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Small airways disease (SAD) is one of the leading causes of airflow limitations in patients diagnosed with
chronic obstructive pulmonary disease (COPD). Parametric response mapping (PRM) of computed tomogra-
phy (CT) scans allows for the quantification of this previously invisible COPD component. Although PRM is
being investigated as a diagnostic tool for COPD, variability in the longitudinal measurements of SAD by
PRM has been reported. Here, we show a method for correcting longitudinal PRM data because of non-
pathological variations in serial CT scans. In this study, serial whole-lung high-resolution CT scans over a 30-
day interval were obtained from 90 subjects with and without COPD accrued as part of SPIROMICS. It was
assumed in all subjects that the COPD did not progress between examinations. CT scans were acquired at
inspiration and expiration, spatially aligned to a single geometric frame, and analyzed using PRM. By mod-
eling variability in longitudinal CT scans, our method could identify, at the voxel-level, shifts in PRM classifi-
cation over the 30-day interval. In the absence of any correction, PRM generated serial percent volumes of
functional SAD with differences as high as 15%. Applying the correction strategy significantly mitigated this
effect with differences �1%. At the voxel-level, significant differences were found between baseline PRM
classifications and the follow-up map computed with and without correction (P � .01 over GOLD). This strat-
egy of accounting for nonpathological sources of variability in longitudinal PRM may improve the quantifica-
tion of COPD phenotypes transitioning with disease progression.

INTRODUCTION
Chronic obstructive pulmonary disease (COPD) is a leading
cause of morbidity, mortality, and burden on the world’s health
and financial systems (1, 2). Advances in the clinical manage-
ment of patients with COPD have led to an improved under-
standing of the multitude COPD phenotypes. It has been postu-
lated that a spectrum of pathological processes may result in
unique progression patterns among these patients. Extensive
research has been devoted toward identifying surrogate bio-
markers of disease progression with a strong emphasis on non-
invasive imaging techniques and analytical approaches (3).

Parametric response mapping (PRM) is an analytical ap-
proach that, when applied to spatially aligned high-resolution
computed tomography (HRCT) scans, allows both visualization
and quantification of lung parenchyma affected by small air-
ways disease (SAD), even when only emphysema is visibly

observed (4). This technique quantifies a previously occult com-
ponent of COPD and can be applied to retrospective HRCT data.
Included in various NIH-funded clinical trials on COPD (5, 6),
PRM of functional SAD (fSAD) has been demonstrated as an
independent indicator of clinically relevant outcome measures
(7). More recent studies have identified PRM as a surrogate of
spirometric decline in COPD (7) and also a means for identifying
and monitoring the onset of bronchiolitis obliterans syndrome
in bone marrow and lung transplant recipients (8-10). In a
preliminary study, PRM was evaluated as a marker for monitor-
ing change in disease classification (ie, normal, fSAD, and em-
physema) from subjects accrued as part of SPIROMICS (5). In this
study, “voxel-based tracking,” a method for evaluating longitudi-
nal changes in PRM classification at the voxel level, has been
used. Although this approach when applied to PRM shows
promise at providing local disease progression, variability in
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Hounsfield unit (HU) values from uncontrollable sources (eg,
scanner noise, patient breathing level, and image registration)
may result in shifts in voxel PRM classification that are not
related to alterations in disease state (6).

Various studies have demonstrated the efficacy of PRM as a
diagnostic and prognostic indicator of decline in pulmonary
function and COPD severity. Nevertheless, the use of PRM to
monitor COPD progression has shown a high sensitivity of voxel
classification to HU variability between longitudinal CT exam-
inations resulting in erroneous results. The purpose of this study
was to present a strategy to mitigate the effects of nonpatho-
logical HU variability on voxel classification for analyzing
COPD progression using PRM.

METHODOLOGY
Study Population
All clinical procedures were conducted under an institutional
review board-approved protocol, and all subjects involved pro-
vided written informed consent. In total, 90 subjects (age range
at baseline, 40–80 years), with paired volumetric inspiratory
and expiratory HRCT scans and clinical examinations at a 30-
day interval, were prospectively accrued as part of the Repeat-
ability and Replicate Substudy of SPIROMICS (11). Subjects
evaluated included smokers with a smoking history of �20
pack-years and GOLD (Global Initiative for Chronic Obstructive
Lung Disease) scores across the scale including 0, 1, 2, 3 and 4
(11-13) and never-smokers (79 smokers and 11 never-smokers,
respectively). Postbronchodilator forced expiratory volume at 1
second (FEV1) was determined by spirometry at each time point.
In our set of subjects, exclusion criteria included intolerance to
bronchodilators, body mass index (BMI) �40 kg/m2 at baseline,
presence of non-COPD obstructive lung disease, diagnosis of
unstable cardiovascular disease, lung surgery, or presence of
metal in the chest that might affect chest CT interpretation.
Further, 13 subjects from this cohort have been previously used
to define thresholds that indicate disease-provoked changes in
PRM metrics (5).

Computed Tomography
Whole-lung volumetric multidetector HRCT scans were acquired
for all 90 subjects using the SPIROMICS imaging protocol (13).
The current of 120 kVP was adjusted to meet the CT dose index
volume targets for inspiration and expiration by making use of
3 settings—large (BMI � 30 kg/m2), medium (BMI, 20–30 kg/m2),
and small (BMI � 20 kg/m2)—with vendor-specific reconstruc-
tion kernels (Standard, B, B35, FC03) (11). In this study, HRCT
data reconstructed using the “GE standard” kernel were ana-
lyzed. Quantitative HRCT data were presented in HU values, in
which stability of CT measurements for each scanner was mon-
itored on a monthly basis by use of the COPDGene phantom (14).
For reference, ambient air and water attenuation values should
be �1000 and 0 HU, respectively. Of the 90 subjects, rescanning
using a different scanner was conducted among 11 subjects and
that using a different field of view (�FOV� 5%) from their
original scan was conducted among 22 subjects. To reduce
scanner noise, a 33 median filter was applied to all CT scans
before processing and analysis.

Parametric Response Mapping
Lung segmentation and image registration to a single geometric
frame (ie, baseline expiration CT scan) were performed on all paired
CT data using Lung Density Analysis (LDA) software (Imbio, LLC,
Minneapolis, MN). Classification of individual voxels was per-
formed using in-house algorithms developed using MATLAB ver-
sion 2015b (MathWorks, Inc, Natick, MA). Details on the PRM
analysis have been previously reported (4). The nomenclature of
these measures for normal lung parenchyma, fSAD, and emphysema
includes PRMNormal, PRMfSAD, and PRMEmph, respectively. Additional
details are provided in the online supplemental Methods.

Correction Strategy for Longitudinal PRM
After establishing that the difference in HU between interval
examinations has a quasi-normal distribution (online supple-
mental Methods), we determined the variance using the serial
inspiration and expiration voxel data. This approach is analo-
gous to previous works on voxel-to-voxel therapeutic response
assessment in cancer (15, 16). These data were plotted on a
Cartesian coordinate system with the x and y axes denoted as the
baseline and follow-up, respectively. Using principal component
analysis, the data were transformed to the axes of primary and
secondary variance (principal and secondary eigenvectors, respec-
tively). Next, a linear fit along the principal eigenvector was per-
formed with the subsequent residuals mapped into the second

Figure 1. Workflow summarizing the correction
of erroneous PRM classifications.
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eigenvector axis. Residuals were used to calculate the 95% confi-
dence interval of the fit (95% CI). The value of the confidence
interval was transformed back to the original image space and
defined as the index of measurement variability (IMV). This proce-
dure was performed among all subjects and CT breath-hold exam-
inations at both inspiration and expiration. To account for HU
dependence on IMV, a cumulative exponential model was applied
to all voxels in the CT data:

IMV(x) � V �1 � er(x�1000)� � � ,

where V � A � �, A is the maximum amplitude of IMV, � is the
minimum amplitude of IMV (�30 HU), r is a rate constant, and
x is the voxel HU value. Model derivation and calculation of
parameter values are provided in the online supplemental Meth-
ods. This functional form of IMV was incorporated into the
correction strategy to account for variations in voxel variance.

Figure 1 shows an illustration of the correction strategy. In
step 1, we calculated the difference and average maps, ie, �HU
and �HU�, respectively, between serial examinations. In step 2,
we applied the following logical statement to each voxel of the
baseline scan: if |�HU| � IMV(�HU�), then voxel � 1, or else
voxel � 0. This binary map was multiplied to the baseline scan,
whereas the inverse was multiplied to the follow-up scan. In step
3, a composite follow-up CT scan was generated by summing the
masked baseline and follow-up scans from step 2. Finally, in
step 4, we calculated PRM (4). All data processing was performed
using MATLAB version 2015b (MathWorks, Inc).

Statistical Analysis
Differences in subject age, height, weight, BMI, FEV1 (percent
predicted), lung volumes, and percent lung volumes of PRM
metrics at both interval examinations were assessed using the
1-way ANOVA controlled for multiple comparisons (Bonferroni

post hoc test). Association between gender population and
GOLD was assessed using the log likelihood ratio test. Temporal
changes in lung volumes, relative volume of PRM metrics, and
FEV1 were assessed using the Wilcoxon signed rank test. Dif-
ferences in the percent agreement, ie, sum of voxels with like-
PRM class normalized to total lung voxels, between uncorrected
and corrected PRM at follow-up were also analyzed using the
Wilcoxon signed rank test. Differences in percent agreement
were also analyzed over GOLD stratums using the Kruskal–
Wallis test. Percent agreement was computed using MATLAB
version 2015b (MathWorks, Inc.). Statistical analyses were con-
ducted with SPSS version 2.1 (IBM, Armonk, NY). All the results
were considered statistically significant at the .05 level.

RESULTS
Subject Characteristics
Study cohort population characteristics are provided in Table 1,
and PRM results are displayed in Table 2. No significant differ-
ences in BMI, height, and weight were observed between strata.
Never-smokers were found to be significantly younger than
GOLD 1 subjects. As expected, lung volumes, FEV1, and PRM
metrics at both interval examinations were found to be depen-
dent on GOLD. No significant correlations were observed be-
tween FEV1 and PRM classifications within the stratum and at
individual examinations. In addition, no significant relation-
ships were obtained between subject gender and GOLD status.
Finally, change in PRMNormal, PRMfSAD, and PRMEmph for each
GOLD stratum was found to be insignificant over the 30-day
interval (all cases with P � .07). The 95% confidence intervals in
changes in PRM metrics over the 30-day interval are presented
in the online supplemental Results.

Table 1. Subject Characteristics

Parameter Never-Smokers GOLD 0 GOLD 1 GOLD 2 GOLD 3 GOLD 4

Number 11 17 15 18 20 9

Gender (M/F) 4/7 10/7 13/2 13/5 13/7 5/4

Age (years) 55 (7) 55 (8) 67 (8) 64 (8) 64 (9) 61 (9)

Height (cm) 170 (12) 169 (9) 172 (6) 172 (10) 172 (10) 169 (13)

Weight (kg) 79 (20) 82 (20) 79 (15) 84 (18) 81 (24) 78 (20)

BMI (kg/cm2) 27 (4) 29 (5) 27 (5) 28 (6) 27 (6) 27 (5)

FEV1 (% predicted)

0 days 110 (7) 98 (12) 92 (10) 65 (9) 41 (6) 26 (4)

30 days 107 (9) 92 (12) 86 (13) 58 (12) 36 (8) 24 (8)

Exp volume (L)

0 days 2.39 (0.61) 2.81 (0.82) 3.36 (1.08) 3.87 (1.11) 4.57 (1.22) 5.09 (0.99)

30 days 2.49 (0.67) 2.68 (0.55) 3.17 (0.71) 3.81 (0.85) 4.53 (1.00) 5.11 (0.97)

Ins volume (L)

0 days 5.93 (1.68) 5.59 (0.95) 5.96 (1.34) 6.09 (1.45) 6.31 (1.39) 6.53 (1.31)

30 days 5.76 (1.61) 5.49 (1.05) 5.88 (1.24) 6.28 (1.32) 6.38 (1.50) 6.55 (1.33)

Subject characteristics by GOLD stage. Values are mean (standard deviation) (except for gender). Characteristics not temporally disaggregated were
recorded at 0 day.

Abbreviations: BMI, body mass index; FEV1, forced expiratory volume in 1 second (percentage of predicted); Ins and Exp, inspiration and expiration, respectively.
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HU Variability for Interval CT Scans
All subjects’ generated histograms for �Exp and �Ins were
similar to normal distributions. Of the 90 subjects, 90% were
found to have histograms with a t-location scale probability
distribution, whereas in the remaining 10%, histograms were
generated with a logistic distribution. These functions, like Stu-
dent t, are symmetric about its mean value with a leptokurtic
shape. We found that the means of the fitted distribution func-
tions over all 90 subjects and breath-holds were negligibly
different from the expected value of 0.

Our procedure for applying a linear regression to the prin-
cipal component analysis-transformed serial CT data at inspira-
tion and expiration was found to generate consistent results

irrespective of GOLD status or ventilation. To illustrate this
point, Figure 2 presents voxel HU scatter plots at inspiration and
expiration of subjects diagnosed with GOLD 1 and GOLD 3
COPD. Although the location of the voxel distribution varied
between the 2 cases, the regression fits (red lines in Figure 2)
generated consistent slopes and Y-intercepts (inserts in Figure
2). This consistency was also verified over the entire population
(online supplemental Results). As expected, IMV was found to
decrease with increasing COPD severity (Figure 2). As the disease
progresses, lung parenchymal density approaches ambient air.

To address limitations in HU variability at low density, IMV
was modeled as a function of HU. We assumed that the serial pair

Table 2. PRM Results

PRM Never-Smokers GOLD 0 GOLD 1 GOLD 2 GOLD 3 GOLD 4

Normal

0 days 98.31 (3.1) 91.25 (17.1) 81.33 (17.9) 69.30 (22.6) 53.63 (24.0) 36.13 (12.9)

30 days 97.50 (3.1) 93.93 (10.5) 85.43 (10.8) 70.03 (18.8) 52.06 (23.5) 36.12 (15.5)

fSAD

0 days 1.38 (2.7) 8.32 (16.7) 16.08 (15.4) 23.06 (19.0) 33.62 (13.9) 46.77 (7.8)

30 days 2.29 (3.1) 5.75 (10.2) 12.08 (7.7) 22.42 (13.8) 35.35 (14.4) 46.56 (8.1)

Emphysema

0 days 0.06 (0.1) 0.18 (0.4) 1.96 (4.2) 6.84 (13.8) 12.26 (13.3) 16.78 (10.7)

30 days 0.04 (0.03) 0.13 (0.3) 1.74 (3.6) 6.80 (13.8) 12.02 (12.8) 16.97 (10.5)

Percent lung volumes of PRMNormal, PRMfSAD, and PRMEmph over GOLD stages. Values are presented as mean (standard deviation). Spatial alignment of
data was not corrected for insufficient ventilation between time points.

Abbreviation: fSAD, functional small airways disease.

Figure 2. Density scatter plots of
voxels with interval HU values
acquired at expiration (left) and
inspiration (right) are presented
for representative GOLD 1 (top)
and GOLD 3 (bottom) subjects.
The regression lines (red line) and
95% confidence intervals (index
of measurement variability [IMV];
black lines) from the fit of the
data transformed using the princi-
pal component analysis are in-
cluded in the plots. Values of the
slope and Y-intercept of the fit are
shown at the upper left corner of
each plot, jointly with the value
of the IMV.
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of modes was an adequate approximation of the centroid (center of
mass) for the density distribution observed in the scatter plots. The
dependence of IMV on HU values is particularly clear in Figure 3, in
which IMV values show a nonlinear drop in value with decreasing
HU average of modes. To strengthen the fit of IMV model to the
data, expiration (blue markers in Figure 3) and inspiration (red
markers in Figure 3) data were pooled. The optimal parameters

obtained for the IMV model were V � 66.5 and r � �0.014 with
a goodness of fit of NRMSE � 0.87 as defined as the normalized
root mean squared error (online supplemental Results).

Application of Correction Approach on Follow-up PRM
Figure 4 shows representative sections from subjects diagnosed
as GOLD 1 and 3 COPD at baseline; these are the same subjects

Figure 4. Presented are representative coronal sections from baseline expiration and aligned inspiration computed tomogra-
phy (CT) scans, and parametric response mapping (PRM) images generated using baseline scans and 30-d follow-up scans
without and with IMV correction for the GOLD 1 and 3 subjects in Figure 2. Individual voxels are color-coded per PRM as
follows: green for PRMNormal, yellow for PRMfSAD, and red for PRMEmph. The relative volume of PRMfSAD (yellow) and
PRMEmph (red) are included below each PRM image. Regions of discrepancy in PRM classification are indicated in the upper
left lung (black arrows) and lower right lung (blue arrows) of the GOLD 1 and GOLD 3 subjects, respectively.

Figure 3. Presented is a plot of
IMV as a function of the Hounsfield
unit (HU) modes, with values aver-
aged over 0 and 30 days, for
each patient. A nearly sigmoid-
shaped model was nonlinearly
fitted to the data from subjects
with relative changes in lung vol-
ume below 10%. Data for serial
inspiration and expiration CT
scans were pooled for this analy-
sis. The optimal model for the pre-
sented data was: IMV�x� � 66.5
�1 � e�0.014�x�1000�� � 30.
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shown in Figure 2. In the first case, PRMfSAD was found to drop
by 2.8% at follow-up (Figure 4, top row fourth column) with no
correction strategy implemented. Processing the serial CT scans
using the strategy outlined in Figure 1 generated a corrected
PRMfSAD that resulted in a drop from baseline of only 0.3%
(Figure 4, top row fifth column). Consequent to the low relative
volume of emphysema as determined by PRM, negligible bene-
fits were observed when correcting the follow-up PRM. Never-
theless, the effect of our correction is evident locally near the
apex of the left lung for subject GOLD 1 (Figure 4 top row black
arrow fourth and fifth columns). The subject diagnosed with
GOLD 3 COPD showed a decrease in emphysematous lung vox-
els, going from 28.7% at 0-day to 26.4% at the 30-day CT scan,
yielding a short-term drop of 2.3% in emphysema (Figure 4,
bottom row fourth column). Applying our correction scheme on
the follow-up PRM resulted in a difference in PRMEmph of only
0.3%. A similar result was observed for PRMfSAD, with a change

of 2.8% for the original PRMfSAD and 0.4% for the corrected
PRMfSAD. Upon closer inspection of the bottom right lung, PRM
voxel classification (w/o correction) at follow-up varies sub-
stantially from the baseline PRM for this subject (Figure 4
bottom row blue arrows).

The distributions of �PRMNorm, �PRMfSAD, and �PRMEmph

separated by GOLD, for both uncorrected and corrected models,
are presented in Figure 5. As expected, never-smokers and GOLD
0 subjects showed prevalence of voxels classified as PRMNorm

with an interquartile range (IQR) of �2.4% for �PRMNorm and
�PRMfSAD in both never-smokers and GOLD 0. As the disease
severity increased toward more fSAD and emphysema, errone-
ous shifts in PRM classifications were more prevalent. We ob-
served maximum classification variability on GOLD 2 and GOLD
3 subjects, yielding an IQR of �8.4% for �PRMNorm and
�PRMfSAD. In the case of GOLD 3, we found the largest PRMEmph

mismatch with IQR � 2.3%. Applying our correction strategy

Figure 5. The difference in
whole-lung serial percent volume
of PRMNormal (top), PRMfSAD (cen-
ter), and PRMEmph (bottom) over
GOLD with and without correc-
tion. Data are presented as box-
plots with center line at the me-
dian, box limits at the 25th per-
centile and 75th percentile, and
whiskers at the 5th percentile and
95th percentile.
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relieves the level of noise in PRM classification to more uniform
�PRM distributions, with an IQR of �1.7% in all cases.

To assess the agreement in PRM classification, overall per-
cent agreement scores were determined between baseline PRM
and the 30-day CT scans either with or without corrections of
PRM voxel classification. Figure 6 displays the distribution of
the percentage agreement (%agreement) scores for follow-up
PRM results over GOLD stages. We found significant differences
between the uncorrected and corrected models, both globally
(P � .0001) and within GOLD (P � .01 in all cases). Uncorrected
follow-up PRM values were found to generate %agreement that
significantly varied with increasing GOLD (P � .0001). This
trend was not observed for %agreement using the corrected
follow-up PRM (Figure 6).

DISCUSSION
We propose a strategy that addresses voxel-level measurement
variability in serially aligned inspiratory–expiratory paired CT
scans that affect voxel classification by PRM. CT data acquired
at inspiration and expiration at a 30-day interval were used to
quantify the variability of HU values owing to system noise and
alignment imperfections during postprocessing. After verifying
that the change in voxel HU values from baseline and at fol-
low-up preserves the properties of a normal distribution, we
defined an IMV that adjusts as a function of HU measurements.
Our correction strategy allows voxel-level classification shifts to
occur only when changes in voxel HU values exceed IMV(�HU�).
We found that voxel-level agreement between uncorrected fol-
low-up and baseline PRM data worsened with disease severity. Our
strategy of accounting for system noise diminished this trend in
agreement between longitudinal PRM data.

Even with detailed spatial information present in CT imag-
ing, the standard approach for assessing and monitoring disease
by this modality has often been limited to calculating whole-
lung or large tissue (ie, lobes) measures. Typically based on
summary statistics (ie, mean), such as mean airway wall mea-
surements (17) or percent air trapping using only an expiratory
CT scan acquisition, variability in longitudinal CT scans has led

to erroneous conclusions (18). For example, recently, Smith et
al. (19) showed in a comparison of spatially matched airway
segments of nonsmokers with a COPD population, that COPD
subjects were found to have thinner walls, contrary to the data
relying on a more lumped approach. The same whole-lung
approach has also been applied to spatially aligned data, such as
PRM, where individual classifications are presented as percent-
ages of the entire lung volume (4, 20). In response to the findings
from McDonough et al. where they postulated that SAD is an
intermediate step toward emphysema (21); Boes et al proposed
an approach for assessing voxel-level changes in PRM classifi-
cation, which was referred to as “voxel-based tracking” (5).
One-year interval paired CT data from SPIROMICS were spa-
tially aligned to a single geometric frame, in this case the
baseline expiration CT scan. As described in this study, each
voxel in the lung parenchyma consisted on 2 temporally re-
solved PRM classifications. In a subject diagnosed with GOLD 2
COPD and found to have a decline in absolute FEV1 from 2.34 L
to 2.12 L over 1 year, 48% of all voxels identified by PRM as
emphysema at follow-up were fSAD at baseline. The ability to
monitor COPD at the voxel-level could provide clinicians with a
means to monitor local progression. Although promising, the
effect of measurement variability on PRM classification was
evident in the whole-lung measures analyzed in that study,
where PRMEmph was found to decrease in a small number of
subjects over the 1-year period (5), similar to our finding in
Figure 4 for the GOLD 3 subject. Our observations concluded
that fSAD measurements from uncorrected follow-up PRM, on
average, showed moderate agreement to baseline PRM (Figure
5), even within the relatively short time frame of 30 days. The
deterioration in PRMfSAD agreement with increasing GOLD sta-
tus is attributed to the large number of voxels with HU values
near the –950 HU and –856 HU thresholds for GOLD 1-3 sub-
jects. Even a small deviation in the HU value between longitu-
dinal CT scans (�IMV) could result in a shift in PRM classifica-
tion. For example, a voxel may easily shift over �856 HU from
normal to/from fSAD (Norm ↔ fSAD) or over �950 HU from
fSAD to/from Emph (fSAD ↔ Emph). Through the proposed
approach, we have provided a strategy to mitigate erroneous
shifts in voxel-level PRM classification when analyzing longi-
tudinal data by PRM.

Limitations in our approach deserve further attention. Al-
though CT scans from 90 subjects were available for develop-
ment of the approach, the composition of the population signif-
icantly varied across GOLD (Table 1). Quantitative CT values are
highly dependent on scanner vendor, scanner type, acquisition
parameters (eg, kV, mA, and FOV) and reconstruction kernels. In
our study population, a subset of subjects underwent serial CT
scans on different scanner types and acquired at different FOVs,
with both limitations producing negligible differences in
%agreement (details in online supplemental Results). In addi-
tion, we did not correct for inadequate ventilation at serial CT
examinations (discussion in online supplemental Results). The
effect of HU variability, consequent of CT acquisition, pro-
cessing, and inadequate ventilation, on PRM quantification,
has been previously reported, and techniques for alleviating
their effect has been discussed (6). Although this approach
does not address all errors associated with evaluating serial

Figure 6. Percent agreement of serial voxel-level
PRM classifications over GOLD with and without
correction. Data are presented as boxplots with
center line at the median, box limits at the 25th
percentile and 75th percentile, and whiskers at
the 5th percentile and 95th percentile.

Correction in Longitudinal PRM

144 TOMOGRAPHY.ORG | VOLUME 3 NUMBER 3 | SEPTEMBER 2017



CT scans, our strategy for correcting PRM classification shifts
is highly adaptable, allowing additional techniques that re-
solve more specific sources of error to be easily integrated in
our workflow.

Consequent to the impact of COPD to health systems world-
wide, extensive research is being devoted to the development
and evaluation of novel biomarkers. PRM has been shown in
multiple studies to serve as an objective and quantitative mea-
sure of disease. Large-scale multicenter observational studies
such as COPDGene and SPIROMICS provided temporally re-

solved HRCT to evaluate metrics, such as PRM, for monitoring
COPD progression and, ideally, for therapeutic response assess-
ment. Our methodology for correcting shifts in PRM classifica-
tion due to variability in longitudinal HRCT scans may improve
the clinical management of patients through more accurate
monitoring of COPD subtypes.

Supplemental Materials
Supplemental Appendix: http://dx.doi.org/10.18383/j.tom.

2017.00013.sup.01
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