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Introduction
Traumatic brain injury often occurs in combination with 
limb fractures and peripheral nerve injury. The promotion 
of fracture healing by traumatic brain injury has been re-
ported by many studies (Spencer, 1987; Morley et al., 2005). 
Gibson (1960) first reported that a large number of bone 
calluses formed in the fracture site of femoral fracture pa-
tients that also had brain injuries, which has been verified 
by many animal and clinical experiments (Perkins and Skir-
ving, 1987; Spencer, 1987). After brain injury, damage to 
the blood-brain barrier increases its permeability, allowing 
several osteogenic factors to enter the systemic circulation. 
In this manner, the expression of such factors in serum was 
markedly increased, promoting callus formation and accel-
erating fracture healing (Khare et al., 1995; Liu et al., 2012; 
Yang et al., 2012b). Cytokines, neuropeptides, neurotrophic 
factors, humoral factors, and mechanical factors can affect 
fracture healing after craniocerebral injury (Shen et al., 2012; 
Yang et al., 2012a; Liu et al., 2013b; Yan et al., 2013; Zhang et 
al., 2013; Zhao et al., 2014). Numerous studies have demon-
strated that serum nerve growth factor, brain-derived neuro-
trophic factor, and basic fibroblast growth factor expression 
is higher in patients with fracture and craniocerebral injury 
than in patients with fracture alone (Wildburger et al., 1994; 
Yang and Dong, 2012; Zhuang and Li, 2013). Neurotrophic 
factors play important roles in the repair of peripheral nerve 

injury (Hong et al., 1999; Liu et al., 2013a; Wang et al., 2013; 
Yu et al., 2014). The aim of the present study was to deter-
mine whether changes in the body, such as neurotrophic 
factors, caused by craniocerebral injury promote the repair 
of peripheral nerve.

Materials and Methods
Experimental animals
A total of 80 male specific-pathogen-free Sprague-Dawley 
rats aged 8 weeks and weighing 200–220 g were purchased 
from Vital River Laboratories, Beijing, China (license No. 
SCXK (Jing) 2012-0001). They were housed in a 12-hour 
light/dark cycle at 23 ± 2°C. The protocols used conformed 
to the Guide for the Care and Use of Laboratory Animals 
published by the US National Institutes of Health (NIH 
publication No. 85–23, revised 1996), and the protocol was 
approved by the Institutional Animal Care Committee of 
Chengdu Medical University in China. The rats were equally 
and randomly divided into injury and control groups. The 
injury group received a craniocerebral injury and sciatic 
nerve transection, while the control group received only the 
sciatic nerve transection.

Models of craniocerebral injury combined with sciatic 
nerve transection
Injury group: Using the classical Feeney method (Feeney et 
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al., 1981), the rats were intraperitoneally anesthetized with 
10% chloral hydrate (0.35 g/kg), restrained, and sterilely 
prepared. A sagittal incision was made on the scalp to expose 
the right parietal bone. A bone window of 5 mm diameter 
was drilled 1.5 mm posterior to the coronal line and 2.5 mm 
lateral to the median line using a dental drill. The cerebral 
dura mater was kept intact. A 20 g falling hammer was 
dropped freely from a height of 30 cm along the peripheral 
catheter, striking the bar to make a moderate contusion of 
right parietal bone. The bone window was sealed with bone 
wax, and the scalp was sutured. After sterilization, an inci-
sion was made in the left buttock to expose the sciatic nerve. 
The sciatic nerve was transected 1 cm below the lower hole 
of the left piriformis of the rats, and then sutured with 9-0 
nontraumatic thread using an epicardial suture technique 
under a microscope (LEL-6A; Zhongtian Optical Instrument 
Co., Ltd., Zhenjiang, Jiangsu Province, China). Finally, the 
skin was sutured closed (Cheng and Li, 2006). 

Control group: After anesthesia and restraint, the left sci-
atic nerve was transected and sutured as detailed above. The 
rats in both groups were housed in individual cages.

Measurement of sciatic functional index
Ten rats were collected from both groups at 4, 6, 8, and 12 
weeks after injury. Custom-made walking dark chambers 
were used, as in a previous study (Schiaveto de Souza et al., 
2004), to measure footprints. Three parameters were mea-
sured on both the experimental side (E) and contralateral 
normal side (N). (1) Footprint length (PL): from heel to toe; 
(2) toe width (TS): from the first toe to the fifth toe; (3) toe 
spacing (IT): from the second toe to the fourth toe. From 
these parameters, the sciatic functional index was calculated 
as – 38.3 × (EPL – NPL)/NPL + 109.5 × (ETS – NTS)/NTS 
+ 13.3 × (EIT – NIT)/NIT − 8.8. The sciatic functional in-
dex expressed as absolute value ranged from: 0, representing 
normal, to 100, representing complete nerve damage and 
loss of function.

Measurement of gastrocnemius muscle wet weight
At 4, 6, 8, and 12 weeks after injury, 10 rats were selected 
from both groups. After anesthesia with intraperitoneal 
injection of chloral hydrate, the entire gastrocnemius mus-
cle was harvested from the medial and external femoral 
condyles to the calcaneal tuberosity. The wet weight (g) of 
the gastrocnemius muscle was assessed using an electronic 
balance (ESJ200-4; Dragon Electronics Co., Ltd., Shenyang, 
Liaoning Province, China). The recovery of gastrocnemius 
muscle wet weight (%) was calculated as the wet weight on 
the experimental side (g) divided by the wet weight on the 
normal side (g) ×100%.

Histopathological observation of nervous tissues using 
hematoxylin-eosin staining
Sciatic nerve stumps were selected at 4, 6, 8, and 12 weeks af-
ter injury. All samples were fixed in 10% neutral formalin for 
24 hours, dehydrated through a graded alcohol series, em-
bedded in paraffin, and longitudinally sliced into 5 μm-thick 

sections. These sections were dewaxed with xylene, hydrated 
through a graded alcohol series, stained with hematoxylin, 
differentiated with ethanol hydrochloride, immersed in run-
ning water, dipped in eosin, dehydrated, permeabilized, and 
mounted. Nerve fiber morphology was observed with a light 
microscope (BH-2; Olympus, Tokyo, Japan).

Repair of sciatic nerve pathway observed with a 
horseradish peroxidase tracer
At 4, 6, 8 and 12 weeks after injury, 10 rats were selected 
from each group. After anesthesia as above, the nerve was 
slightly clipped 0.5 cm from the left sciatic nerve stump, 
and 30% horseradish peroxidase solution (Sigma, St. Louis, 
MO, USA) was infused. After 72 hours, the chest was opened 
under deep anesthesia, and the ascending aorta of the left 
ventricle was cannulated. The blood vessels were rinsed with 
200 mL of warm physiological saline. Perfusion and fixation 
were performed with 400 mL of 2% paraformaldehyde and 
2% glutaral prepared in 0.1 mol/L phosphate buffer. The 
ganglia of the sciatic nerve and corresponding segments at 
the T4–5 spinal levels were serially sliced into 50 μm-thick 
sections in the cross-sectional plane with a vibratome. These 
sections were washed with 0.1 mol/L PBS (pH 7.4), and 
treated with benzidine dihydrochloride. After exposure to 
0.3% H2O2, sections were immersed in stabilizing buffer, 
washed with distilled water, and counterstained with neutral 
red (Mesulam and Rosene, 1977). The number of cell bodies 
containing blue-stained particles in the ganglia and motor 
neurons of the spinal anterior horn was observed with a 
light microscope (Olympus).

Statistical analysis
The data were analyzed using SPSS 17.0 software, and were 
expressed as mean ± SD. Intergroup comparisons were made 
using two-sample t-tests. Values of P < 0.05 were considered 
statistically significant.

Results
Effects of craniocerebral injury on the gross state of rats 
with peripheral nerve injury
All animals survived the surgeries. Three weeks later, 30 rats 
in the injury group showed red swelling of their left lower 
extremity. In the control group, 32 rats showed ulcers and 
movement disorder. At 6 weeks, swelling of the left lower 
limb subsided, and the ulcers began to diminish in the injury 
group. In contrast, the swelling was still present in the con-
trol group. At 8 weeks, the symptoms started to improve in 
rats from the control group, and the symptoms in the injury 
group were noticeably improved. At 12 weeks, the symptoms 
in rats of both groups were further improved.

Effects of craniocerebral injury on the sciatic functional 
index of rats with peripheral nerve injury
The dark chamber walking results demonstrated that at 4 
weeks after injury, the sciatic functional index was similar 
between the injury and control groups (P > 0.05). After 4 
weeks, the sciatic functional index began to decrease in the 
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injury group. With time, the rate of decrease slowed. The sci-
atic functional index decreased after 4 weeks in the control 
group. At 8 and 12 weeks, the sciatic functional index was 
lower in the injury group than in the control group (P < 0.01; 
Table 1).

Effects of craniocerebral injury on the gastrocnemius 
muscle wet weight of rats with peripheral nerve injury
The gastrocnemius muscle became pale with visible atrophy 
on the experimental side in the injury and control groups. 
No significant difference in recovery of gastrocnemius mus-
cle wet weight was found between the injury and control 
groups at 4 weeks (P > 0.05). However, the recovery was 
significantly higher in the injury group than in the control 
group at 6, 8, and 12 weeks (P < 0.01; Table 2).

Effects of craniocerebral injury on the pathological 
changes in sciatic nerve of rats with peripheral nerve injury 
Hematoxylin-eosin staining demonstrated no significant dif-
ferences between the injury and control groups at 4 weeks. 
No nerve fibers traversed the nerve stump, which was irreg-
ular and had no nerve fibers integrated. Many nerve fibers 
were observed in the proximal end in the injury group, and a 
large number of vacuoles and necrotic cells were seen in the 
control group. At 6 weeks, a few sparse nerve fibers traversed 
the nerve stump, and these nerve fibers were not uniform, 
but irregularly arranged in the injury group. Nerve fibers 
did not traverse the nerve stump, and vacuolar degeneration 
was apparent in many cells in the control group. At 8 weeks, 
many nerve fibers traversed the nerve stump, and these 
nerve fibers were uniform and regular, though still thin, in 
the injury group. The nerve fibers that traversed the nerve 
stump were not uniform, but were irregularly arranged in 
the control group. At 12 weeks, numerous nerve fibers of a 
large diameter traversed the nerve stump and were arranged 
regularly in the injury group, appearing similar to normal 
fibers. In the control group, many uniform nerve fibers tra-
versed the nerve stump, showing a typical wavy arrangement 
(Figure 1).

Effects of craniocerebral injury on the repair of the sciatic 
nerve pathway of rats with peripheral nerve injury
At 4 weeks, no dark blue-stained neuronal bodies were de-

tected by light microscopy (200 ×), but numerous swollen 
cells were visible in the ganglion and spinal anterior horn 
in both the injury and control groups. At 6 weeks, labeled 
neuronal bodies were observed in the ganglion of the injury 
group, but not in the control group. At 8 weeks, labeled cells 
were apparent in the ganglion and spinal anterior horn in 
the injury group, averaging 12–15 cells/field. A few labeled 
cells were detectable in the control group, averaging 2–5 
cells/field. At 12 weeks, labeled cells were visible in both the 
injury and control groups (Figure 2).

Discussion
After peripheral nerve injury that includes transection of 
axons, Wallerian degeneration occurs, presenting swollen 
neuronal bodies, nuclear deviation, and chromatolysis. For 
example, neuronal bodies died in spinal ganglion and spinal 
cord of cats following sciatic nerve transection (Risling et 
al., 1983; Arvidsson et al., 1986). In the present study, a large 
number of necrotic and degenerated nerve fibers were ob-
served during the repair phase at 4 weeks after sciatic nerve 
transection in rats in both the injury and control groups. 
Moreover, neuronal cells were also swollen, degenerated, and 
apoptotic in the ganglion and corresponding segments of 
the spinal cord, which confirmed this type of pathological 
changes. With time after injury, the neurons became regular 
and function was recovered in the sciatic nerve ganglion 
and corresponding segments of spinal cord in both groups, 
which indicates that the key to neurological recovery is the 
survival and regenerative capacity of damaged neurons (Gil-
lardon et al., 1996; Pan et al., 2009; Dong et al., 2011). After 
peripheral nerve injury, the death of neuronal bodies was 
associated with animal age, the axonal injury site, the nature 
of the damage, and the neuronal type (Yegiyants et al., 2010; 
Wang et al., 2011). Here, at 6, 8, and 12 weeks, the quantity 
and quality of neurons in the ganglion and anterior horn of 
the spinal cord were better in the injury group than in the 
control group. Whether the craniocerebral injury reduced 
the death of neurons deserves further investigation.

The conditions for successful repair and regeneration of 
injured peripheral nerve include the survival and restoration 
of injured neuronal cell bodies, as well as sprouting and 
elongation of the proximal axons (English et al., 2011). Ma-
ture myelinated nerve fibers in regenerated nerves indicate 

Table 1 Effects of craniocerebral injury on sciatic functional index in 
rats with peripheral nerve injury

Group

Weeks after injury 

4 6 8 12

Injury 70.16±2.45 58.17±2.60* 37.32±2.34* 21.56±2.43*
Control 71.27±1.37 68.75±2.36 43.42±1.88 26.27±2.71

Data are expressed as the mean ± SD. n = 10 in each group at each time 
point. Intergroup differences were compared with two-sample t-tests. 
*P < 0.01, vs. the control group. Sciatic functional index expressed as 
absolute value: 0 represents normal, and 100 represents complete nerve 
damage and loss of function.

Table 2 Effects of craniocerebral injury on the recovery of 
gastrocnemius muscle wet weight (%) of rats with peripheral nerve 
injury 

Group

Weeks after injury 

4 6 8 12

Injury 20.01±0.34 44.96±1.60* 55.22±0.46* 85.76±1.11*
Control 19.45±0.42 33.27±0.92 43.51±1.41 76.90±0.38

Data are expressed as the mean ± SD. n = 10 in each group at each time 
point. Intergroup differences were compared with two-sample t-tests. 
*P < 0.01, vs. the control group. Recovery of gastrocnemius muscle wet 
weight (%) = wet weight on the experimental side (g) / wet weight on 
the normal side (g) × 100%.
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an effective neural regeneration (Xu et al., 2003). In the pres-
ent study, at 6, 8, and 12 weeks, nerve fibers were observed in 
the nerve stump, clearly indicating that the injured peripher-
al nerve here could be repaired and regenerated. In addition, 
nerve fibers traversed the nerve stump earlier in the injury 
group (with craniocerebral injury) than in the control group 
(without craniocerebral injury). Within the same time peri-
od, more regularly arranged nerve fibers traversing the nerve 
stump were found in the injury group compared with the 
control group, suggesting that craniocerebral injury contrib-
uted to the repair of the sciatic nerve injury to some extent. 
Moreover, the ultimate aim of peripheral nerve repair is to 
restore the function of a target muscle. The evaluation of 
the reinnervation rate of a target muscle can also be used to 
assess nerve repair and regeneration (Liang et al., 2007). In 
the present study, the recovery of the gastrocnemius mus-
cle was significantly higher in the injury group than in the 
control group at 6, 8, and 12 weeks, which suggested that the 
craniocerebral injury promoted the repair of the peripheral 
nerve injury. Recently, a horseradish peroxidase marking 
method has been extensively used to trace nerves and to 
study neural regeneration (Schiaveto de Souza et al., 2004). 
In the present study, at 4 weeks, Wallerian degeneration was 
detected, and the sciatic functional index was similar be-
tween the two groups. The sciatic functional index decreased 
at later time points, indicating that regenerated axons had 
traversed the stumps, reinnervated target muscles, partially 
restored muscle force, and coordinated the function among 
muscles. At 8 and 12 weeks, the sciatic functional index was 
clearly lower in the injury group than in the control group. 

To some extent, the craniocerebral injury promoted the 
growth of regenerated axons in large numbers, contribut-
ing to the formation and maturation of the neuromuscular 
junction.

The horseradish peroxidase retrograde tracer technique 
has been widely used to trace nerves. Horseradish peroxi-
dase can be absorbed and transported by nerve endings with 
various functions. It also accumulates in nerve cell bodies, 
and its transport is mainly associated with microtubules 
in nerve fibers (Seckel et al., 1984; Mearow et al., 1994). 
Therefore, nerve fibers that have lost their continuity cannot 
transport horseradish peroxidase from the distal to proximal 
end or accumulate it in their cell bodies. Horseradish per-
oxidase-labeled cells in the spinal ganglion and spinal cord 
can be used to identify whether regenerated fibers traversed 
the suture site after end-to-end suture. In this study, at 4 
weeks after surgery, labeled neuronal cells were not detect-
ed in the rat ganglion or spinal cord in either the injury or 
control groups, indicating that the regenerated fibers did 
not traverse the nerve stumps. At 6 weeks, labeled neuronal 
cells were detected in the rat spinal ganglion in the injury 
group, but not in the control group, indicating that the re-
generated fibers of rats with craniocerebral injury traversed 
the nerve stumps earlier than those in the control rats. After 
craniocerebral injury, several factors can promote the repair 
of injured peripheral nerves. At 8 and 12 weeks after surgery, 
a large number of labeled cells were visible in the spinal 
ganglion and spinal cord in both groups, but the number 
was obviously higher in the injury group than in the control 
group. These results suggest that changes in the bodies of the 

Figure 1 Effects of craniocerebral injury on the pathological changes in sciatic nerve of rats with peripheral nerve injury (hematoxylin-eosin 
staining, × 100).
After nerve transection, nerve fiber swelling and apoptosis were observed at both stumps. At 4 weeks, partial function of the cells was recovered. At 
6 weeks, the nerve fibers traversed the stumps. At 8 and 12 weeks, the number of nerve fibers traversing the stumps increased. The traversing nerves 
appeared earlier, and more nerve fibers traversed the stumps, in the injury group compared with the control group.
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rats after craniocerebral injury protected the neuronal cells, 
contributed to the better restoration of neuronal cells, and 
played a role in the repair of the peripheral nerve injury.

In summary, the regeneration of broken sciatic nerves 
occurred faster in rats with craniocerebral injuries than in 
control rats without craniocerebral injuries, indicating that 

the craniocerebral injury promoted the repair of the periph-
eral nerve injury. However, the precise mechanisms remain 
poorly understood and deserve further investigation.

Author contributions: This study was designed by Wang W 
and Wang P, and performed by Wang W, Gao J, Na L, Jiang 

Figure 2 Horseradish peroxidase-labeled neuronal cells in the sciatic nerve ganglion (A) and segments of the spinal cord (B) in rats with 
peripheral nerve injury (× 200).
At 4 weeks, neurons in the sciatic nerve ganglion of the rats began to recover. Horseradish peroxidase-labeled neuronal cells in corresponding 
segments of the spinal cord were apoptotic. At 6 weeks, the number of horseradish peroxidase-labeled neuronal cells in the sciatic nerve ganglion 
and corresponding segments of the spinal cord was increased. Horseradish peroxidase-labeled cells were detected in the injury group. At 8 and 12 
weeks, horseradish peroxidase-labeled neurons were visible in the sciatic nerve ganglion and corresponding segments of the spinal cord in both 
the injury and control groups. Moreover, the number of horseradish peroxidase-labeled neurons was higher in the injury group than in the control 
group. Arrows show horseradish peroxidase-labeled neurons.
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