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Water detection is one of the most crucial psychological processes for many animals. However,
nobody knows the perception mechanism of water through our tactile sense. In the present
study, we found that a characteristic frictional stimulus with large acceleration is one of the
cues to differentiate water from water contaminated with thickener. When subjects applied
small amounts of water to a glass plate, strong stick-slip phenomena with a friction force of
0.46+0.30 N and a vertical force of 0.57+0.36 N were observed at the skin surface, as shown
in previous studies. Surprisingly, periodic shears with acceleration seven times greater than grav-
itational acceleration occurred during the application process. Finite-element analyses predicted
that these strong stimuli could activate tactile receptors: Meissner’s corpuscle and Pacinians.
When such stimuli were applied to the fingertips by an ultrasonic vibrator, a water-like tactile
texture was perceived by some subjects, even though no liquid was present between the fingertip
and the vibrator surface. These findings could potentially be applied in the following areas:
materials science, information technology, medical treatment and entertainment.

Keywords: human skin; water; biotribology; friction; finite-element analyses;
tactile display
1. INTRODUCTION

How do we recognize water through our five senses? For
several decades, researchers have attempted to address
this question [1–6] because obtaining water is one of
life’s most important activities. Recent neurophysiological
studies have shown that humans perceive water as
a sweet taste [7]. Almost all studies have focused on water
perception by taste; however, humans can also recognize
water by their tactile sense. Kajimoto and co-workers [8]
found that mechanical stress on skin hair plays a major
role in the perception of a liquid surface. We showed that
water caused a stick-slip feel when a small amount was
rubbed using a fingertip on artificial skin that mimicked
the structure of human skin [9,10]. The results of frictional
analyses predicted that this stick-slip feel was caused by a
drastic change in frictional resistance. Such stick-slip
phenomena and an increase of friction force have been
observed on wet skin surfaces [11–26].

Living beings obtain important information from tac-
tile stimuli through active movement. By means of active
touch, much of the surrounding environment can be per-
ceived in the absence of vision [27]. During active tactile
sensation by rodents, whisker movements across surfaces
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generate complex whisker micro-motions that carry infor-
mation about surface properties [28]. To illustrate the
mechanisms of tactile detection, not only forces on the
skin, but also tactile behaviour or movement velocity
must be evaluated because tactile sense depends on
these factors [29,30]. Furthermore, activation of sensory
receptors induced by external stimuli is important
because all tactile sensation originates from perceptual
information conveyed by these receptors. In human
skin, there are four tactile receptors: Merkel’s discs,
Meissner’s corpuscles, Ruffini endings and Pacinians
[31,32]. Each of these four receptors mediates specific
portions of the overall threshold-frequency range [33].

In the present study, 10 subjects identified whether the
liquids on glass plates were water or thickener aqueous
solutions based on their tactile sense. During the identifi-
cation process, the movement velocity of the fingertips
was evaluated by a high-speed camera (figure 1a).
On the other hand, using strain gauges on two leaf springs,
the friction metre measured friction and vertical forces
when subjects applied liquid samples to the glass plate
[34,35]. These experimental evaluations would show
the mechanical stimuli on skin surface and fingertip
movement when the subjects touched water. Next, we
simulated the stress distribution around the tactile recep-
tors that occurred when the subjects applied water to a
glass substrate with a fingertip. The strain energy density
estimated by the finite-element model correlates with the
This journal is q 2011 The Royal Society
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Figure 1. Movement behaviours of a fingertip when a subject
tested water or thickener solutions. (a) A photograph of an
observation system with a high-speed camera; examples of
(b) movement distance, (c) velocity and (d) acceleration for
water (red lines) and 2 wt% thickener solution (blue lines).
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frequency of nerve impulses at tactile receptors [36–38].
We also confirmed that the strain energy density obtained
by the present model is proportional to the frequency of
nerve impulses in the previous study [39–41]. Further-
more, the tactile texture of water on the glass plates was
displayed using a tactile display system equipped with
an ultrasonic vibrator. Suitable conditions for the tactile
display would reflect the characteristics of the tactile tex-
ture of water. Shiokawa et al. [42], Winfield et al. [43] and
Biet et al. [44] showed that a vibrating platewith a squeeze
film is suitable for a haptic interface. Thewater-like tactile
texture can arise from the mechanical stimulus because
the characteristic friction phenomena are the most
important factor of the tactile texture of water [9,10].

2. MATERIAL AND METHODS

2.1. Materials

Water was purified using a DX-15 demineralizer (Kurita
Water Industries Ltd., Tokyo, Japan). The thickener
J. R. Soc. Interface (2012)
Polyquaternium-10 (O-(2-hydroxy-3-(trimethylammo-
nio) propyl) hydroxy cellulose chloride, POIZ C-60H)
was obtained from Kao Co. (Tokyo, Japan). The aqueous
samples, 0.15, 0.5, 1 and 2 wt% thickener solutions, were
prepared using a Vortex Genie 2 mixer from Scientific
Industries Inc. (NY, USA). These evaluation items were
selected based on a preliminary test performed by three
professionals: one was a researcher who had engaged in
tactile evaluations for more than 10 years, and the
other two were students who had studied tactile sense.
The professionals stated that these thickener solutions
were suitable for the items because the addition of a
small amount of the thickener induced a drastic change
on the tactile texture of water. Samples were heated at
608C to dissolve the Polyquaternium-10. The thickener
ingredient was checked for human safety. The viscosi-
ties of the aqueous samples are as follows: 0.9 (water),
4.5 (0.15 wt% thickener solution), 110 (0.5 wt% thick-
ener solution), 730 (1 wt% thickener solution) and
3400 mPa s (2 wt% thickener solution). The viscosity
range of these thickener solutions covers many liquids
that we touch in our daily life; for example, ethyl
alcohol ¼ 1.2 mPa s at 208C; olive oil ¼ 84 mPa s at
208C; machine oil ¼ 661 mPa s at 168C, 127 mPa s at
388C; glycerin¼ 954 mPa s at 258C [45].

2.2. Tactile evaluations

Tactile evaluations and friction evaluations were carried
out simultaneously as follows [9,10]. Similarity with a
standard sample (water), and seven tactile factors,
including ‘a cool feel’, ‘a fresh feel’, ‘a slippery feel’, ‘a
sticky feel’, ‘a slimy feel’, ‘a rough feel’ and ‘a stick-slip
feel’ were evaluated for water and thickener aqueous sol-
utions when subjects applied them to the glass plate
installed on a friction evaluation system [9,10]. The tactile
evaluations were rated on a seven-point scale, where score
7 means ‘exactly the same texture as water’, while score 1
means ‘exactly the opposite texture from water’. All
evaluations were conducted according to the principles
expressed in the Declaration of Helsinki. The subjects
included five male students and five female students ran-
ging in age from 20 to 23 years. The evaluations were
carried out in a quiet room at 258C+18C after the sub-
jects washed both hands with commercial liquid hand
soap. The relative humidity was 50+3% in the room.
Subjects used their forefingers to rub 0.1 ml of a standard
sample (water) followed by 0.1 ml of one of the evaluated
samples on a glass plate. After filling in a questionnaire,
the subjects washed their hands with water again. The
unit process (i.e. applying the aqueous samples, filling
in the questionnaire and washing the hands) was repeated
for all samples. The order of the samples was random to
eliminate order effects. During the evaluation, the compo-
sition of the samples was not revealed to the subjects. The
subjects touched the liquid samples on the glass plate
through a black-out curtain. The content of the test
was announced previously. The subjects decided for
themselves whether they would join our evaluation test.

2.3. Frictional evaluation

In the present study, we used a friction evaluation system
that simultaneously evaluated tactile sensation and
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friction properties [9,10,34,35]. This device measured the
friction and vertical forces using strain gauges on two leaf
springs. In the present paper, the friction coefficient
is defined as the ratio friction force/vertical force. The
detection limits of the friction and vertical forces
were 0.20 N and 0.08 N, respectively. The maximum
measurable load of the device was 5 N, with a time
resolution of 0.5 ms.
2.4. Fingertip movement analysis

We observed fingertip movements with a high-speed
camera, as shown in figure 1a. The high-speed images
were taken using an EX-F1 high-speed video camera
(Casio, Tokyo, Japan) with a frame rate of 600 frames s21

and a space resolution of about 200 mm pixel21. Fifteen
black dots of 1 mm in diameter were plotted in oil-based
ink at intervals of approximately 4 mm to follow the
movement. The skin surfaces on the glass plates were
illuminated with a video light VL-G151 (lamp: halogen
150 W; colour temperature: 3075 K, LPL Co., Tokyo,
Japan). Movement distance, velocity and acceleration of
the fingertips were analysed using the two-dimensional
movement analysis software Move-tr/2D v. 7.0 (Library
Co., Tokyo, Japan) by the centre of gravity method.
In the analysis, the values of movement for the centred
dot were selected as representative values because sig-
nificant differences were not observed between the
movements of the 15 dots. The measurement error of the
movement analysis reflects on the noises of velocity and
acceleration. The noises of the velocity and acceleration
were about 0.025 ms21 and 20 ms22, respectively.
2.5. Simulations using the finite-element method

The stress distribution around tactile receptors in the
skin was simulated using a previously reported
method [39,41]. We analysed finger deformation using
the finite-element analysis software MARC (MSC
Software Co., CA, USA). Electronic supplementary
material, figure S1 shows a mesh model of a finger sec-
tion that mimics the structure of an index finger. The
plane strain element is used because the deformation
outside the modelled plane is negligible nodes at the
surfaces of the nail and bone. The finger skin consists
of stratum corneum, epidermis, dermis and subcu-
taneous tissue. In the model, the stratum corneum is
divided into two layers, i.e. a soft inner layer and a
hard outer layer to reflect the heterogeneity of the
stratum corneum because the inner layer is more
hydrated than the outer layer [46]. Some measurements
predicted that the hydration softens the stratum cor-
neum layers [47]. There are papillae at the interface of
the epidermis and dermis underneath the epidermal
ridges. The nail and bone were not modelled because
their Young’s moduli are large compared with that of
the skin. The four symbols in the figure represent the
nodes where the four tactile receptors are located.
The physical factors of these biological tissues are
shown in electronic supplementary material, table S1;
for example, longitudinal elastic moduli of the outer
stratum corneum, inner stratum corneum, epidermis,
dermis and subcutaneous tissue were 0.816, 0.408,
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0.136, 0.080 and 0.034 MPa, respectively. These factors
were determined based on the measured values of skins
for human and guinea [39–41]. In the present simu-
lations, the process consisted of two steps; in the first
step, the finger model was moved 0.5 mm vertically
towards the solid substrate for 0.125 s, whereas in the
second step, it was moved horizontally for 0.875 s.

In the present simulations, the input factors that
change for water and four thickener solutions were the
friction coefficient and the movement velocity, which
were determined from experimental results. On the
basis of the experimental data, the friction coefficients
were 0.84, 0.54, 0.29, 0.20 and 0.13 for water, and
0.15, 0.5, 1and 2 wt% for thickener solutions, respect-
ively. The movement velocities of horizontal and
vertical motions are shown in electronic supplementary
material, figure S2. The velocity profiles were sinusoidal
in acceleration/deceleration processes. Strain energy
densities were filtered in consideration of the frequency
characteristics of the tactile receptors. Partial fraction
decomposition and inverse Laplace transform were car-
ried out for the transfer functions of each receptor H(s)
to obtain the time-varying function h(t). The filtered
strain energy densities were obtained by the convolu-
tion. The filtering properties used for each tactile
receptors were obtained from a previous study [41].
2.6. Tactile display of water texture

Mechanical stimuli were applied to human skin by a
tactile display system equipped with a Langevin-
type ultrasonic vibrator (SEDECO Co., Tokyo, Japan),
an analogue I/O terminal (AIO-160802AY-USB,
CONTEC Co., Osaka, Japan), a differential function gen-
erator (Wave Factory WF1946A, NF Co., Yokohama,
Japan) and power amplifer (HSA4011, NF Co.,
Yokohama, Japan; electronic supplementary material,
figure S3) [42]. The frequency and maximum amplitude
were 28.20 kHz and 20 mm, respectively. In our previous
studies, the mechanical stimuli under these conditions
were suitable to raise some tactile feels: bumpy/flat,
rough/fine and hard/soft feels [42]. The width of the
contact surface was 30 mm. As shown in electronic sup-
plementary material, figure S3, the mechanical stimuli
were applied on skin surface intermittently to reflect
stick-slip phenomena on the glass. The amplitude was
controlled with a pick-up coil sensor. The position of a
finger was evaluated by an infrared (IR) marker, and an
IR sensor was used to control the ultrasonic vibrations.
The ultrasonic vibrator was switched on and off in con-
junction with the moving distance determined with an
IR marker [42]. We studied the effects of the term T,
which was a total movement distance in an on-period
and an off-period, and the duty ratio t on the tactile tex-
ture when (i) duty ratio t ¼ 0; (ii) T ¼ 1 mm; t ¼ 0.5; (iii)
T ¼ 10 mm, t ¼ 0.5; (iv) t ¼ 1. If the velocity of the finger
is assumed to be about 0.1 ms21 based on the results of
the fingertip movement analysis (electronic supplemen-
tary material, table S2), the friction forces change at
10 or 100 ms intervals. This interval roughly agrees
with the interval of stick-slip motion when a subject
touched water. Ten subjects evaluated the similarity
of the ultrasonic vibrator oscillating under various
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conditions with standard samples (water and 2 wt%
thickener aqueous solution). The tactile evaluations
were rated on a seven-point scale: a score of seven indi-
cated ‘exactly the same texture as the standard sample’,
whereas a score of 1 indicated ‘exactly the opposite
texture of the standard sample’.
3. RESULTS

3.1. Effects of friction and fingertip movement
on tactile feels

Similarity with a standard sample (water), and seven
tactile factors were evaluated for water and 0.15, 0.5,
1 and 2 wt% thickener solutions, when 10 subjects
applied them to the glass plate. Electronic supplemen-
tary material, figure S4a shows the similarity scores
of the five aqueous samples. The evaluation value of
water was 6.60+ 0.49, which was the highest among
the five samples. Here, the values following+ are the
standard deviations. The correlations between the simi-
larity score and the other tactile evaluations were
analysed based on the correlation coefficients, r. Of
the seven factors, the stick-slip feel had the highest
value, r ¼ 0.841, while the sticky feel showed a strong
negative correlation, r ¼ 20.824. As shown in elec-
tronic supplementary material, figure S4b, the score of
stick-slip feel (slimy feel) decreased (increased) with
the thickener concentration. These results indicate
that the stick-slip feel is the characteristic property of
the texture of water on a glass plate [9,10].

Live images of subjects applying water or the thick-
ener aqueous solutions were obtained with a high-speed
video camera. Slow-motion images (600 frames s21,
20 times slower than normal speed) are shown in the
electronic supplementary material (videos S1 and S2).
In the case of water, a regular pattern consisting of
‘stick periods’, when the fingertip remained stationary
and ‘slip periods’, when it moved rapidly, was repeated
regardless of the subject’s motion. Figure 1b shows the
examples of movement distance, velocity and accelera-
tion of the fingertip. The profile of the movement
distance (x) was a staircase pattern in which x increased
discontinuously at several tens of millisecond intervals.
During the slip periods, the average velocity and accel-
eration of the 10 subjects were 0.231+ 0.076 m s21 and
66.0+ 16.4 m s22, respectively (electronic supplemen-
tary material, table S3). Surprisingly, the acceleration
was about seven times greater than gravitational accel-
eration. During the slip periods, frictional stimuli with
a friction force of 0.46+ 0.30 N and friction coefficient
of 0.84+ 0.29 were applied to the fingertips at several
tens of millisecond intervals (electronic supplemen-
tary material, figure S5 and table S2). These stimuli
caused a stick-slip feel, i.e. an intermittent friction
feel, in eight of 10 subjects. In our knowledge, it is the
first report on the high-speed observation when subjects
identify water on solid substrates based on information
from tactile stimuli through active movement.

Such stick-slip motion of the fingertips was not
observed when the subjects applied aqueous solutions
containing thickener (electronic supplementary material,
video S2); instead, the fingertips slid on the glass plate
J. R. Soc. Interface (2012)
smoothly without a change in acceleration (figure 1b).
Electronic supplementary material, table S3 shows
the effect of thickener concentration on the times and
acceleration of stick-slip motions. These observed
values (183+58 and 66.0+16.4 m s22, respectively,
for water) decreased with increasing thickener concen-
tration. The friction properties of human skin have
been studied in vivo. As mentioned in §1, the friction
depends on the hydration condition of human skin
[11–26]. On human skin, a glass slider was observed to
exhibit a stick-slip motion that may be attributed
to the accumulation of a water film, which becomes
more pronounced with increasing sliding velocity [17].
3.2. The stress distribution around
tactile receptors

To show the effects of friction stimuli with acceleration on
neural systems, the stress distribution around the tactile
receptors in the skin was simulated using the finite-
element method. The strain energy density obtained by
the simulation reflected the firing frequency. Amplitudes
greater than a specific value produced one impulse every
cycle [48]. The strain energy distribution images show
a model finger press a rigid object 0.5 mm vertically
for 0.125 s and then move it horizontally for 0.875 s
(figure 2, electronic supplementary material, videos S3
and S4). For water, the energy density profile showed
the spatio-temporal asymmetric properties with the
strain energy concentrated in the direction of forward
motion and periodic changes at several hundred millise-
cond intervals. In contrast, the energy density profile
showed the symmetric properties for 2.0 wt% thickener
aqueous solution.

These energy profiles were filtered based on the
response characteristics of each tactile receptor [39–41].
Figure 3 shows temporal changes in strain energies on
the tactile receptors when subjects touched water or
thickener aqueous solutions. Contact with these liquids
excited all tactile receptors, and unusual patterns were
induced on Meissner’s corpuscles and Pacinians following
the application of water. Namely, the strain energy on
Meissner’s corpuscles was 4 � 1025 J m23 at 0.2 s and
decreased with periodic changes at approximately
100 ms intervals. Additionally, the energy on Pacinians
was 4 � 1026 J m23 at 0.15 s and changed at intervals
between several tens of millisecond and 100 ms. These
characteristics of the strain energy profiles were abolished
by increasing the thickener concentration. Although
the strain energy was distributed on Merkel’s discs and
Ruffini endings, an unusual profile was not observed
for water. These results predict that the acceleration,
which was seven times greater than gravitational accel-
eration, could activate Meissner’s corpuscles and
Pacinians in predictable patterns. In our knowledge,
this is the first report on the effects of mechanical sti-
muli induced by the contact with wet substrates on
neural systems.
3.3. Display of water-like tactile texture

Mechanical stimuli were then applied to human skin
using a tactile display equipped with an ultrasonic
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vibrator to mimic the texture of water. In this system,
the friction force between the fingertip and the contact
surface changed with the oscillation amplitude of the
ultrasonic vibrator [42–44]; the friction force on
the oscillating vibrator was lower than that on the rest-
ing vibrator. The squeeze effect of ultrasonic vibration
decreases the friction force. The similarity score with
water was 2.3+ 1.5 when the vibrator did not oscillate,
and 4.5 and 4.6 when the vibrator oscillated at a term T
of 1 mm or 10 mm, respectively (electronic supplemen-
tary material, figure S4). The highest similarity score
was obtained when the vibrator oscillated intermit-
tently. In addition, the similarity score for the 2 wt%
thickener solution was highest when the duty ratio t

was 1, i.e. when the vibrator was oscillating continu-
ously. These results demonstrated that a water-like
tactile texture could be achieved by applying shear
force with a strong acceleration per several tens of milli-
second. The similarity score of 4.6, however, was not
statistically significant. This dissociation may arise
from the fact that thermal sensation and tenderization
of the skin and irregularity of the stick-slip pattern
were neglected in the present system [49,50] (figure 4).
4. DISCUSSION

On the basis of the earlier mentioned results, we pro-
pose that the detection mechanisms that humans
distinguish water from thickener aqueous solutions by
the stick-slip motions with large acceleration per several
tens millisecond and the firing of Meisner’s corpuscles
and Pacinians. The present mechanism is supported
comprehensively by the results of three experiments
and simulations: the frictional evaluation, movement
analysis, finite-element analysis and tactile display.
For example, the stick-slip motion with large accelera-
tion was observed by both the frictional evaluations
and fingertip movement analysis. The results of tactile
display backed up the importance of the stick-slip
motion to detect water. The experimental results of
the frictional evaluation and movement analysis also
contributed to show realistic stress distribution on
tactile receptors in the finite-element analysis.

The application of a shear force with acceleration
seven times greater than gravitational acceleration was
characteristic for water and was abolished by the
addition of a small amount of thickener. The quantitative
analysis of finger movement on wet glass plate is achieved
by our high-speed observation. This intermittent stimu-
lation is caused by the stick-slip phenomenon, which is
well known in the field of tribology. It is characterized
by the phenomenon transitions between a static (solid-
like) state and a kinetic (liquid-like) state and is observed
when lower sliding velocity induces a larger frictional
resistance [51]. Water swells human skin and increases
the contact area and friction force between skin and
solid surfaces [17,20]. Recently, André et al. [25] reported
that the skin hydration level markedly affected the
dynamics of the contact encapsulated in the course of
evolution from sticking to slipping. In contrast, stick-
slip motion is inhibited by thickener in contaminated
water [12]. Adams et al. showed that this intermittent
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motion may be attributed to the accumulation of a water
film, which becomes more pronounced with increasing
sliding velocity [17,26]. Such accelerations are common
during tactile interactions; Maeno et al. [52] proposed a
method for controlling a grasping force using the strain
distribution in relation to the stick/slip information at
the surface of the elastic finger. Shao et al. [53] predicted
stress oscillations during sliding over a textured surface.

Is our model that water is perceived by the firing
of Meissner’s corpuscles and Pacinians reasonable?
Meissner’s corpuscles are responsible for the perception
of events that produce low-frequency, low-amplitude
skin motion and detect microscopic skin motions.
Pacinians are responsible for the perception of events
transmitted to the hand as high-frequency vibrations
and are sensitive to acceleration [54]. It is reasonable
that Pacinians respond to the stick-slip motion per
J. R. Soc. Interface (2012)
several tens of millisecond because they are sensitive
to vibrations of several hundred hertzs. The argument
that Meissner’s corpuscles receptors are slip detectors
is based on the experiments by Srinivasan et al. [55],
who showed that small surface features are required
for slip detection and that the responses of Meissner’s
corpuscles account for the limits of slip detection. In
this vein, the idea that water is perceived by the firing
of Meissner’s corpuscles and Pacinians is justified.

In the present study, we show that humans have a
sophisticated system to recognize water from thickener
aqueous solutions by touch: humans distinguish water
from thickener aqueous solutions by the stick-slip motions
with large acceleration and the firing of Meisner’s corpus-
cles and Pacinians. These findings could be generalized
when humans recognize water from other liquids that
have a similar viscosity and water containing specific
solutes. In previous papers, we showed that subjects can
differentiate water from silicone oil, surfactant aqueous
solutions and ethanol aqueous solutions whose viscosities
were almost similar to water [9,10]. This finding adds to
our understanding of the perception mechanisms for
water, which is the main component of the human body
and an essential material for life. In day-to-day life, we fre-
quently perceive water through our tactile senses. Of
course, in our real-life situations, the stick-slip motion is
one of the cues to identify water from other liquid
materials. For example, although tactile discrimination
of water from aqueous salt/alcohol solutions is difficult
[9], we can distinguish them with olfactory or visual
cues. These findings will be useful when designing virtual
reality systems to mimic the sensation of the texture
of liquids.
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