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The difference between rapid morphological evolutionary changes observed

in populations and the long periods of stasis detected in the fossil record

has raised a decade-long debate about the exact role played by intraspecific

mechanisms at the interspecific level. Although they represent different

scales of the same evolutionary process, micro- and macroevolution are

rarely studied together and few empirical studies have compared the rates

of evolution and the selective pressures between both scales. Here, we analyse

morphological, genetic and ecological traits in clownfishes at different

evolutionary scales and demonstrate that the tempo of molecular and mor-

phological evolution at the species level can be, to some extent, predicted

from parameters estimated below the species level, such as the effective popu-

lation size or the rate of evolution within populations. We also show that

similar codons in the gene of the rhodopsin RH1, a light-sensitive receptor

protein, are under positive selection at the intra and interspecific scales,

suggesting that similar selective pressures are acting at both levels.
1. Introduction
Understanding the evolutionary process necessitates the integration of multiple

biological scales that are rarely studied together. Population biologists have focused

their efforts on the study of the variations in allelic frequencies and the mechanisms

of evolution of quantitative traits at the population level, what we call microevolu-

tion [1–3]. By contrast, palaeontologists and phylogeneticists have been interested

in the dynamics of diversification and the rate of phenotypic evolution above or at

the level of the species, what is commonly referred to as macroevolution [4,5]. These

different timescales challenge our understanding of evolutionary biology and

question whether the mechanisms of microevolution could explain the rate of evol-

ution at the macroevolutionary scale. A famous illustration of the difference in rates

of evolution observed between timescales is the paradox of stasis, i.e. the discre-

pancy between the slow morphological evolution in the fossil record and the fast

evolution of organisms measured near present [6,7].

Linking micro- and macroevolution remains one of the greatest current chal-

lenges in evolutionary biology [8–14] and relatively few empirical studies have

provided mechanisms that can explain the two evolutionary scales; such as natu-

ral and sexual selection in stick insects [15], selection related to the beak

morphology in Darwin finches [16], or sexual preferences related to the colour

of cichlids fishes [17]. When comparing micro- and macroevolution dynamics,

the rates of evolution are usually predicted to be slower at the macroevolutionary
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Figure 1. (a) Phylogenetic tree showing the relationships between species of clownfishes (macroevolution dataset) and (b) coalescence process showing the
relationship between 53 individuals of A. clarkii (microevolution dataset). Nodes highlighted in red are nodes less supported, with a posterior probability inferior
to 0.8. (Online version in colour.)
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scale than at the microevolutionary scale [12,13]. A first expla-

nation to this observation is that most of the genetic and

morphological variation at the intraspecific level can be lost

through evolutionary time due to the extinction of locally

adapted populations [2]. For instance, at the molecular level,

we expect that genetic polymorphism (neutral or under selec-

tion) observed at the present time can be lost before being

fixed in the species; hence the rate of molecular evolution

should be higher within species than among species [18]. At

the morphological level, it is also possible that morphological

evolution related to environmental fluctuations on short time-

scales may never accumulate on large timescales because of

stabilizing selection [8,13]. At the same time, it has also been

proposed that rates of evolution at macroevolutionary scale

could potentially be inferred from rates of evolution at micro-

evolutionary scale, as macroevolution corresponds to several

rounds of microevolution [6,12,19–22]. Some authors have

even proposed that rates of evolution at the species level

might be inferred from parameters estimated at the intraspeci-

fic level, such as effective population size [12]. Finally, it has

been proposed that if there was a continuum of divergence

from populations to the species level [23], similar selective

pressures (ecological or evolutionary factors) might act at

both micro- and macroevolutionary scales. All these predic-

tions still remain to be tested empirically with datasets

encompassing morphological and genetic data for a reasonable

number of species and individuals within species [13].

Here, we compared the rate of evolution of clownfishes at

both intra and interspecific scales. We first constructed two

related datasets combining morphological, molecular and

ecological features of clownfishes (Pomacentridae, genera

Amphiprion and Premnas) at the species-level and within the
species Amphiprion clarkii. Then, using newly generated

sequences of one gene potentially under selection (RH1, impli-

cated in dim light vision in deep sea [24,25]) and five

morphological traits important for fish ecology (electronic

supplementary material, S1), we tested the three following

predictions: (i) rate of evolution should be accelerated within

species compared to between species. (ii) Genetic and morpho-

logical evolutionary rates at the species level may be inferred

with the parameters estimated below the species level, such

as the effective population size or the microevolutionary rate.

(iii) The major selective forces (i.e. related to water depth

here) should be acting similarly at both the population and

the species level.
2. Results
(a) Comparison between micro- and macroevolutionary

rates
Using our two datasets of clownfish species and A. clarkii
individuals (figure 1), we showed that, in line with theoreti-

cal expectations [6,18], rates of molecular evolution at the

micro- and macroevolutionary scales (rmicro and rmacro) were sub-

stantially different, with higher evolutionary rates within species

than among species. This difference was strong for the gene

RH1, for which we estimated higher rates of molecular

evolution within A. clarkii (median rmicro¼ 7.48� 1023 [95% con-

fidence interval: 5.90� 1023, 1.01� 1022], expressed in number

of mutations per million years) than across species of clownfishes

(rmacro¼ 1.16 � 1023 [6.67� 1024, 1.64� 1023] expressed in

number of substitutions per million years; figure 2).
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Figure 2. Comparison between the micro- and macroevolutionary rates and the
predicted macroevolutionary rate for molecular data (RH1). The columns (micro) in
yellow and (macro) in black correspond to the estimates of micro- and macro-
evolutionary rates obtained from RH1 sequences. The column macro_P, in
blue, represents the predicted macroevolutionary rate based on A. clarkii molecu-
lar evolutionary rate described in the Material and methods. This rate was
obtained by a subsampling procedure by pruning all but one A. clarkii individual
in the tree containing all clownfish species and A. clarkii individuals. Estimates of
molecular evolutionary rate are given in number of mutations � 1023/Myrs for
the microevolutionary scale and in number of substitutions � 1023/Myr for
macroevolutionary scale. (Online version in colour.)
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(b) Predicting macroevolution from microevolution
Our analyses support the hypothesis that macroevolutionary

rates can be predicted from microevolutionary rates for both

molecular and morphological data (figures 2 and 3). Most of

the intraspecific variation linked with neutral or locally adap-

tive alleles, is likely lost at the macroevolutionary timescale

because such alleles are rarely fixed in a large number of

populations of a species [2,19]. The reproductive isolation

leading to speciation, and the founder effect likely associated

with speciation, favours the fixation of these alleles and

enables them to keep their imprint at macroevolutionary

scales. To test this hypothesis with molecular sequences, we

artificially simulated the fixation of one of the haplotypes pre-

sent in the A. clarkii species by pruning all but one A. clarkii
individual from the intraspecific tree and we estimated the

rate of evolution along the single branch leading to A. clarkii.
This subsampling procedure mimics the loss of intraspecific

(neutral or non-neutral) variation of haplotypes through

long evolutionary timescale [2,19]. Using this approach, we

obtained similar estimates between the predicted rates of

molecular evolution of RH1 estimated with one individual

of A. clarkii (rmacro_P ¼ 7.66 � 1024 [4.90 � 1029, 8.74 �
1023]) and the molecular rate estimated at the interspecific

level in all clownfish species (rmacro ¼ 1.16 � 1023 [6.67 �
1024, 1.64 � 1023]; figure 2).

For the five morphological traits, we predicted the rate of

evolution at the species level using simulations based on par-

ameters estimated at the intraspecific level, i.e. effective

population size and the intraspecific variance of each trait

(electronic supplementary material S2 and table S4, figure 3).

For all traits, we found no significant difference between the

empirical and the predicted rates of evolution across a posterior
distribution of 1000 trees ( p . 0.05, electronic supplementary

material, table S4) and regardless of the model selected

(Ornstein–Uhlenbeck: OU or Brownian motion: BM). These

results indicate that our estimations are robust to uncertainties

in model testing, tree topology and branching times (electro-

nic supplementary material, table S4). The simulations also

retrieved the best fitting model previously selected on empiri-

cal data for four of the five traits (electronic supplementary

material, table S4). We show with additional analyses that

the small size of the species level phylogeny is not spuriously

influencing our model selection (between BM and OU, pmc
analysis, electronic supplementary material, figure S1), or

affecting the size of the confidence intervals around the rate

of evolution estimates ( fitcontinuous analysis [26], electronic

supplementary material, table S5). Additional specificity tests

also showed no support for a link between micro- and macro-

evolutionary rates when the effective population sizes are

larger or smaller than those estimated from the empirical

data (rates are significantly different from the empirical ones,

electronic supplementary material, S2 and table S2). This

result indicates that the match found between micro- and

macroevolutionary rate is not due to a lack of statistical power.

(c) Comparison between selective pressures between
micro- and macroevolutionary scales

At the molecular level, the McDonald–Kreitman test confirmed

that the RH1 sequence was under positive selection ( p , 0.05,

electronic supplementary material, table S6). At the micro-

evolutionary scale, two amino acid sites (L154I and A299S) of

the RH1 gene were found to be under strong positive selection

across the posterior distribution of 1000 trees (dN/dS . 1 and

Bayes empirical Bayes probability (BEB) . 0.9, table 1). At the

macroevolutionary scale, the same two sites and two additional

sites (S164S and L88F) showed a dN/dS ratio greater than one

in the RH1 gene, with high BEB probability (greater than 0.9

for 1000 trees). Two sites (L88F and L154I) were associated

with water depth at macroevolutionary scale (Wilcoxon

signed-rank tests, p , 0.01). At the microevolutionary scale,

the relationship between water depth and the two sites under

selection (L154I and A299S) was not significant.
3. Discussion
For decades, researchers have faced the challenge to interpret

macroevolutionary dynamics in the light of microevolutionary

mechanisms. Only few studies have compared the dynamic of

evolution below and above the species level [13,14]. Here, we

propose an empirical attempt to compare and link evolution-

ary rates at both micro- and macroevolutionary scales, and

we show that macroevolution can be, at least to some extent,

predicted by microevolution.

First, the molecular rates estimated at the microevolutionary

scale were strikingly larger than those at the macroevolutionary

scale, which is congruent with the trends observed in other

studies [13,14] and corroborates well-known evolutionary

patterns already described by the paradox of stasis [6].

Second, our results from both molecular and morpho-

logical data, suggest that parameters estimated at the

intraspecific level, such as the intraspecific variance and the

effective population size, can predict the rate of evolution at

interspecific level. For molecular data, we used randomizations
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Figure 3. Comparison between the macroevolution rates estimated from empirical data and simulations (based on intraspecific parameters) of the five morpho-
logical traits. The columns (macro) in black correspond to the estimates of macroevolutionary rates observed in the data, and (macro_P) in blue, represent the
predicted macroevolutionary rate of the simulations based on effective population size, trait variance and generation time (described in details in electronic sup-
plementary material, S2). The dots represent the median and the segment represents the 95% confidence interval of the distribution of rates across the 1000 trees.
For each trait, simulated and empirical rates of evolution (s2) were obtained from best fitting model chosen only from the empirical data (BM or OU, electronic
supplementary material, table S4). The predicted and observed distributions of macroevolutionary rates did not differ significantly in any of the traits ( p . 0.05).
(Online version in colour.)

Table 1. Detection of positive selection in the rhodospin gene (RH1) at both micro- and macroevolution timescales. Mean and standard deviation values of the
analyses replicated over 1000 trees drawn from a posterior distribution of phylogenetic tree of A. clarkii individuals (microevolution), and of all species of
clownfishes (macroevolution). The two codons under positive selection in both micro- and macroevolution are italicized. All of these amino acid position have an
associated BEB probability greater than 0.9 for all phylogenies.

amino acid position BEB probability v 5 dN/dS

macroevolution L154I 0.99 + 2.2 � 1024 5.61 + 0.07

A299S 1.00 + 7.1 � 1025 5.63 + 0.07

S165S 0.94+ 0.001 5.35+ 0.07

L88F 0.93+ 0.001 5.30+ 0.07

microevolution L154I 1 + 0 8.20 + 0.36

A299S 1 + 0 8.20 + 0.36
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to simulate the loss of intraspecific genetic variance during the

process of evolution, as most of the local adaptations of diver-

ging populations will be deleted through introgression events

or bottlenecks associated with the speciation process [2,19]. By

pruning lineages and simulating the fixation of a single intra-

specific variant at the microevolutionary scale, we were able

to predict the rate of molecular evolution estimated for all

clownfish species from the rate evolution of A. clarkii individ-

uals. These results are consistent with the hypothesis of

‘ephemeral divergence’, previously proposed by Futuyma

[2], which stipulates that most of the intraspecific molecular

(and trait) variation can be considered as ‘ephemeral’ and

should not be observable at higher taxonomic levels. Another

link between micro- and macroevolutionary rates was pro-

posed more recently by Hansen & Martins [12], who

hypothesized that the tempo of molecular and morphological

evolution of species should be directly related to parameters

estimated at the intraspecific level, such as the effective popu-

lation size [22]. Using simulations, we predicted rates of

macroevolution based on the trait variance, the generation
time and the effective population size estimated at the intraspe-

cific scale, which was consistent with Hansen & Martins’

hypothesis. Our results were robust to different models of evol-

ution and phylogenetic uncertainties (topology and dating).

Overall our analyses demonstrate that the rates of evolution

of both molecular and morphological traits between species

of clownfishes can be explained by parameters estimated

at the intraspecific level, which suggest that likely similar

mechanisms are at play across these two scales.

Third, we detected positive selection in the rhodopsin RH1
gene (light-sensitive receptor protein) for the same two amino

acid positions (L154I and A299S) at both micro- and macro-

evolutionary scales. RH1 is ubiquitous and well-studied

among vertebrates [24], such as cichlids and sharks

[24,27,28]. Several key amino acid positions are known to

change the spectral specificity of the protein and thus allow

organisms to adapt to different light intensity regimes [28].

We identified four amino acid positions of RH1 gene under

positive selection among the clownfish species and two of

those four were also present in the A. clarkii populations. One
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of the sites positively selected at both scales (L154I) was also

associated with water depth at macroevolutionary scale. We

hypothesize that this association with water depth is also pre-

sent at microevolutionary scale (even if we do not detect it)

because in A. clarkii L154I covaries with another position

(A299S) well known for being linked with light absorption

[29–31]. We conclude that both L154I and A299S are two excel-

lent candidates for adaptation to water depth. Our results

suggest that molecular changes related to adaptation at the

individual level likely cascades to the evolutionary process

recorded at the macroevolutionary scale, but further investi-

gation will require much larger sample sizes both in terms of

individuals and number of polymorphic sites (e.g. such as in

genome wide association studies).

Our approach, applied here on clownfishes, is exploratory

and future studies will benefit from using larger molecular

data sets for both evolutionary scales and expanding the

scope to other traits likely related to adaptation to water

depth, such as fin morphology. Our study also simplifies the

process of evolution and predicts rates of macroevolution

assuming that each incipient species is formed by one haplotype

during speciation event. Further studies should investigate if

speciation events involving a large amount of genetic diversity

will affect the macroevolutionary rates on the long term. As

more empirical transdisciplinary studies are expected in the

coming years, the next decade will likely see a substantial

improvement in the understanding of the links between the

different scales of the evolutionary process. Recent literature

proposes several directions for future research. First, one of

the simplest ways to deal with the problems related to

the micro-macroevolution boundary is to take into account

intraspecific variance into the reconstruction of phenotypic

evolution above the species level [32]. Second, as our results

suggested that the evolutionary process from the populations

to the species is a continuum (that is tractable numerically),

we believe that the remaining gap in our understanding of the

overall evolutionary process may not be strictly related to the

dichotomy between micro- and macroevolution but rather to

other scales, such as the link between individuals and populations

levels inside species. To study evolution at multiple scales simul-

taneously, important developments have been made recently at

the crossroad between macroevolution and ecology, such as the

individual-based macroevolutionary models related to the uni-

fied neutral theory of biodiversity [33,34]. Third, a better

understanding of the mechanisms of evolution might also be

gained from the field of quantitative genetics focusing on the

changes in allelic frequency or phenotype at each generation

[35], or on the branching process of populations in function of

ecological conditions and population size [36]. Finally, future

challenges also concern the understanding of how the

phenotypic variance evolves through time [23] in the adaptive

landscape [37], and its potential impact on diversification.
4. Conclusion
Despite considerable discussion about the potential bridges

between the micro- and the macroevolution in the last decades

[9,12,38], relatively few studies have proposed an empirical test

of theoretical predictions [13,14]. We suggest here that macro-

evolutionary rates might be inferred using microevolutionary

rates in clownfishes. Furthermore, we also propose that the

selective processes may act on the same genes (and even
codons) at both micro- and macroevolutionary scales. While

further studies are necessary to establish the generality of our

findings across different organisms, our study on clownfishes

provide insights into understanding of the genetic and

phenotypic differentiation within and across species.
5. Material and methods
(a) Field sampling, morphological and environmental

data
For the microevolutionary scale, we chose A. clarkii because we had

a good knowledge of its distribution from previous fieldwork [31].

For this species, we were able to collect molecular and morphologi-

cal information for a total of 53 individuals in the centre of the

range, in the Indonesian coral reefs (on the coasts of Bali and

Manado, Sulawesi; table 2, electronic supplementary material,

figure S5). The Indo-Australian Archipelago region has been pre-

viously shown as the main centre of genetic and morphological

diversity in clownfishes [31], consistently with the peak of species

diversity found in this region for other fishes [39].

Once the fishes were spotted during scuba dives, we caught

the specimens using clove oil and nets. We recorded the water

depth and clipped the anal or caudal fin of the fish for genetic

analyses. We also took a picture of the left side of the body

before releasing it back into the host anemone (electronic sup-

plementary material, S3, and figure S2). We used these pictures

to measure five main axes of body shape variation associated

with key aspects of fish ecology: body and head ratios, peduncle

factor, eye height and snout angle. These traits were selected

because they correspond to standard morphological measure-

ments related to functional aspects of the reef fish’s ecology,

such as locomotion, sensory abilities or feeding behaviour

[40–43] (electronic supplementary material, S1).

For the macroevolutionary scale, we obtained samples from

previous fieldwork (Bali, Indonesia; and Madagascar), and from

loans from aquariums or research institutions [31] for one individ-

ual per species for 26 species of clownfishes including A. clarkii
(87% of the 30 species of clownfishes). Mean depth for each clown-

fish species was calculated using the minimum and maximum

depth collected in fishbase (http://www.fishbase.org/ [44]; elec-

tronic supplementary material, table S3), and our field data for

A. clarkii (table 2). For morphological information, pictures of the

left side of specimens were obtained from museum specimens.

In order to obtain intraspecific variance on morphological traits

per species, we collected pictures in museum and specialist collec-

tions for several individuals per species (total of 307 individuals,

with an average of nine individuals per species; min¼ 2 and

max ¼ 31, electronic supplementary material, table S1). Our analy-

sis should not be biased by plasticity between species given that we

estimate mean phenotypes using several individuals per species

and that clownfish species are morphologically distinct.
(b) Molecular data
We extracted the DNA of A. clarkii individuals using the DNeasy

Blood and Tissue kit (Qiagen GmbH, Hilden, Germany), and we

also used already extracted DNA of all other clownfish species

obtained from a previous study [31]. Using standard protocols,

we amplified fragments of the cytochrome B (cytB) and mtDNA

control region (CR) for A. clarkii individuals and the rhodopsin

gene (RH1) for A. clarkii individuals and all the other clown-

fish species (electronic supplementary material, S4). All newly

generated sequences have been deposited in the GenBank

database (table 2 and electronic supplementary material, table S3).

http://www.fishbase.org/
http://www.fishbase.org/


Table 2. List of the GenBank accession number for the genetic data newly sequenced (for CR, cytB, RH1), water depth, and locations of the 53 A. clarkii
individuals sampled in the field.

isolate CR CytB RH1 depth (m) location site latitude longitude

GB057 KP764430 KP749692 KP764521 10.4 Tulamben Noisy Reef 28.29389 115.61083

GB061 KP764432 KP749694 KP764523 12.5 Tulamben Noisy Reef 28.29389 115.61083

GB062 KP764433 KP749695 KP764524 5.5 Tulamben Noisy Reef 28.29389 115.61083

GB063 KP764434 KP749696 KP764525 10 Tulamben Seraya 28.295 115.61167

GB064 KP764435 KP749697 KP764526 6 Tulamben Seraya 28.295 115.61167

GB071 KP764436 KP749699 KP764528 9.5 Tulamben Melaste 28.29471 115.60667

GB072 KP764437 KP764529 7.5 Tulamben Melaste 28.29471 115.60667

GB075 KP764440 KP749702 KP764532 1.9 Tulamben Melaste 28.29471 115.60667

GB079 KP764441 KP749703 KP764533 17.9 Tulamben Batu Belah 28.33222 115.64611

GB080 KP764442 KP749704 KP764534 17.9 Tulamben Batu Belah 28.33222 115.64611

GB087 KP764445 KP764538 10.2 Tulamben Batu Belah 28.33222 115.64611

GB088 KP764446 KP749707 KP764539 13 Tulamben Batu Belah 28.33222 115.64611

GB092 KP764450 KP749711 KP764543 7.5 Tulamben Batu Belah 28.33222 115.64611

GB009 KP764417 KP749681 KP764506 3.2 Tulamben Batu Belah 28.33222 115.64611

GB021 KP764419 KP749683 KP764508 21.6 Tulamben Batu Belah 28.33222 115.64611

GB054 KP764428 KP764519 5.2 Amed Pyramids 28.33694 115.66056

GB011 KP764418 KP749682 KP764507 3 Nusa Lembongan Sental 28.67556 115.52444

GB025 KP764422 KP749686 KP764511 22 Nusa Lembongan Sental 28.67556 115.52444

GB159 KP764461 KP749729 KP764557 17.8 Nusa Lembongan Sental 28.67556 115.52444

GB162 KP764462 KP749731 KP764558 4.5 Nusa Lembongan Sental 28.67556 115.52444

GB163 KP764463 KP749732 KP764559 6.5 Nusa Lembongan Sental 28.67556 115.52444

GB023 KP764420 KP749684 KP764509 16.5 Nusa Lembongan PED (temple) 28.67167 115.50361

GB143 KP749725 KP764556 14 Nusa Lembongan Scholar Dasar 28.67111 115.49806

GB121 KP764456 KP749721 KP764551 14 Pemuteran Close encounter 28.12806 114.66694

GB122 KP764457 KP749722 KP764552 8 Pemuteran Close encounter 28.12806 114.66694

GB123 KP764458 KP749723 KP764553 14 Pemuteran Coral garden 28.13944 114.65472

GB127 KP764459 KP764554 9.8 Pemuteran Coral garden 28.13944 114.65472

GB169 KP764464 KP749733 KP764560 11.5 Manado Tanjung husi II 1.74 125.14389

GB170 KP764465 KP749734 KP764561 12 Manado Tanjung husi II 1.74 125.14389

GB171 KP764466 KP749735 KP764562 5 Manado Tanjung husi II 1.74 125.14389

GB172 KP764467 KP764563 18 Manado Tanjung husi II 1.74 125.14389

GB176 KP749736 KP764564 9 Manado Tanjung husi II 1.74 125.14389

GB177 KP764468 KP749737 KP764565 8.2 Manado Tanjung husi II 1.74 125.14389

GB189 KP764471 KP749739 KP764566 8 Manado Tanjung husi II 1.74 125.14389

GB030 KP764423 KP749687 KP764512 18 Manado Tanjung husi II 1.74 125.14389

GB031 KP764424 KP764513 15 Manado Tanjung husi II 1.74 125.14389

GB204 KP764473 KP749742 KP764567 11.5 Manado Sahaung I 1.74889 125.15972

GB205 KP764474 KP749743 KP764568 11 Manado Sahaung I 1.74889 125.15972

GB207 KP764475 KP749744 KP764569 7 Manado Sahaung I 1.74889 125.15972

GB210 KP764476 KP749745 KP764570 5 Manado Bulu bulu kuning 1.74556 125.14028

GB211 KP764477 KP749746 KP764571 5 Manado Bulu bulu kuning 1.74556 125.14028

GB035 KP764425 KP764514 4 Manado Bulu bulu kuning 1.74556 125.14028

GB228 KP764484 KP749752 KP764580 9.5 Manado House reef 1.74917 125.13667

GB229 KP764485 KP749753 KP764581 9.5 Manado House reef 1.74917 125.13667

GB230 KP764486 KP749754 KP764582 4.5 Manado House reef 1.74917 125.13667

(Continued.)
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Table 2. (Continued.)

isolate CR CytB RH1 depth (m) location site latitude longitude

GB237 KP764487 KP764583 2 Manado House reef 1.74917 125.13667

GB036 KP764426 KP749688 KP764515 4.3 Manado House reef 1.74917 125.13667

GB221 KP764480 KP764576 10 Manado Batu tiga 1.76972 125.17694

GB223 KP764482 KP749750 KP764578 11 Manado Batu tiga 1.76972 125.17694

GB224 KP764483 KP749751 KP764579 7.5 Manado Batu tiga 1.76972 125.17694

GB037 KP749689 KP764516 5.7 Manado Busa bora 1.7625 125.12861

GB213 KP764478 KP749747 KP764572 6 Manado Areng kambing 1.76928 125.1794

GB218 KP764479 KP749748 KP764574 10 Manado Areng kambing 1.76928 125.1794
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(c) Phylogenetic reconstruction
For the macroevolutionary scale, we used 1000 phylogenetic trees

of all clownfish species directly from the posterior distribution of

trees built with seven nuclear markers of a recently published

study [31]. For the microevolutionary scale, we reconstructed the

relationships between A. clarkii individuals using BEAST 2.1.3

[45] by concatenating the alignments from the cytB and CR mar-

kers. Relationships between individuals within A. clarkii were

reconstructed using a coalescent prior with constant population

size and a strict molecular clock with a uniform prior (electronic

supplementary material, S5 and S6). The strict molecular clock

was selected with the clock model selection implemented in

MrBayes 3.2 [46]. We also chose the best model of substitution

using phyml.test function in ape R package. We obtained a distri-

bution of 1000 ultrametric trees of A. clarkii individuals with a

root node at a relative date of 1. This distribution revealed that

only the three deeper nodes were highly supported in the tree of

A. clarkii individuals (Posterior probabilities ¼ 1). Recent nodes

were less supported, which is expected given that they represent

relationships between closely related individuals. To time-calibrate

each A. clarkii tree, we used several individuals of A. clarkii also pre-

sent in the dated phylogenetic tree at the species level [31]. We used

the crown node of all A. clarkii individuals that was in common

between the two trees to rescale all the branches of the A. clarkii
tree. We combined each of the 1000 A. clarkii trees with each of

the 1000 species level trees. Each combination of tree was chosen

randomly ensuring that the resulting combined trees were not

biased toward certain topologies. We thus obtained a time-

calibrated distribution of 1000 topologies encompassing both

A. clarkii individuals and all the other clownfish species. In the

following analyses, micro- and macroevolutionary datasets were

considered separately except in the analysis of the molecular rate

of evolution where there were combined.
(d) Estimation of rates of evolution at micro- and
macroevolutionary scales

We first estimated whether the rates of molecular evolution were

different within and between species. We compared the rate of

evolution of the RH1 gene between A. clarkii and all the other

clownfish species as a proxy for molecular evolutionary rate

(electronic supplementary material, S7). Because RH1 was poten-

tially under selection, we estimated the rate of substitution by

estimating the branch length of a RH1 tree, while constraining

the topology with the dated phylogeny built using neutral

genes (cytB and CR) using the optim.pml function of the phangorn
R package [47]. We then estimated the mean rate of molecular

evolution by calculating the ratio between the sum of the

branch lengths of RH1 tree and the sum of the branch lengths

of the tree built with neutral genes. This analysis was replicated
separately over the two distributions of 1000 trees at micro- and

macroevolutionary levels. At microevolutionary scale, the esti-

mates of molecular rates of evolution were obtained directly

from the 1000 trees of A. clarkii individuals. At macroevolution-

ary scale, the molecular rate of evolution was obtained from

the 1000 species-level trees, but given that each of the 53 A. clarkii
sequence may represent the A. clarkii species in the tree, we ran

the analysis for the 53 possible species level trees resulting in

53 000 analyses (¼ 53 � 1000). We then estimated if rates of evol-

ution were significantly different between the micro- and the

macroevolutionary scales by comparing the 95% confidence

intervals of the rates, i.e. when the confidence intervals were

not overlapping evolutionary rates were significantly different.

We compared micro- and macroevolutionary rates only for

molecular data, while morphological rates of evolution were not

estimated at the intraspecific level given that individual variation

in morphological traits may be due to other factors than evolution

(e.g. plasticity, but see the supplementary analyses in electronic

supplementary material, S9). At the macroevolutionary scale, the

rate of evolution for each of the five morphological traits was esti-

mated on each the 1000 species-level trees for BM and OU models

using the mvMORPH R package [48]. We assigned to the A. clarkii
species, for each trait, the mean trait value of the 53 A. clarkii
individuals. The best fitting model was determined using the

Akaike information criterion corrected for sample size (AICc).

We additionally analysed the traits using the phylogenetic

Monte Carlo method (from the pmc R package [49]) to assess if

the phylogenies at both scales had sufficient statistical power to

distinguish between BM and OU processes. We also ran the two

models with fitContinuous (from the geiger R package [26]) to quan-

tify the amount of parameter uncertainty due to the rather small

size of the phylogeny. The pmc and fitContinuous analyses were

both ran on a consensus tree built using Treeannotator [50] from

the distribution of 1000 species-level trees.
(e) Predicting macroevolution from microevolution
We used two different approaches, one for molecular sequences

and one for morphological traits, to predict the rates of evolution

between clownfishes species from rates of evolution inside

A. clarkii.
For RH1 molecular sequences obtained at both microevolu-

tionary and macroevolutionary scales, we expect that a large

amount of the polymorphism observed at present will not be

maintained through long evolutionary timescales. Considering

that each A. clarkii individual could be an haplotype that might

get fixed in this species by drift, we can artificially simulate macro-

evolution by pruning all but one A. clarkii individual in the

combined tree containing all clownfish species and A. clarkii indi-

viduals. This approach allowed us to predict the species-level rate

of evolution of A. clarkii by estimating the rate on the terminal
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branch remaining with a single A. clarkii individual (figure 2). We

repeated the analysis 53 times, keeping each time only one of the 53

A. clarkii individuals, to account for the variability in the choice of

individual selected. This molecular evolutionary rate estimated

from the branch of the A. clarkii was then compared with the rate

of evolution estimated from the tree containing all the species

of clownfishes.

For morphological traits, we used simulations to determine

whether parameters estimated at the microevolutionary scale

can predict the rate of evolution of the mean species trait at the

macroevolutionary scale. Our simulations were based on three

parameters: (1) the trait variance s2, (2) the generation time t,

and (3) the population size Ne. These parameters were either esti-

mated from our empirical data or obtained from the literature

(electronic supplementary material, S2). The simulations can be

seen as long-term approximation of the approaches of Jones

et al. [51,52] and Revell [19], which allow us to use normally dis-

tributed phenotypic traits at the population level to evolve

macroevolutionary rates of evolution (see electronic supplemen-

tary material, S2). Our simulations consist of drawing at each

generation Ne individuals from a normal distribution (defined

by the mean and the variance of the species trait). While the

intraspecific variance (s2) is assumed to be constant, the mean

is obtained as the empirical mean of the trait values of the pre-

vious generation. The mean of the trait is thus evolving

stochastically from one generation to another [22]. By repeating

this process across many generations along the species tree, we

generated changes in the species trait values at macroevolution-

ary timescales (see electronic supplementary material, S2 for

more details). We then fitted OU and BM models on the simu-

lated species trait using the mvMORPH package [48] and we

ranked the models by AICc. We performed 1000 simulations

for each trait using the distribution of 1000 species-level trees.

We first compared if the best fitting model for simulations was

the same than the best fitting model for the empirical data.

Then, for each trait, we compared the rate of evolution (s2)

inferred from the 1000 simulations with the range of rate

values obtained from the empirical trait (electronic supplemen-

tary material table S4, figure 2). To do this, we computed the

probability that our microevolution simulations correctly predict

the macroevolutionary rate, e.g. how many simulations provided

a rate of evolution falling in the 95% confidence interval of

empirical rate values. We also ran specificity tests, to show that

our microevolutionary simulations do not predict rates of macro-

evolution when the population size is artificially smaller or larger

than the population size estimated from A. clarkii data (electronic

supplementary material, table S2).
Our approach relies on the fact that clownfishes are a very

homogeneous group of fishes with species sharing a large

number of morphological and behaviour traits in common,

such as their symbiosis with anemone that structures their life

history [53] or their very high self-recruitment rates [54]. A. clarkii
as a representative of clownfishes species was chosen because its

populations reflect some diversity in host usage and distribution

range and it is not a specialist species with a too narrow range

(such as A. chrysogaster, A. omanensis, A. mccullochi).

( f ) Comparison between selective pressures at micro-
and macroevolutionary scales

We first estimated whether RH1 was under positive selection at

both micro- and macroevolutionary scales with a McDonald–

Kreitman test comparing the amount of variation within A. clarkii
to the divergence to another species in the tree (A. ocellaris) using

the approach of Egea et al. [55] (implemented in the website

http://mkt.uab.es/). We then estimated the non-synonymous–

synonymous substitution rate ratio (dN/dS) for each of the

251 amino acid sites using a site model [56] implemented in

SlimCodeML (v. 2014-02-11 [57]). This analysis was replicated

for the 1000 trees at the species level and the 1000 trees of

A. clarkii separately. Finally, we tested with a Wilcoxon signed-

rank tests whether the sites detected under positive selection

were also associated with water depth in A. Clarkii and in all

the other species.

Ethics. The sampling of clownfish individuals in the field is described
in details in table 2.
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