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Simple Summary: In this study, we evaluated various imputation strategies for the Korean Hanwoo
cattle. We observed that a large reference panel consisting of many cattle breeds did not improve the
imputation accuracy when compared to a proportionally small purebred Hanwoo reference. This
was because the multi-breed reference did not contain animals sufficiently related to the Hanwoo to
improve the accuracies and, although not detrimental, in effect, only added to the computational
burden of the imputation. Despite the large multi-breed reference, when the Hanwoo were removed
from the reference, the imputation accuracies were low. These results suggest additional sequencing
efforts are needed for underrepresented breeds, particularly those less genetically related to the main
European breeds.

Abstract: This study evaluated the accuracy of sequence imputation in Hanwoo beef cattle using
different reference panels: a large multi-breed reference with no Hanwoo (n = 6269), a much smaller
Hanwoo purebred reference (n = 88), and both datasets combined (n = 6357). The target animals
were 136 cattle both sequenced and genotyped with the Illumina BovineSNP50 v2 (50K). The average
imputation accuracy measured by the Pearson correlation (R) was 0.695 with the multi-breed reference,
0.876 with the purebred Hanwoo, and 0.887 with the combined data; the average concordance rates
(CR) were 88.16%, 94.49%, and 94.84%, respectively. The accuracy gains from adding a large multi-
breed reference of 6269 samples to only 88 Hanwoo was marginal; however, the concordance rate
for the heterozygotes decreased from 85% to 82%, and the concordance rate for fixed SNPs in
Hanwoo also decreased from 99.98% to 98.73%. Although the multi-breed panel was large, it was
not sufficiently representative of the breed for accurate imputation without the Hanwoo animals.
Additionally, we evaluated the value of high-density 700K genotypes (n = 991) as an intermediary step
in the imputation process. The imputation accuracy differences were negligible between a single-step
imputation strategy from 50K directly to sequence and a two-step imputation approach (50K-700K-
sequence). We also observed that imputed sequence data can be used as a reference panel for
imputation (mean R = 0.9650, mean CR = 98.35%). Finally, we identified 31 poorly imputed genomic
regions in the Hanwoo genome and demonstrated that imputation accuracies were particularly lower
at the chromosomal ends.

Keywords: Hanwoo cattle; imputation accuracy; whole-genome sequence data

1. Introduction

Whole-genome DNA sequence (WGS) data in livestock may lead to an increase in
prediction accuracy, especially in less related populations [1,2], and a better resolution
to identify causal loci for traits of interest [3]. Advances in next generation sequencing
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(NGS) technologies and a rapid decrease in sequencing costs have made WGS available
for livestock species. Still, sequencing the large number of animals needed for genomic
prediction is not yet economically feasible. The animal breeding industry and researchers
are currently relying mostly on medium- and high-density SNP genotypes for association
studies (GWAS) and for the genomic prediction of traits [4].

An alternative strategy to directly sequencing animals is through genotype imputation
which is a cost-effective approach to acquire WGS data for a large number of animals. It is
the process of inferring unknown genotypes (in silico) for animals genotyped at a lower
density (e.g., 50K), using pedigree information and/or a set of reference animals genotyped
at a higher density (e.g., 700K, WGS, etc.). Imputation can help improve genomic coverage,
facilitate comparison and combination of studies that use different marker panels, increase
the power to detect genetic associations by combining datasets from different studies, and
guide fine-mapping of quantitative trait loci. Several studies have shown that imputed
genotypes can lead to accurate genomic predictions and help identify quantitative trait loci
(QTLs) [3,5,6].

Effective use of imputed genotypes in genomic selection requires that single-nucleotide
polymorphisms (SNPs) are imputed with high accuracy [7]. Several factors affect impu-
tation accuracy, for example, the number of animals in the reference population, SNP
density in reference and target populations, minor allele frequency (MAF) of the SNPs
to be imputed, the extent of linkage disequilibrium (LD), and the genetic structure of the
population. Other factors that also affect the accuracy of imputation are the software used
and its underlying imputation method, and somewhat more concerningly, even the metric
used to evaluate imputation accuracy can lead to different interpretations [8]. To illustrate
the latter, a study by Rowan et al. [9] observed that using a composite breed reference panel
for Gelbvieh cattle resulted in higher accuracies for rare variants when measured by the
quality score metric produced by the imputation software Minimac3, but no such gains
were observed for the concordance rate and Pearson′s correlation between observed and
imputed genotypes.

Previous research has shown that combining reference populations from different
breeds to increase the size of the reference population may or may not be a good strategy
to help increase the imputation accuracy. For example, a study showed that a reference
population combining dairy and beef cattle breeds actually led to a decrease in the im-
putation accuracy from low-density SNPs to HD and suggested that it might be due to
differences in the LD phase and haplotype dissimilarities between breeds [10]. However, in
another study, a combined reference population of three closely related dairy breeds helped
increase the sequence imputation accuracy when compared to a within breed reference [11].
Similarly, a large multi-breed reference population yielded higher imputation accuracies
in Fleckvieh and Holstein target populations using the FImpute software, but there were
no or negligible gains when using the Minimac software [12]. Another study reported
modest gains in imputation accuracy for Gelbvieh cattle, which is a mixed ancestry breed,
when using a large multi-breed reference [9]; however, the same study also observed a low
imputation accuracy of individuals from breeds that were only sparsely represented and
were distantly related to the reference population.

Imputation accuracies for cattle have been reported in several studies [13–15] but they
are mostly limited to dairy breeds of European origin. To our knowledge there have not
been any studies that evaluated the imputation strategies for less common breeds that are
genetically distinct from the main European breeds and for which sequence information is
rarely available to be used as a reference for imputation.

In this study, we report the accuracy of imputation from lower density genotypes
(50K) to WGS in the Korean Hanwoo beef cattle, which are an East Asian taurine cattle
breed more related to the Japanese Wagyu but very distinct from Western taurine cattle
breeds. We also evaluated the imputation accuracies obtained when using single-breed
(Hanwoo) and multi-breed reference panels to impute the Hanwoo genotypes. We further
compared imputation accuracies obtained from one-step imputation (50K-WGS) and two-
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step imputation (50K-700K-WGS). Finally, we explored how imputation accuracy varies
between common and rare SNP variants and across different genomic regions in the
Hanwoo cattle.

2. Materials and Methods
2.1. Reference Genotype Data

The reference WGS data consisted of 201 Hanwoo cattle selected from key sites widely
used in the national breeding program in Korea, the genomes from Run 9 of the 1000 Bull
Genomes Project [16], plus other public sources of sequence consisting of 6292 samples from
various breeds that included an additional 23 Hanwoo samples. The fastq files from the
201 Hanwoo were processed as described below and then combined with the 23 Hanwoo
sequences from the 1000 Bull Genomes Project for a total of 224 Hanwoo samples in the
Hanwoo reference.

The variants in the reference panel were called from the Hanwoo sequencing short read
files using IVDP—Integrated Variant Discovery Pipeline (https://github.com/rodrigopsav/
IVDP accessed on 18 May 2022). IVDP follows the gold standard GATK pipeline for vari-
ant calling using whole-genome sequencing data (Figure 1) and is similar to the analysis
pipeline used in the 1000 Bull Genomes Project. Standard read filtering and adapter
removal were applied using trimmomatic [17]. The filtered reads were aligned onto
the bovine ARS-UCD1.2 reference genome from Ensembl (GCA_002263795.2) with bwa-
mem2 [18]. After that, duplicated reads were marked with sambamba markdup [19] and
base quality score recalibration was carried out with GATK BaseRecalibratorSpark and
ApplyBQSRSpark. Variant calling was performed using GATK (version 4.2.6.0) Haplo-
typeCaller with gVCF mode (HaplotypeCaller + GenomicsDBImport + GenotypeGVCFs
commands). The variant calls were then filtered using the following criteria: must be
biallelic across samples, must have variant and sample missingness ≤ 0.2, Phred-quality
score (QUAL) ≥ 50; excluding single-nucleotide polymorphisms with QD < 2.0, MQ < 40.0,
FS > 100.0, MQRankSum < −8.0, ReadPosRankSum < −20.0, ExcessHet > 54.69. No minor
allele frequency filtering was performed at this stage as variants were called to align with
variants in the 1000 Bulls run9 dataset [20].
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After filtering, the data were combined with the Hanwoo from the 1000 Bulls and
the final reference panel ended up with 55,927,497 markers; however, 18,560,332 of these
were monomorphic in the breed. For consistency, the same markers were used across
all reference panel sets (a negligible number of new SNP variants detected only in the
Hanwoo data were excluded). Finally, the reference panel was then phased with Beagle 5.4
software [20]. Only the 29 cattle autosomes were used in this study. Principal component
analysis was performed to explore the genetic architecture of the multi-breed reference.
The first principal component separated the taurine and indicine breeds while the second
principal component separated the dairy and beef cattle breeds. Since the data consisted
of more than 200 cattle breeds from around the world, only a few major breeds were
highlighted in the figure (Figure 2).

Animals 2022, 12, x FOR PEER REVIEW 4 of 17 
 

 
Figure 1. IVDP pipeline for variant calling from Illumina whole-genome short sequencing reads. 

 
Figure 2. Plot of first two principal components of the large multi-breed reference including 
Hanwoo animals. 

2.2. Target Genotype Data 
After sample quality control (samples with more than 10% of genotypes missing were 

excluded), a total of 9732 animals genotyped with the Illumina BovineSNP50 v2 (50K) and 
991 animals genotyped with Illumina BovineHD chip (HD, 770K) were used as the target 

−0.01 0.00 0.01 0.02 0.03 0.04

−0
.0

1
0.

00
0.

01
0.

02
0.

03

PC 1 (72.416%)

PC
 2

 ( 
13

.1
6 

%
)

Hanwoo
Holstein
Brahman
Angus
Others

Figure 2. Plot of first two principal components of the large multi-breed reference including Hanwoo
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2.2. Target Genotype Data

After sample quality control (samples with more than 10% of genotypes missing were
excluded), a total of 9732 animals genotyped with the Illumina BovineSNP50 v2 (50K) and
991 animals genotyped with Illumina BovineHD chip (HD, 770K) were used as the target
animals. Among these animals, there were 628 animals genotyped on both platforms and
there were 136 animals that were both sequenced and genotyped on the 50K array. There
was no overlap between the 700K and sequenced animals. The genotyped animals were
from half-sib families and the average, minimum, and maximum numbers of progeny per
sire was 9, 1, and 35, respectively. There were also 1783 animals in the target population
that had at least one parent in the Hanwoo sequence reference population.

SNPs were realigned to the ARS reference assembly using a custom R script and the
probe sequence information using blastn software (https://www.ncbi.nlm.nih.gov/books/
NBK569856/, accessed on 18 May 2022). SNPs that could not be mapped to the reference,
or if the REF/ALT alleles could not be unambiguously assigned, were excluded. SNP
genotypes with missing rates greater than 20% or on non-autosomal chromosomes were
also deleted. After SNP data filtering, 52,653 SNP from the 50K panel and 674,691 from
the 700K were retained for imputation. From the 50K panel, there were 42,296 SNPs in
common with the 700K and 46,734 SNPs in common with the sequence data. The 700K
data had 668,998 SNPs in common with the sequence. Sporadic missing SNP genotypes

https://www.ncbi.nlm.nih.gov/books/NBK569856/
https://www.ncbi.nlm.nih.gov/books/NBK569856/
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(GC < 0.6) in the 50K and 700K datasets were then imputed and phased with
Beagle 5.4 [21,22] using standard settings and the flags window = 300 and overlap = 100.

After initial comparison of one-step and two-step imputation strategies, the target
animals for all other imputation approaches (Section 3.3 onwards) were only 136 animals
whose sequence information was available for calculation of imputation accuracies. These
136 animals were previously phased to resolve haplotypes along with all other 50K animals,
as described above.

2.3. Imputation

Imputation was carried out using Impute5 [23] with default parameters and one
chromosome at a time. Two imputation strategies were evaluated: imputation of the 50K
genotypes (n = 9732) directly to sequence using the Hanwoo purebred reference with
224 animals, and a two-step approach where the 50K genotypes were first imputed to
the 700K panel with 991 animals and then imputed to the same reference sequence panel.
For the two-step approach, after the 50K genotypes were imputed to 700K, and before
imputing up to sequence, the genotypes were re-phased with Beagle, as recent work
from Oget-Ebrad et al. [24] reported that Beagle is currently the best software to resolve
haplotypes, which is critical for the accuracy of imputation.

We also explored how imputation accuracy varies in Hanwoo for within breed and
multibreed reference populations. These analyses were performed only by one-step impu-
tation as the imputation accuracy differences between the one- and two-step approaches
were negligible (further details in the results and discussion). First, we set a baseline for
imputation accuracy by using all available animals with WGS data as a reference to impute
136 animals genotyped at 50K level. This was a case of self-imputation as the target animals
were also a part of reference dataset. In the next step, independent evaluation of different
sequence reference panels was performed using: (1) only the purebred Hanwoo, (2) a large
multi-breed reference without Hanwoo, and (3) both reference sets combined. Additionally,
we increased the size of the purebred Hanwoo reference—the 136 Hanwoo with 50K and
sequence data were randomly split into four groups of 34 target samples. For each of
these groups, the target samples were excluded from the reference panel of 224 animals,
leaving 190 for the reference which was then used for imputation. Imputed groups were
then combined back into the 136 Hanwoo evaluation set and compared to the sequenced
samples. Finally, we explored the possibility of using imputed sequence data as a reference
for imputation. The imputed purebred Hanwoo data were used as a reference (n = 9596)
after removing the target 136 animals from the imputed 50K dataset.

2.4. Evaluation of the Imputation

The 628 animals in common between the 50K and 700K datasets (674,691 SNPs) and
the 136 animals in common between the 50K and sequence datasets (55,927,497 SNPs total
but 18,560,332 monomorphic in Hanwoo) were used to calculate imputation accuracies.
Accuracies were calculated as the correlation between the imputed and observed genotypes
and as concordance rate (the percentage of correctly imputed genotypes). Accuracies
per sample, per allele frequency, per genotype, and per SNP were also calculated. The
pattern of imputation accuracy according to allele frequency was evaluated using average
values of imputation accuracies in bins of 0.01. Differences between real and imputed
datasets were estimated through a principal component analysis of the genomic relationship
matrices (GRM).

3. Results and Discussion
3.1. Imputation from 50K to 700K in Hanwoo

The average imputation accuracy measured by the correlation between the imputed
50K and the reference HD was 0.996. At the animal level, correlations varied between
0.969 and 0.998; by SNP, correlations varied between −0.028 and 1 (2.2% of the SNPs had a
correlation < 0.9). The minimum, average, and maximum concordance rates were 95.5%,
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99.43%, and 99.76% by animal; by SNP, they were 26.43%, 99.43%, and 100%. Only 0.95% of
the SNPs had a concordance rate below 90%. The correlation between real and imputed
allele frequencies was 0.9996. At the genotype level, concordances were also very high,
as shown in Table 1, and not surprisingly, the highest error rates were in the imputation
results of the heterozygotes (~1% wrong). Concordances in allele frequency bins ranged
between 0.9868 and 0.9995.

Table 1. Concordance rate in percentage between imputed and real genotypes for imputation from
50K to 700K (991 700K reference).

AAimp ABimp BBimp

AAref 99.57 0.41 0.02
ABref 0.48 99.03 0.48
BBref 0.03 0.33 99.65

imp: imputed genotypes; ref: reference genotypes.

It is important to highlight that these imputation accuracies were overly optimistic and
reflect the best-case scenario where the target samples were already part of the reference
population. These results should not be construed as reflective of accuracies in usual cir-
cumstances where the target is not a subset of the reference. Our main objective at this point
was primarily to ensure that the imputation from 50K to 700K was adequate for imputing
up to sequence. A minor point of interest is that while most studies evaluate imputation by
subsetting SNPs from a larger panel to a smaller one, here the same samples were indepen-
dently genotyped on the two platforms. The discordance between observed genotypes was
0.115% and, of somewhat more concern, almost 10% of the missing genotypes in the 50K
data, those that were imputed during the phasing step, differed from the genotypes in the
700K panel. The missing rate in the 628 animals was 8.37% and the overall discordance
was 0.915%. In contrast, when the original 50K SNP panel is removed from the real and
imputed 700K datasets, the discordance between them is lower at 0.542% which suggests a
proportionally higher error rate of imputation of the missing genotypes during the phasing
step with Beagle than of the imputation to higher density with Impute5. The haplotypes
seem to have been well-resolved by the phasing step, which is crucial for the imputation,
but again, some caution is warranted in not overinterpreting these accuracies since the
target and reference sets had the same animals and it was expected that the haplotypes
would align well between the two sets. Nevertheless, this analysis suggests the need for
some attention when using Beagle to fill in missing genotypes.

3.2. Imputation from 50K to Sequence and Imputation from 50K to 700K to Sequence in Hanwoo

The average imputation accuracy measured by the correlation between the one-step
imputed 50K and the reference sequence was 0.9653. At the animal level, correlations
varied between 0.9104 and 0.9827 (Figure 3A); by SNP, correlations varied between −0.1
and 1 (18.74% of the SNPs had a correlation < 0.9, 8.8% < 0.8, and 4.5% < 0.7). The
minimum, average, and maximum concordance rates were 95.99%, 98.36%, and 99.25% by
animal (Figure 3A); by SNP, they were 0.0%, 98.36%, and 100%. 2.94% of the SNPs had a
concordance rate below 90%. The correlation between real and imputed allele frequencies
was 0.9968.

For the two-step imputation (50K-700K-WGS), the average imputation accuracy cor-
relation was 0.9564. At the animal level, correlations varied between 0.9071 and 0.9918
(Figure 3A); by SNP, correlations varied between −0.1 and 1 (25.44% of the SNPs had a
correlation < 0.9, 10.8% < 0.8, and 4.7% < 0.7). The minimum, average, and maximum
concordance rates were 95.82%, 97.91%, and 99.63% by animal (Figure 3A); by SNP, they
were 0.0%, 97.91%, and 100%. 3.45% of the SNPs had a concordance rate below 90%. The
correlation between real and imputed allele frequencies was 0.9978.
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At the genotype level, concordances were still high (Table 2) but noticeably lower than
the 50K-700K imputation (Table 1). The error rates of the heterozygotes were 5.15% for



Animals 2022, 12, 2265 8 of 16

the one-step imputation and 8.18% for the two-step. It is our view that the error rates of
the heterozygotes are a preferable measure of imputation accuracy because they are the
hardest to impute correctly. The concordances in allele frequency bins were similar for
one-step and two-step imputation and ranged between 0.9607 and 0.9969, respectively
(Figure 3B). We also observed that concordances were higher for variants at the two ends of
allele frequency spectrum, i.e., for variants with low minor allele frequency (MAF), which
is commonly observed in imputation studies [25].

Table 2. Concordance rate in percentage between imputed sequence and real sequence of 136 animals
for one-step (224 WGS reference) and two-step imputation (224 WGS and 991 700K reference).

One-Step Two-Step
AAimp ABimp BBimp AAimp ABimp BBimp

AAref 97.14 2.65 0.22 AAref 95.69 3.98 0.33
ABref 1.10 94.85 4.05 ABref 1.4 91.82 6.78
BBref 0.03 1.07 98.91 BBref 0.02 1.09 98.89

imp: imputed genotypes; ref: reference genotypes.

When comparing one- and two-step imputation, 98.24% of the genotypes were identi-
cal. Out of the wrongly imputed genotypes, around half of these were the same between
methods (~76 Million genotypes). Differences between the one- and two-step approaches
were minimal, with a small advantage for the one-step approach. This goes against the
consensus that it is preferable to first impute to a higher density panel and then up to
sequence [26]. In other still unpublished work, we have noted that direct imputation
certainly can yield high accuracies without first imputing to a high-density panel, provided
that there is a large reference population and good coverage of the target haplotypes. In
this particular instance, however, the higher accuracies from the direct imputation were
more likely due to phasing errors of the 136 target animals when they were imputed from
50K up to 700K since they were not genotyped on the high-density array (in relation to the
sequence haplotypes, the haplotype concordance of the 50K was slightly higher than the
700K at ~0.11%).

Keeping in mind that these were different animals and not the same sample sizes, the
discordance between 50K genotypes and sequence was 0.445%, higher than between the
50K and 700K (0.115%). The discordance between the missing 50K genotypes was similar
to what was observed in relation to the 700K at 6.85%.

The genomic relationship matrices of the sequence data and the two imputation
approaches were very similar (Figure 4). The sums of squares of the deviation between
the GRM of the sequence and the one-step was 0.3625 and for the two-step, it was slightly
worse at 0.412. The effect of these deviations on the estimates of genomic breeding values
should be negligible.

3.3. Evaluation of Imputation Accuracy with All Available Animals (Hanwoo and Multi-Breed)

To set a target for imputation accuracy and see how well the imputation pipeline
can perform in a perfect world, the 224 Hanwoo animals plus other 6269 cattle genotypes
from a broad range of breeds were used as the reference imputation panel. This reference
panel is as good as it can be, as it contains the target 136 animals along with thousands of
other sequenced animals. The accuracy results thus obtained will be used as a benchmark
to achieve in subsequent imputations in this study. The average imputation accuracy
measured by the correlation was 0.9711 (+0.0058 in relation to using only the Hanwoo
samples as reference) and varied between 0.9058 and 0.9889 across samples. The average
concordance rate was 98.62% (+0.26%, Table 3), varying between 95.78% and 99.50% across
animals. An amount of 2.08% (−0.86%) of the SNPs had a concordance rate below 90%. The
correlation between real and imputed allele frequencies was 0.9983 (+0.0015). The sums of
squares of the deviation between the GRM of WGS and the imputed data were 0.3026.
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Table 3. Concordance rate in percentage between imputed and real genotypes for 224 Hanwoo and
6269 multi-breed animals in reference.

AAimp ABimp BBimp

AAref 97.75 2.06 0.19
ABref 0.88 94.8 4.33
BBref 0.01 0.78 99.2

imp imputed genotypes; ref reference genotypes.

The augmented reference set used in this section is almost 30 times larger than the
Hanwoo-specific reference panel, but the imputation accuracy gains were only marginal.
Of course, this is still a scenario where the target is a subset of the reference panel and the
accuracies with the Hanwoo panel were already high anyway. It does, however, confirm
that it is still beneficial, even if marginally, to increase the reference set by adding animals
from other breeds and that the inclusion of very distantly related samples does not have a
sizable negative effect on the accuracies; it also confirms that relatedness between target
and reference is important for imputation accuracy, as discussed in more detail in the next
section.

3.4. Evaluation of Imputation Accuracy with Independent Reference Sets

For a more realistic and independent evaluation of the imputation accuracy in routine
settings, the 136 Hanwoo with WGS data were excluded from the reference panels. These
animals were imputed directly up to WGS from their 50K original data. The accuracy with
two reference panels was evaluated. One panel used the multi-breed genotypes without
any Hanwoo (n = 6269); the other used the same panel plus the remaining 88 Hanwoo
after exclusion of the 136 samples. The average imputation accuracy measured by the
correlation was 0.6950 without the Hanwoo and 0.8873 with the Hanwoo. With reference
sets in the same order, the correlations varied between 0.6670–0.9096 and 0.7973–0.9798
across samples. The average concordance rates were 88.16% and 94.84% varying between
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86.42–95.89% and 91.55–99.03%, across animals. Amounts of 41.21% and 20.05% of the
SNPs had a concordance rate below 90%. The correlation between real and imputed allele
frequencies was 0.9322 and 0.9911. In total, 33.19% (18,560,332) of the 55,927,497 were
fixed in the Hanwoo population. The concordance for the SNPs that should have been
fixed in these individuals was 98.94% and 99.73%. Aside from the computational burden,
the large number of SNPs that are not segregating in Hanwoo but are in other breeds did
not introduce an excessive number of spuriously segregating genotypes within the breed;
although, it should be noted that from the 18.5 million fixed SNPs, 31.48% and 16.60% had
an imputed MAF > 0. The small effect on the concordance is due to the low frequencies of
these incorrectly imputed SNPs (averages of 0.0118 and 0.0079). The bins concordances
ranged between 0.6485–0.9794 and 0.8530–0.9936; the averages were 0.7259 and 0.8917.

At the genotype level, concordances were substantially lower, especially for heterozy-
gotes (56.95%) when there were no Hanwoo in the reference. With Hanwoo included in the
reference, concordances were much better but still around 82.15% for the heterozygotes
(Table 4). The sums of squares of the deviation between the GRM of the sequence and the
imputed data were 1.0552, and slightly lower (better) when Hanwoo were included in the
reference at 0.9641.

Table 4. Concordance rate in percentage between imputed and real genotypes for multi-breed
reference panels with (88 Hanwoo, 6269 multi-breed) and without Hanwoo (6269 multi-breed)
samples.

Multi-Breed without Hanwoo Multi-Breed with Hanwoo
AAimp ABimp BBimp AAimp ABimp BBimp

AAref 76.03 18.97 5.01 AAref 90.45 8.84 0.71
ABref 12.29 56.95 30.76 ABref 5.15 82.15 12.7
BBref 0.71 8.09 91.2 BBref 0.1 3.23 96.67

imp: imputed genotypes; ref: reference genotypes.

Inclusion of Hanwoo samples in the imputation reference panel provided a substantial
increase in the imputation accuracy, the gain in the correlation was 0.1923, and in the
concordance was 6.68%. Even with a large reference population, when there were no
samples of the targeted breed in the reference population, the imputation accuracies were
rather low. Here, there were only 88 independent Hanwoo for the reference, but even this
small number (1.38% of the total reference) already provided a substantial improvement in
the accuracy. Hanwoo is an East Asian taurine breed quite distinct from other European
breeds but more closely related to other Asian breeds, such as the Wagyu and Akaushi.
The reference had a limited number of these breeds to assist with the imputation (e.g., only
174 Wagyu and a single Akaushi). There is still a need to increase the representation of less
European-centric breeds in sequencing efforts to improve the imputation results of these
breeds.

To better separate the contribution of within and between breed sequence data to the
accuracy of imputation, we also used only the 88 Hanwoo as a reference. The average
imputation accuracy measured by the correlation was 0.8759, varying between 0.8205 and
0.9421 across samples. The average imputation accuracy measured by the concordance
was 94.49%, varying between 92.60% and 97.43%. Similar to the results discussed in the
previous section, the accuracy gains from adding all the other 6269 samples were marginal
at +0.0114 for the correlation and +0.35% for the concordance. The correlation between
real and imputed allele frequencies was 0.9807 (−0.0105), but the concordance of the fixed
SNPs correctly imputed increased to 99.98% without the noise introduced by the variants
segregating in the other breeds. An amount of 21.91% (1.86% worse) of the SNPs had
a concordance rate below 90%. The allele frequency bins concordances ranged between
0.8717–0.9653; the average was 0.8922. The genotype concordances (Table 5) were similar
to those obtained with the multi-breed reference including Hanwoo, even slightly better as
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the heterozygote error rates were lower at 14.18% (but ~1% loss of concordance for each of
the homozygotes).

Table 5. Concordance rate in percentage between imputed and real genotypes with a reference panel
of 88 purebred Hanwoo.

AAimp ABimp BBimp

AAref 89.21 9.93 0.86
ABref 4.63 85.82 9.54
BBref 0.18 4.14 95.68

imp: imputed genotypes; ref: reference genotypes.

3.5. Evaluation of Imputation Accuracy with a Larger and Independent Hanwoo Only
Reference Set

Since there was a neglegible overall improvement in the imputation accuracy using
the multi-breed reference, we opted to use only the purebred Hanwoo data (n = 190 in four
independent chunks) as the final reference panel for this study. The average imputation
accuracy measured by the correlation was 0.9336 and varied between 0.8459 and 0.9741
across samples. The average concordance rate was 96.88%, varying between 93.50% and
98.78% across animals. An amount of 8.35% of the SNPs had a concordance rate below
90%. The correlation between real and imputed allele frequencies was 0.9960. The sums
of squares of the deviation between the GRM of the sequence and the imputed data were
0.4923. At the genotype level, concordances were high (Table 6) and the error rates of the
heterozygotes were 10.47%. The allele frequency bins concordances ranged between 0.9178
and 0.9983; the average was 0.9431. Overall, this reference set seems adequate for accurate
sequence imputation in Hanwoo, apart from some genomic regions of lower accuracy,
which are discussed below (Section 3.7).

Table 6. Concordance rate in percentage between imputed and real genotypes with a reference panel
of 190 purebred Hanwoo.

AAimp ABimp BBimp

AAref 93.69 5.91 0.40
ABref 2.47 89.54 8.00
BBref 0.04 1.93 98.03

imp: imputed genotypes; ref: reference genotypes.

3.6. Evaluation of Imputation Accuracy with an Imputed Hanwoo Reference Set

The real imputation accuracy in the samples without sequence data is unknown. As
an empirical evaluation, we used the imputed sequence data of the 50K samples (one-
step imputation) as a reference panel (n = 9596) to impute the 136 animals with sequence
data. Target samples were removed from the imputed sequence data and their original
50K genotypes were used as the target, after phasing with Beagle using the other phased
50K genotypes (the phasing reference panel). There is, of course, still some circularity
to this argument as the 136 target samples accounted for 61% of the initial reference
dataset used to impute the 50K genotypes at the first place, i.e., even though none of the
samples in the reference overlaps with the target, the latter was initially used to impute
them—this should lead to some upwards bias in the imputation accuracies. The average
imputation accuracy measured by the correlation was 0.9650 and varied between 0.9103 and
0.9829 across samples. The average concordance rate was 98.35%, varying between 95.98%
and 99.25% across animals, and only 2.99% of the SNPs had a concordance rate below
90%. The correlation between real and imputed allele frequencies was 0.9967. The sums
of squares of the deviation between the GRM of the sequence and the imputed data were
only 0.3786. At the genotype level, concordances were high, and the error rates of the
heterozygotes were only 5.21% (Table 7). The frequency bins concordances ranged between
0.9605 and 0.9967.
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Table 7. Concordance rate in percentage between imputed and real genotypes of 136 target animals
with a reference panel of 9596 purebred Hanwoo that were previously imputed from 50K to sequence.

AAimp ABimp BBimp

AAref 97.11 2.67 0.22
ABref 1.11 94.79 4.10
BBref 0.03 1.07 98.90

imp: imputed genotypes; ref: reference genotypes.

This was effectively the best imputation accuracy, almost on par with having the ani-
mals in the reference set itself along with a large multi-breed reference set (Tables 3 and S1).
Again, accounting for the lack of independence in how the imputed reference samples were
originally imputed, this does suggest the possibility of using imputed data along with real
data to improve imputation accuracies. How well this would work in practice will be a
function of the value of a larger number of haplotypes in the reference, offset by the errors
in the imputed data—but that is a topic for future work.

3.7. Evaluation of Imputation Accuracy across Chromosomal Regions

We computed the running median of imputation accuracies in windows of 1001 SNPs
to detect poorly imputed chromosomal regions across the Hanwoo genome. SNPs falling
in the 0.1 percentile (CR cutoff value 0.853, n = 48,438) were used to identify genomic
regions with poor concordance rates that contained two or more SNPs. CHR 4 contained
the highest number of poorly imputed SNPs (n = 15,339) followed by CHR 17 (n = 9177),
10 (5326), and 7 (n = 4747). Poorly imputed SNPs located more than 1 Mb apart were
considered as a separate genomic region. The five longest regions were located on CHR
17, 10, 15, 23, and 4. The longest one was on CHR 17 and spanned the region between
37,810,468 and 39,363,461 BP. Although imputation accuracies were generally high, there
were some noticeable regions with poor imputation accuracies especially close to the ends
of chromosomes due to higher recombination rates [27] (Figures 5 and 6).
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Additionally, highly polymorphic genomic regions, such as the major histocompatibil-
ity complex (MHC), are intrinsically difficult to impute due to the high number of repetitive
elements, a greater diversity of haplotypes, and a complex LD structure. For example,
in this study we did identify one such region on CHR 23 that overlaps with the bovine
leukocyte antigen (BoLA) class II that encodes genes that perform similar functions across
species but are structurally different. Other poorly imputed genomic regions and the num-
ber of SNPs in those regions are presented in Table 8. Such intrinsically difficult-to-impute
genomic regions have also been reported in Flekvieh, Holstein, and Nelore cattle [21–23]
and should be taken into account in studies that use impute sequence data. Additional
reasons for some regions having low imputation accuracy can be due to a low coverage
by SNP panels and a high sequence variant density in a region, high GC content, and
assembly errors.
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Table 8. Chromosomal position of poorly imputed genomic regions in Hanwoo.

CHR Start (BP) End (BP) Length (BP) No. of SNPs

2 81,496,310 81,511,148 14,838 273
3 11,716,513 11,776,690 60,177 452
4 105,573,863 105,589,511 15,648 1422
4 112,830,880 113,341,416 510,536 13,917
5 92,617,024 92,629,684 12,660 236
6 55,737,025 55,758,674 21,649 508
7 10,758,277 11,039,089 280,812 4584
7 95,736,166 95,742,201 6035 163
8 29,160,922 29,183,317 22,395 559
9 10,593,065 10,596,144 3079 59
9 104,358,861 104,380,205 21,344 671
10 459,493 521,352 61,859 846
10 22,908,467 23,406,397 497,930 2334
10 100,209,890 101,216,542 1,006,652 2146
11 40,903,028 40,905,284 2256 72
12 70,443,588 70,455,007 11,419 713
12 71,728,153 71,735,710 7557 719
14 82,178,440 82,180,992 2552 60
15 45,854,158 46,106,343 252,185 3506
15 78,379,540 79,226,472 846,932 398
16 372,932 418,633 45,701 1473
16 5,775,482 5,778,367 2885 53
17 14,049,911 14,159,496 109,585 4297
17 37,810,468 39,363,461 1,552,993 4880
18 62,688,950 62,690,650 1700 5
19 927,489 945,870 18,381 537
20 49,746,665 49,760,276 13,611 432
22 897,334 922,574 25,240 738
23 15,964,918 15,976,090 11,172 138
23 25,875,394 26,511,965 636,571 2223
29 51,092,637 51,093,495 858 23
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Previous studies have suggested the use of a multi-breed reference population for
whole-genome imputation, but the target populations in those studies consisted of either
admixed populations or cattle breeds closely related to the reference breeds [9,11,12]. Our
results collectively indicate that the imputation accuracy in Hanwoo was largely driven
by within breed imputation. The large multi-breed reference panel added very little to
the imputation accuracy beyond what was obtained by simply using the closely related
samples from the breed itself. This was mainly because the 1000 Bulls sequence data
mostly contained cattle breeds of European origin, while haplotype diversity and genetic
architecture of breeds originating from Asia and Africa were poorly represented. On the
upside, however, there was no clear indication of the diverse reference having a negative
effect on the overall imputation accuracy, although it did increase the imputation error
rates of heterozygotes and falsely detected some rare variants that did not actually exist in
the target population. There is some evidence in the literature that adding a small number
of animals from various breeds to a small reference panel can adversely affect accuracy.
However, a large number of multi-breed animals in the reference would help increase
accuracy [28]. Therefore, the ratio of within breed to multi-breed animals in the reference
is also important. The large and diverse multi-breed reference in our study also added
considerably to computational burden considering the fact that it was ~40 times greater
than the within breed reference. These findings suggest that in the absence of an adequately
sized breed-specific panel, a large multi-breed reference can be used, but the error rates
will be high. This should not overly affect genomic prediction (although there is limited
value in using sequence data to estimate GEBVs anyway [1,26,29]), but could be more
consequential for association studies.

One aspect we have not yet considered is the Impute5 imputation info scores. These
are estimates of the ratio between the observed and expected statistical information [30].
This measure aims to serve as a guide as to the reliability of the imputed genotypes, but
it is quite dependent on the estimated allele frequency of the imputed genotypes. Hard
filters, e.g., R < 0.6, are commonly used but it does not seem to align well with observed
concordance values. For example, in our dataset, the correlation between the info score
and SNP concordance is only 0.2598. The correlation with allele frequencies is even lower
at 0.0908. If the 0.6 filter cutoff was used on these data, the average concordance for the
filtered-out data would be 0.9574 and for the selected data, it would be 0.9715 (and would
remove ~20% of the genotypes). The percentage of SNPs with a concordance below 0.9
would only improve from 8.35% to 7.20%. Within allele frequency bins (in 0.01 intervals),
the minimum concordance was 0.9311 and the highest 0.9983; however, the correlation
of these concordance means in the bins and allele frequencies is also low at 0.0603 and
not associated with allele frequencies. The metric does seem more accurate with more
stringent cutoffs though; for example, on the extreme, if the data are filtered for an R = 1,
then the concordance mean in the subset is 99.99%, and only 0.015% of the SNPs will
have a concordance < 0.9, but only 30.38% of the genotypes will be kept and, much more
problematically, only a fraction of these will have an MAF > 0.01. In this work, we could
not find a meaningful way to use the info scores that would help to filter out SNPs with
low imputation accuracy.

4. Conclusions

We have demonstrated that imputation with a small reference population closely
related to the target population is more accurate than a large multi-breed reference with
distantly related animals. Without any representation of the target breed in the reference
population, the imputation accuracies for Hanwoo were substantially lower, which is due
to the high genetic distances between the Korean breed and other breeds. The addition of a
relatively small number of Hanwoo animals to the large multi-breed reference panel con-
siderably improved the imputation accuracy. However, the accuracies of the rare variants
were still slightly lower than those obtained when using only a purebred Hanwoo reference.
It implies that even though a large variety of dairy and beef breeds from around the world
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have already been sequenced, there is still a need to increase the representation of less
European-centric breeds in sequencing efforts to improve the imputation of these breeds.
Furthermore, while a two-step imputation strategy is usually the suggested approach, in
this work, the differences in imputation accuracy when compared to single-step imputation
were negligible. We also observed that imputed genotypes can be used as the reference
panel which suggests that, for example, HD genotypes could be imputed to sequence
level and then, included along with the original sequence reference panel for use in one
step imputation approach. This could reduce the computational burden of the two-step
approach and potentially improve imputation accuracies when the number of informative
animals in the WGS reference panel is small. Lastly, we also identified poorly imputed
genomic regions in Hanwoo cattle that should be accounted for when the imputed data are
used in other projects—particularly in genome-wide association studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani12172265/s1; Table S1: Summary statistics of imputation
accuracy for all imputation scenarios.
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