their respective sensitivity and specificity, for
each individual code is recorded in Tables 2-6. The F;
score for each code is also reported. Supplemental
Figures 2 and 3 demonstrate ROC and PR curves for each
ECG code.

In general, in terms of sensitivity, an AUC threshold per-
formed better than a PR threshold for more balanced classes
(ie, more prevalent codes), while the PR threshold outper-
formed the AUC threshold for heavily imbalanced classes
(ie, less prevalent codes). For instance, sinus bradycardia rep-
resented the third most common ECG code (prevalence
14.5%, n = 72,286; AUC and AP > 0.99) in the testing
set with a specificity measure for AUC of 0.97 but only
0.55 with PR. In comparison, a relatively uncommon
code like dextrocardia (prevalence 0.03%, n = 129; AUC
> 0.99, AP > 0.60) in the testing set had an AUC and PR
specificity of 42% and 91%, respectively. Using the thresh-
olds, which were selected not by clinical needs but simply
for benchmarking purposes between the 2 curves, these find-
ings suggest that AUC curve may be a better measure than the
PR curve for more common diagnoses, and vice versa for less
common diagnoses.

Primary and secondary rhythm interpretation

Table 2 summarizes the model’s diagnostic performance for
determining 23 different primary and secondary rhythms. For
detection of a normal ECG (prevalence 19.3%, n = 96,500),
the AUC was 0.983 (sensitivity 87.7%, specificity 95.7%, F;
score 0.853). The most common code was normal sinus
rhythm, with a prevalence of 63.4% (n = 316,500) in the
testing dataset.



Table 2 Diagnostic performance of the model for the determination of primary and secondary rhythms.
Preferred ROC metrics for common codes Preferred PR metrics for uncommon codes
ECG code Prevalence, % (n) AUC (CI) Sensitivity Specificity F; AP (CI) Sensitivity Specificity F;
Normal ECG 19.3 (96,500) 0.983 (0.982-0.983) 0.877 0.957 0.853 0.924 (0.924-0.925) 0.999 0.669 0.591
Primary rhythms
Normal sinus rhythm 63.4 (316,722) 0.998 (0.998-0.999) 0.887 0.998 0.939 0.999 (0.999-0.999) 1.00 0.673 0.914
Sinus bradycardia 14.5 (72,286) 0.999 (0.999-0.999) 0.994 0.968 0.911 0.993 (0.993-0.993) 1.00 0.554 0.431
Atrial fibrillation 8.5 (42,736) 0.999 (0.999-0.999) 1.00 0.694 0.380 0.988 (0.988-0.989) 1.00 0.628 0.334
Sinus tachycardia 7.2 (35,827) 0.999 (0.999-0.999) 1.00 0.643 0.302 0.990 (0.990-0.991) 1.00 0.582 0.270
Atrial flutter 1.9 (9699) 0.995 (0.995-0.996) 1.00 0.510 0.075 0.864 (0.862-0.866) 1.00 0.704 0.118
Ectopic atrial rhythm 0.47 (2340) 0.992 (0.991-0.994) 1.00 0.497 0.018 0.649 (0.643-0.655) 1.00 0.510 0.012
Junctional rhythm 0.35 (1735) 0.997 (0.996-0.998) 1.00 0.470 0.013 0.719 (0.712-0.726) 0.997 0.913 0.074
Ectopic atrial tachycardia 0.30 (1514) 0.987 (0.985-0.989)  1.00 0.455 0.011  0.385(0.378-0.391)  0.997 0.733 0.022
Supraventricular 0.28 (1387) 0.997 (0.996-0.998) 1.00 0.493 0.011 0.697 (0.689-0.704) 0.998 0.875 0.043
tachycardia
Ectopic atrial bradycardia 0.14 (688) 0.998 (0.997-0.999) 1.00 0.434 0.005 0.633 (0.622-0.645) 0.991 0.954 0.056
Wandering atrial 0.09 (467) 0.975 (0.969-0.980) 0.994 0.464 0.003 0.090 (0.866-0.942) 0.989 0.629 0.005
pacemaker
Multifocal atrial 0.07 (357) 0.997 (0.995-0.999) 1.00 0.414 0.002 0.283 (0.272-0.294) 0.975 0.972 0.048
tachycardia
Junctional bradycardia 0.05 (234) 0.999 (0.998-1.00) 1.00 0.416 0.002 0.608 (0.588-0.628) 0.996 0.990 0.082
Ventricular tachycardia 0.04 (185) 0.998 (0.996-1.00) 1.00 0.392 0.001 0.623 (0.601-0.646) 0.995 0.932 0.011
Junctional tachycardia 0.03 (167) 0.998 (0.995-1.00) 1.00 0.441 0.001  0.269 (0.253-0.284)  0.988 0.971 0.023
Idioventricular rhythm 0.03 (136) 0.997 (0.994-1.00) 1.00 0.391 0.001 0.230 (0.215-0.246) 0.956 0.985 0.033
Secondary rhythms
Premature atrial complexes 6.4 (32,173) 0.993 (0.993-0.994) 0.999 0.584 0.248 0.922 (0.921-0.923) 0.999 0.543 0.231
Premature ventricular 6.3 (31,277) 0.997 (0.997-0.997) 1.00 0.526 0.220 0.952 (0.951-0.953) 1.00 0.548 0.228
complexes
Sinus arrhythmia 4.4 (21,830) 0.982 (0.981-0.983) 0.995 0.679 0.221 0.802 (0.800-0.804) 0.998 0.539 0.165
Junctional escape beats 0.14 (708) 0.979 (0.975-0.983) 1.00 0.462 0.005 0.141 (0.136-0.146) 0.993 0.779 0.013
Ventricular escape beats 0.02 (86) 0.985 (0.976-0.994) 1.00 0.388 0.001 0.027 (0.024-0.030) 0.953 0.932 0.005
Premature junctional 0.01 (58) 0.960 (0.942-0.978) 0.983 0.464 0.000 0.011 (0.974-1.22) 0.966 0.701 0.001
complexes

AP = average precision score; AUC = area under the curve; CI = confidence interval; PR = precision recall curve; ROC = receiver operator characteristic curve.
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Diagnostic performance of the model for the detection of axis deviation and chamber enlargement

Table 3

Preferred PR metrics for uncommon codes

AP (CI)

Preferred ROC metrics for common codes

AUC (CI)

Fi

Specificity

Sensitivity

F1

Specificity

Sensitivity

Prevalence, % (n)

ECG code

Axis deviation

0.151

0.934
0.793
0.960

0.997

0.469 (0.464-0.474)
0.236 (0.232-0.239)

0.458 0.021

1.00
1.00
1.00

0.993 (0.992-0.994)
0.977 (0.975-0.979)

0.58 (2923)
0.55 (2761)
0.29 (1458)

Right axis deviation
Left axis deviation
Right superior axis

0.050

0.989
0.997

0.024
0.010

0.555

0.127

0.431 0.568 (0.561-0.576)

0.997 (0.996-0.998)

deviation
Atrial enlargement

0.143
0.024

0.525

0.996

0.214 0.757 (0.755-0.759)
0.018

0.710

0.987

0.980 (0.979-0.980)
0.992 (0.991-0.994)
0.995 (0.993-0.996)

3.8 (19,220)
0.46 (2275)
0.23 (1127)

Left atrial enlargement

0.628

0.998
0.998

0.714 (0.708-0.720)
0.607 (0.598-0.616)

0.511

0.999
1.00

Right atrial enlargement
Biatrial enlargement

0.023

0.806

0.008

0.415

Ventricular hypertrophy

0.544 0.257

0.890

0.876 (0.875-0.878) 1.0

0.936 0.695

0.964
1.00
1.00

0.988 (0.988-0.989)
0.996 (0.995-0.998)
0.994 (0.982-1.01)

7.3 (36,526)
0.26 (1312)

0.005 (24)

Left ventricular hypertrophy
Right ventricular hypertrophy

Biventricular hypertrophy

0.045
0.002

0.998
0.958

0.009  0.615 (0.607-0.624)
0.164 (0.138-0.190)

0.000

0.412

0.953

0.468

AP = average precision score; AUC = area under the curve; CI = confidence interval; PR = precision recall curve; ROC = receiver operator characteristic curve.

For more common secondary rhythm codes such as prema-
ture atrial complexes (prevalence 6.4%, n = 32,173), prema-
ture ventricular complexes (prevalence 6.3%, n = 31,277),
and sinus arrhythmia (prevalence 4.4%, n = 21,830), ROC
metrics were favored. For less common primary and second-
ary rhythm codes, the specificity was greatly improved using
PR metrics compared to the ROC metrics.

Axis deviation and chamber enlargement detection
Table 3 summarizes the model’s diagnostic performance for
detecting axis deviation and chamber enlargement. The
sensitivity for detecting all forms of axis deviation (preva-
lence <0.58% for each) was 100% using ROC metrics and
>98.9% using PR metrics. Again, the PR curve was a better
indicator of specificity than the ROC curve for these rela-
tively rare codes.

Left atrial enlargement (prevalence 7.3%, n = 36,526) and
left ventricular hypertrophy (prevalence 7.3%, n = 36,526)
were the most common forms of chamber enlargement.
The ROC specificity for these relatively more prevalent co-
des was much better than the PR specificity. PR specificity
was better than ROC specificity for less common forms of
chamber enlargement, such as right atrial enlargement and
right ventricular hypertrophy.

Atrioventricular and intraventricular conduction
delay detection

Table 4 summarizes the model’s diagnostic performance for
detecting AV and intraventricular conduction delay. Simi-
larly, PR specificity (96.1%) proved better than ROC speci-
ficity (36.5%) for detecting third-degree AV block
(prevalence 0.14%, n = 714). The PR specificities appeared
to be better metrics than ROC specificities for all forms of
intraventricular conduction delay.

Myocardial ischemia detection
Table 5 summarizes the model’s diagnostic performance for
detecting myocardial ischemia. Anterolateral infarct was the
most common of these codes, with a prevalence of 7.4% (n =
36,993). The ROC and PR sensitivities for all other infarct
codes (ie, anteroseptal, lateral, posterior, anterior, and infe-
rior infarct) were nearly 100%. The PR specificity (86.6%)
was greater than the ROC specificity (49.6%) for the less
prevalent anterior infarct code (prevalence 1.2%, n = 6248).
In general, myocardial injury detection was much less
common compared to infarct detection. The ROC sensitivity
was 100% for every myocardial injury code. The most com-
mon myocardial injury code reported in the testing dataset
was inferior injury (prevalence 0.10%, n =486).

Waveform abnormality, clinical disorder, and
pacemaker activity detection

Table 6 summarizes the model’s diagnostic performance for
detecting waveform abnormalities, clinical disorders, and
pacemaker activity. Clinical disorders and pacemaker codes
were relatively uncommon. The PR specificity for detection



Table 4

Diagnostic performance of the model for the detection of atrioventricular and intraventricular conduction delay

Preferred ROC metrics for common codes

Preferred PR metrics for uncommon codes

ECG code Prevalence, % (n) AUC (CT) Sensitivity Specificity F; AP (CI) Sensitivity Specificity F;

AV conduction delay

First-degree AV block 11.4 (56,867) 0.989 (0.989-0.989) 0.937 0.958 0.826 0.934 (0.934-0.935) 0.999 0.580 0.379
Variable AV block 1.2 (6218) 0.995 (0.995-0.996) 1.00 0.410 0.409 0.808 (0.805-0.812) 0.995 0.914 0.225
2:1 AV block 0.49 (2442) 0.996 (0.995-0.997) 1.00 0.493 0.019 0.759 (0.753-0.765) 0.999 0.701 0.032
Second-degree AV block, type I 0.15 (774) 0.995 (0.993-0.997) 1.00 0.433 0.005 0.609 (0.599-0.620) 0.996 0.879 0.025
4:1 AV block 0.13 (658) 1.00 (0.999-1.00) 1.00 0.446 0.005 0.859 (0.849-0.868) 0.998 0.967 0.075
Third-degree AV block 0.14 (714) 0.997 (0.995-0.998) 1.00 0.365 0.004 0.536 (0.525-0.547) 0.985 0.961 0.068
Second-degree AV block, type II  0.06 (296) 0.992 (0.988-0.996)  0.997 0.466 0.002  0.445 (0.429-0.461)  0.993 0.733 0.004
3:1 AV block 0.04 (223) 0.994 (0.991-0.998) 1.00 0.424 0.002 0.373 (0.356-0.390) 0.991 0.864 0.006
Intraventricular conduction delay

Right bundle branch block 5.9 (29,333) 0.999 (0.999-0.999) 1.00 0.543 0.214 0.979 (0.978-0.979) 1.00 0.932 0.648
Left bundle branch block 3.3 (16,635) 0.999 (0.999-0.999) 1.00 0.532 0.128 0.964 (0.963-0.965) 1.00 0.912 0.437
Left anterior fascicular block 2.1 (10,280) 0.972 (0.970-0.973) 0.979 0.844 0.208 0.417 (0.415-0.420) 0.996 0.707 0.125
Left posterior fascicular block 1.6 (8154) 0.998 (0.997-0.998) 1.00 0.412 0.053 0.874 (0.872-0.877) 0.999 0.939 0.353
Nonspecific IVCD 0.77 (3836) 0.982 (0.980-0.983) 0.999 0.570 0.035 0.351 (0.347-0.355) 0.995 0.711 0.051
Bifascicular block 0.50 (2483) 0.996 (0.995-0.997) 1.00 0.389 0.016 0.548 (0.542-0.554) 1.00 0.826 0.054

AP = average precision score; AUC = area under the curve; AV = atrioventricular; CI = confidence interval; IVCD = intraventricular conduction delay; PR = precision recall curve; ROC = receiver operator char-

acteristic curve.

Table 5 Diagnostic performance of the model for the detection of myocardial ischemia
Preferred ROC metrics for common codes Preferred PR metrics for uncommon codes

Prevalence,
ECG code % (n) AUC (CI) Sensitivity Specificity F; AP (CI) Sensitivity Specificity F;
Myocardial infarction
Anterolateral infarct 7.4 (36,993) 0.983 (0.982-0.983) 0.904 0.951 0.718 0.839 (0.837-0.840) 1.00 0.556 0.265
Anteroseptal infarct 2.5 (12,413) 0.976 (0.975-0.977) 0.992 0.796 0.199 0.541 (0.538-0.544) 0.998 0.685 0.139
Lateral infarct 2.5 (12,335) 0.975 (0.974-0.976) 0.995 0.747 0.166 0.502 (0.499-0.505) 0.999 0.515 0.094
Posterior infarct 2.1 (10,280) 0.987 (0.986-0.988) 0.999 0.667 0.112 0.684 (0.681-0.687) 1.00 0.584 0.092
Anterior infarct 1.2 (6248) 0.993 (0.993-0.994) 1.00 0.496 0.048 0.670 (0.666-0.674) 0.999 0.866 0.158
Inferior infarct 0.70 (3494) 0.978 (0.976-0.979) 0.997 0.572 0.032 0.392 (0.387-0.396) 0.993 0.684 0.042
Myocardial injury
Inferior injury 0.10 (486) 0.993 (0.991-0.996) 1.00 0.448 0.004 0.400 (0.388-0.412) 0.992 0.848 0.013
Anterolateral injury 0.05 (256) 0.997 (0.984-0.995) 1.00 0.433 0.002 0.295 (0.138-0.157) 0.992 0.956 0.023
Inferolateral injury 0.04 (189) 0.996 (0.992-0.999) 1.00 0.438 0.001 0.262 (0.248-0.276) 0.984 0.903 0.008
Anterior injury 0.03 (163) 0.989 (0.984-0.995) 1.00 0.403 0.001 0.147 (0.138-0.157) 0.982 0.861 0.005
Lateral injury 0.02 (79) 0.978 (0.967-0.990) 1.00 0.460 0.001 0.059 (0.531-0.646) 0.949 0.845 0.002

AP = average precision score; AUC = area under the curve; CI = confidence interval; PR = precision recall curve; ROC = receiver operator characteristic curve.
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Diagnostic performance of the model for the detection of waveform abnormalities, clinical disorders, and pacemaker activity

Table 6

Preferred PR metrics for uncommon codes

AP (CI)

Preferred ROC metrics for common codes

AUC (CI)

F

Specificity

Sensitivity

Fi

Specificity

Sensitivity

Prevalence, % (n)

ECG code

Waveform

abnormalities

0.565 0.197

0.920 0.553 0.819 (0.818-0.821) 0.998
0.939

0.956

0.984 (0.983-0.984)
0.960 (0.960-0.961)

5.1 (25,350)
4.6 (23,231)

0.95 (4769)

Low QRS voltage

0.181
0.063

0.560

0.713

0.596 (0.594-0.598) 0.998

0.577 (0.573-0.581)

0.521

0.792
1.

Prolonged QT interval

Short PR interval

0.997

0.573 0.043

00

0.988 (0.987-0.989)

Clinical disorders

0.532 0.066

0.434 (0.431-0.437) 0.995

0.573 0.071

0.994
1.00

0.965 (0.964-0.966)
0.996 (0.993-0.999)
0.997 (0.994-1.00)
0.999 (0.996-1.00)

1.6 (8123)

0.04 (199)
0.03 (129)
0.01 (64)

Early repolarization

0.925 0.010

0.985

0.580 (0.559-0.601)
0.603 (0.577-0.630)

0.001

0.389
0.418

Wolff-Parkinson-White

Dextrocardia

0.907 0.006

0.994

0.992

0.001

00
00

1.

0.043

0.077 (0.686-0.854) 0.984

0.442 0.000

1.

Acute pericarditis

Pacemaker activity

Ventricular

0.817 0.096

0.999

0.915 (0.912-0.918)

0.476 0.036

00

1.

0.998 (0.998-0.999)

0.97 (4825)

pacemaker
Dual-chamber

0.503 0.029 0.834 (0.830-0.838) 0.999 0.765 0.060

00

1.

0.996 (0.995-0.997)

0.75 (3733)

pacemaker

AP = average precision score; AUC = area under the curve; CI = confidence interval; PR = precision recall curve; ROC = receiver operator characteristics curve.

of ventricular pacemaker (prevalence 0.97%, n = 4825) and
dual-chamber pacemaker (prevalence 0.75%, n = 3733) ac-
tivity was 81.7% and 76.5%, respectively.

Discussion

We demonstrate that an AI-ECG algorithm is capable of
generating codes from a retrospective dataset that are consis-
tent with those determined by cardiologists during routine
care. Overall, the model performed very well for a wide range
of rhythm, conduction, ischemia, waveform morphology,
and secondary diagnoses codes with an area under the
ROC curve (AUC) of >0.98 for 62 of the 66 reported codes.
For heavily imbalanced codes, PR metrics demonstrated a
sensitivity of >95% for all codes. In an era of ever-
growing ECG signal availability, these findings demonstrate
of the capability of an AI-ECG algorithm to make prediction
beyond rhythm abnormalities.

In this study, we demonstrate the ability of an AI-ECG al-
gorithm to generate a wide range of ECG codes. We believe
that the over-reading cardiologist’s interpretation provides a
clinically relevant standard for comparison as they provide
the final read upon which medical decisions are made. These
findings demonstrate that an AI-ECG algorithm has the po-
tential to streamline workflow and potentially improve the
consistency and accuracy of current ECG analysis. A 3-
way head-to-head prospective trial (ie, computer-generated
interpretation vs over-reading cardiologist interpretation vs
AI-ECG algorithm) would help to assess the AI-ECG algo-
rithm’s performance and validate such claims.

While current automated approaches rely on class-specific
feature extraction, CNNs allow for a fundamentally different
approach in which a single algorithm can accomplish the
same tasks while leveraging both similar and unique features
between all 66 diagnostic ECG codes. Moreover, CNNs
continually improve with additional high-quality raw data.
This suggests that it has the capability to not only improve
its current prediction performance but also learn important
manually derived features and those yet to be recognized.

Early CNNs were constrained by the number of layers as
well as algorithmic and computational limitations.”>** More
recent employment of deeper networks and end-to-end CNN
approaches has demonstrated satisfactory performance for
detection of atrial fibrillation and ventricular arrhyth-
mias,”"*” and even single-lead rhythm determination.'®
Despite these promising efforts, it has not been evaluated
whether an AI-ECG algorithm could provide a comprehen-
sive 12-lead ECG interpretation on a large unselected cohort.
Our novel approach demonstrates that a CNN as a multilabel
classifier is capable of learning features from 66 discrete,
structured diagnostic ECG codes and providing simultaneous
prediction probabilities for standard 12-lead ECG interpreta-
tion. This includes the prediction of primary and secondary
rhythms and detection of axis deviation, chamber enlarge-
ment, AV and intraventricular conduction delay, myocardial
ischemia, waveform abnormalities, clinical disorders, and
pacemaker activity.
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This current work is unique because while other investiga-
tors have shown CNN algorithms capable of predicting pri-
mary rhythms from single-lead ECGs, we have
demonstrated its capability on standard 12-lead ECGs used
in clinical practice. Furthermore, at our institution, current
workflow is highly resource intensive and difficult to scale.
It consists of more than 100 trained ECG technologists staff-
ing our ECG lab 24/7 with physician oversight. Our goal with
this work was to demonstrate that the CNN interpretation per-
forms similarly well and that such a technology could be used
to scale the scope of our work and improve the consistency of
results. In fact, diagnostic performance was on par with the
reference cardiologist’s interpretation, which includes a
multistep process of automated interpretation, certified
rhythm analysis technician overview, and expert practicing
cardiologist finalization. Thus, the unique features of this
work include its high diagnostic performance for a large
number of primary and secondary ECG diagnostic codes,
use of standard 12-lead ECGs obtained in clinical practice,
ability to potentially scale a highly resource-intensive prac-
tice, and use of nearly 2.5 million ECGs from more than
720,000 patients to derive, validate, and test the algorithm.

Owing to the known limitations and inconsistent perfor-
mance of current ECG analysis algorithms, AI-ECG has
the potential to increase overall accuracy and cause a para-
digm shift in standard automated preliminary ECG interpre-
tation methods. The ability to selectively choose the inputted
data also permits for training and development of accurate re-
gion-, population-, and disease-specific prediction models.
While this may not replace expert provider confirmation, a
CNN with accurate 12-lead interpretation prediction capabil-
ities could expedite clinical workflow by facilitating triage in
emergent settings, providing immediate warning of critical
results, and prioritizing ECGs requiring provider review
(eg, low-confidence predictions).

There are several areas that require further investigation and
clarification. One important question to answer is why lower
sensitivities were related to myocardial injury localization. It
is possible that the presence of artifact and nonischemic
ST-segment elevation patterns (eg, early repolarization)
contribute to inaccurate interpretations of acute ST-segment
elevation myocardial infarction patterns. Currently imple-
mented algorithms have high false-positive and false-negative
rates for predicting acute ST-segment elevation myocardial
infarction, making it impractical to rely solely on them to acti-
vate the cardiac catheterization laboratory. You could imagine
that if these rates were reduced, this could be a very important
clinical tool that could aid in triaging critical ECGs that may
improve door-to-balloon time and patient outcomes.

Another challenge for algorithms and our CNN-based al-
gorithm was precise and accurate QT-interval measurement.
In general, current algorithms work by identifying the longest
QT interval on the standard 12-lead ECG. Unfortunately, this
can be compromised by poor-quality ECGs (eg, artifact) or
other aspects of the complex interfering with accurate mea-
surement (eg, U waves occurring at the end of a T wave,
thereby artificially prolonging the QT interval). Accurate

QT measurement with a single lead is erroneous, as individ-
ual lead measurements typically underestimate the true QT
interval. Admittedly, this will be a difficult hurdle to over-
come and certainly a limitation of new and popularized
single-lead ECGs.

Lastly, we note that while there were no ECGs included in
both the training and testing datasets, there were some pa-
tients who contributed ECGs to each group. If the ECGs
were similar within an individual, it is possible that some of
the features/codes would be more easily recognized by the
network based on similarity between ECGs from the same in-
dividuals in the training and testing sets. Indeed, this issue has
been discussed in prior similar studies.'®*®*” Although it
does not eliminate this potential bias, we do note that the
ECGs included in this study came from 720,978 patients,
and therefore we anticipate that a wide range of ECG variation
was well represented and a small number of easily recogniz-
able and unique features did not excessively bias the sample.

We used expert ECG annotation provided by cardiologist
over-read during routine clinical care as our “gold standard.”
However, a cardiologist’s final interpretation is not infallible
and could allow for perpetuation of erroneous diagnoses.
However, its performance relies on the cardiologist’s final
interpretation, which is not infallible and could allow for
perpetuation of erroneous diagnoses. Nevertheless, clinical
decisions are made every day with these expert yet error-
prone human interpretations and therefore provide for a
reasonable preliminary standard. In addition, the large sam-
ple size of patients and ECGs for the derivation, validation,
and testing datasets with a similar distribution may mitigate
the impact of these potential labeling errors. Further study
is needed to evaluate the AI-ECG algorithm’s performance
in real time. A head-to-head comparison trial whereby the
cardiologists select between automated interpretations
made by a currently implemented computer-based algorithm,
over-reading cardiologist, or the AI-ECG algorithm would
also be interesting to evaluate provider preference and inter-
annotator agreement. Because CNN-based algorithms rely on
raw ECG data tracings as input, it will be key that future al-
gorithms be developed, validated, and tested on high-quality,
artifact-free ECGs from various populations. We suspect that
computerized ECG interpretations will serve as an adjunct
and not a substitute for the over-reading provider. External
validation of our model in diverse, population-specific data-
sets needs to be assessed to verify its accuracy. This suggests
that an AI-ECG algorithm can serve as a useful and support-
ive tool for ECG interpretation.

Conclusions

We demonstrate that an AI-ECG algorithm can provide
comprehensive interpretation of a standard 12-lead ECG
with accuracy comparable to board-certified, practicing
cardiologists. Further study is warranted to compare its
performance against currently implemented algorithms as
well as improve its accuracy and scalability for clinical
application.
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08.005.

References

1.

10.

11.

Taback L, Marden E, Mason HL, Pipberger HV. Digital recording of electrocar-
diographic data for analysis by a digital computer. IRE Trans Med Electro 1959;
6:167-171.

Caceres CA, Steinberg CA, Abraham S, et al. Computer extraction of electrocar-
diographic parameters. Circulation 1962;25:356-362.

Schlapfer J, Wellens HJ. Computer-interpreted electrocardiograms: benefits and
limitations. J Am Coll Cardiol 2017;70:1183-1192.

Shah AP, Rubin SA. Errors in the computerized electrocardiogram interpretation
of cardiac rhythm. J Electrocardiol 2007;40:385-390.

Guglin ME, Thatai D. Common errors in computer electrocardiogram interpreta-
tion. Int J Cardiol 2006;106:232-237.

Poon K, Okin PM, Kligfield P. Diagnostic performance of a computer-based.
ECG rhythm algorithm. J Electrocardiol 2005;38:235-238.

Garvey JL, Zegre-Hemsey J, Gregg RE, Studnek JR. Electrocardiographic diag-
nosis of ST segment elevation myocardial infarction: an evaluation of three auto-
mated interpretation algorithms. J Electrocardiol 2016;49:728-732.

Mawri S, Michaels A, Gibbs J, et al. The comparison of physician to computer
interpreted electrocardiograms on ST-elevation myocardial infarction door-to-
balloon times. Crit Pathw Cardiol 2016;15:22-25.

Partinez-Losas P, Higueras J, Gomez-Polo JC, et al. The influence of computer-
ized interpretation of an electrocardiogram reading. Am J Emerg Med 2016;
34:2031-2032.

Novotny T, Bond R, Andrsova I, et al. The role of computerized diagnostic pro-
posals in the interpretation of the 12-lead electrocardiogram by cardiology and
non-cardiology fellows. Int J Med Inform 2017;101:85-92.

Bogun F, Anh D, Kalahasty G, et al. Misdiagnosis of atrial fibrillation and its clin-
ical consequences. Am J Med 2004;117:636—642.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

Anh D, Krishnan S, Bogun F. Accuracy of electrocardiogram interpretation by
cardiologists in the setting of incorrect computer analysis. J Electrocardiol
2006;39:343-345.

LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521:436-444.

He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: surpassing human-
level performance on ImageNet classification. Proc IEEE Int Conf Comput Vis
2015;1026-1034.

He K, Zhang X, Sun J, et al. Deep residual learning for image recognition. IEEE
Conf Comput Vis 2016;770-778.

Gulshan V, Peng L, Coram M, et al. Development and validation of a deep
learning algorithm for detection of diabetic retinopathy in retinal fundus photo-
graphs. JAMA 2016;316:2402-2410.

Esteva A. Dermatologist-level classification of skin cancer with deep neural net-
works. Nature 2017;542:115-118.

Hannun AY, Rajpurkar P, Haghpanahi M, et al. Cardiologist-level arrhythmia
detection and classification in ambulatory electrocardiograms using a deep neural
network. Nat Med 2019;25:65-69.

Attia ZI, Kapa S, Lopez-Jimenez F, et al. Screening for cardiac contractile
dysfunction using an artificial intelligence-enabled electrocardiogram. Nat Med
2019;25:70-74.

Attia ZI, Noseworthy PA, Lopez-Jimenez F, et al. An artificial intelligence-
enabled ECG algorithm for the identification of patients with atrial fibrillation dur-
ing sinus rhythm: a retrospective analysis of outcome prediction. Lancet 2019;
394:861-867.

Glorot X, Bengio Y. Understanding the difficulty of training deep feedfor-
ward neural networks. Proceedings of Machine Learning Research 2010;
9:249-256.

Holst H, Ohlsson M, Peterson C, Edenbrandt L. A confident decision support sys-
tem for interpreting electrocardiograms. Clin Physiol 1999;19:410-418.
Cubanski D, Cyganski D, Antman EM, Feldman CL. A neural network system for
detection of atrial fibrillation in ambulatory electrocardiograms. J Cardiovasc
Electrophysiol 1994;5:602-608.

Xiong Z, Zhao J, Stiles MK. Robust ECG signal classification for detection of
atrial fibrillation using a novel neural network. Comput Cardiol 2017; https://
doi.org/10.22489/CinC.2017.066-138.

Acharya UR, Fujita H, Lih OS, Hagiwara Y, Tan JH, Adam M. Automated detec-
tion of arrhythmias using different intervals of tachycardia ECG segments with
convolutional neural network. Inf Sci (NY) 2017;405:81-90.

Alfaras M, Soriano MC, Ortin S. A fast machine learning model for ECG-based
heartbeat classification and arrhythmia detection. Front Phys 2019;7.

de Chazal P, O’Dwyer M, Reilly RB. Automatic classification of heartbeats using
ECG morphology and heartbeat interval features. IEEE Trans Biomed Eng 2004
51:1196-1206.


https://doi.org/10.1016/j.cvdhj.2020.08.005
https://doi.org/10.1016/j.cvdhj.2020.08.005
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref1
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref1
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref1
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref2
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref2
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref3
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref3
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref4
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref4
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref5
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref5
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref6
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref6
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref7
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref7
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref7
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref8
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref8
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref8
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref10
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref10
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref10
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref11
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref11
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref11
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref12
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref12
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref13
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref13
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref13
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref14
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref15
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref15
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref15
http://refhub.elsevier.com/S2666-6936(20)30032-3/serf15
http://refhub.elsevier.com/S2666-6936(20)30032-3/serf15
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref17
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref17
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref17
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref18
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref18
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref19
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref19
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref19
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref20
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref20
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref20
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref21
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref21
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref21
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref21
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref22
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref22
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref22
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref23
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref23
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref24
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref24
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref24
https://doi.org/10.22489/CinC.2017.066-138
https://doi.org/10.22489/CinC.2017.066-138
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref26
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref26
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref26
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref27
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref27
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref28
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref28
http://refhub.elsevier.com/S2666-6936(20)30032-3/sref28

	A comprehensive artificial intelligence–enabled electrocardiogram interpretation program
	Introduction
	Methods
	Disclosure statement
	Funding
	Study cohort and ECGs
	Algorithm development
	Algorithm validation, testing, and statistical analysis

	Results
	Primary and secondary rhythm interpretation
	Axis deviation and chamber enlargement detection
	Atrioventricular and intraventricular conduction delay detection
	Myocardial ischemia detection
	Waveform abnormality, clinical disorder, and pacemaker activity detection

	Discussion
	Conclusions
	Appendix. Supplementary data
	References


