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Abstract

We present the results of an individual agent-based model of antibiotic resistance in bacteria. Our model examines antibiotic
resistance when two strategies exist: ‘‘producers’’–who secrete a substance that breaks down antibiotics–and nonproducers
(‘‘cheats’’) who do not secrete, or carry the machinery associated with secretion. The model allows for populations of up to
10,000, in which bacteria are affected by their nearest neighbors, and we assume cheaters die when there are no producers in
their neighborhood. Each of 10,000 slots on our grid (a torus) could be occupied by a producer or a nonproducer, or could
(temporarily) be unoccupied. The most surprising and dramatic result we uncovered is that when producers and
nonproducers coexist at equilibrium, nonproducers are almost always found on the edges of clusters of producers.
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Introduction

The evolution of traits that may benefit others, as well as self,

has long been an interest of evolutionary biologists [1–8]. This

issue has been brought to the forefront recently by experimental

work on group-beneficial traits in model bacterial and yeast

systems [6,9–20] including, but not limited to, work using

Staphylococcus aureus, Pseudomonas fluorescens, Pseudomonas aeruginosa,

Myxococcus xanthus, Saccharomyces cerevisiae and Escherichia coli. In

addition, theoreticians have actively debated the role of individual,

kin, group, and frequency-dependent selection in explaining the

results of these experiments [6,17].

Using both theoretical and empirical tools, we have been

examining the evolution of group-beneficial traits in the context of

bacterial antibiotic resistance in E.coli. In two earlier papers, we

examined the evolution of ‘‘producers’’ (who secrete a substance

that breaks down antibiotics) and nonproducers (‘‘cheats’’) who do

not secrete, or carry the machinery associated with secretion. Our

prior models examined the evolution of these strategies in a single,

very large population [21], as well as in metapopulations

containing discrete trait groups [22].

Here, we examine the evolution of producers and non-

producers using an individual agent-based model. The model

allows for populations of up to10,000, in which bacteria are

affected by their nearest neighbors. Each of the 10,000 slots on

our grid (a torus) could be occupied by a producer or a

nonproducer, or could (temporarily) be unoccupied. Our

empirical work suggests that this agent-based model may best

mimic the dynamics of bacterial interactions in the context of

shared antibiotic resistance. For example, our experimental

work has found that when b-lactamase is produced to break

down antibiotics, it is tethered to the producer cell, and hence

primarily affects the producer’s nearest neighbors. Our agent-

based model captures this dynamic in ways that prior models

have not.

The Model
We consider two genotypes, labeled producers and nonproducers.

Producers create a substance that provides them with a benefit and

provides benefits to other group members as well, while nonprodu-

cers do not produce such a substance. In this model the ‘‘substances’’

we focus on are enzymes, such as b-lactamase, that break down b-

lactam antibiotics (e.g.,ampicillin). In terms of bacterial antibiotic

resistance, producers will possess a gene (often, but not exclusively,

plasmid-borne) that codes for an antibiotic resistance mechanism that

protects them from damage due to antibiotics. Plasmid possession

carries a cost, in that cellular resources are required for plasmid

replication and maintenance [13]. Nonproducers do not carry the

plasmid with the gene for antibiotic resistance, but receive protection

as a function of the number of producers in their neighborhood (it is

in that sense that we consider producers as providing group- or

neighborhood-level benefits to others). If nonproducers are sur-

rounded by other nonproducers they die (details below), and hence

the typical ‘‘invasion’’ problems associated with group-beneficial

traits do not apply to our producer strategy, as pure populations of

nonproducers are not viable.

In our model, the benefit (B) associated with b-lactamase ranged

from 0 to 1. Producers always received this benefit. Because b-

lactamase may be ‘‘tethered’’ to the outside of a cell, we created a

variable called ‘‘help’’ that measures the proportional benefit that

cells near a producer receive, as a result of the b-lactamase

tethered to that producer (that is; 0,help,B). Producers pay a

cost (0,C,1) associated with b-lactamase production [13].

The fitness of the producers = B2C+(number of producers
in neighborhood x B x help)

The fitness of the nonproducers

= 0; if no producers are in neighborhood

or

= number of producers in neighborhood x B x help; if

one or more producers are in neighborhood.
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Figure 1. Two-dimensional snapshots of the 10,000 slot torus. B/C = 0.62, help = 0.14 (this ‘‘help’’ value was chosen, in part, as the result of
unpublished experimental work on b–lactamase secretion in producer cells). a) Generation 1, b) Generation 10, c) Generation 20, d) Generation 40, e)
Generation 300 and f) Generation 1000. Note that for generations 1–999, any yellow (nonproducers) cells surrounded by only yellow or by only
yellow and white cells would die and be replaced the next generation.
doi:10.1371/journal.pone.0002763.g001
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We used NetLogo simulation software [23] to build an agent-

based model for the evolution of antibiotic resistance when

producers and nonproducers interact. A 1006100 torus (no edges)

with 10,000 ‘‘slots’’ was created, and we assumed that an

antibiotic, such as ampicillin, was present at all times during our

simulations. At the start of a simulation, each slot held either a

Figure 2. Two-dimensional snapshots of the 10,000 slot torus. B/C = 0.56, help = 0.19. a) Generation 1, b) Generation 10, c) Generation 20, d)
Generation 40, e) Generation 300 and f) Generation 1000. Note that for generations 1–999, any yellow (nonproducers) cells surrounded by only
yellow or by only yellow and white cells would die and be replaced the next generation.
doi:10.1371/journal.pone.0002763.g002
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producer or a nonproducer with probability 0.5 (qualitatively

similar results were found when simulations were initiated with

producer/nonproducer proportions of .20/.80, .30/.70, .40/.60,

.60/.40, .70/.30, and .80/.20).

Neighborhood size was set at eight individuals–the so-called

‘‘Moore neighborhood’’–corresponding to the eight slots that

could be reached in a single move of a chess king [24]. Fitness

values from generation 1 were calculated and used to populate the

torus generation 2. If a slot was filled with a nonproducer, and its

Moore neighbors were all nonproducers, that nonprodcuer died,

and that slot was empty in generation 2. Otherwise, the fitness of

the individual in a slot was added to the fitness of the individuals in

its Moore neighborhood. The probability that a slot was occupied

by a producer in generation 2 was simply the sum of all producer

fitnesses in the Moore neighborhood over the total fitness in that

neighborhood. Slots were filled in exactly the same way in each

subsequent generation, with one exception: in generation 3 and

beyond, if a slot was filled by a nonproducer and its Moore

neighbors were nonproducers or empty slots, that slot was empty in

the next generation.

Although any stochastic simulation will eventually settle at a

homogenous absorbing state [24,25], our pilot work found similar

results when simulations were run for 1000, 5000 or 20,000

generations; hence we report results from 1000 generations.

Results

We examined thirty B/C scenarios from rations of 2:1 down to

0.5:1, as well as six different values for ‘‘help.’’ When B.C,

producers went to fixation very quickly in our model. When C.B,

we found, not unexpectedly, that increasing the B/C ratio

increased the equilibrial frequency of producers. In addition,

increasing the value of ‘‘help’’ increased the frequency of

producers. Our most novel, and potentially important, finding

was that if C.B, and producers and nonproducers coexisted at

equilibrium, nonproducers were almost always found on the edge

(boundary) of clusters of producers; more specifically, nonprodu-

cers were found between clusters of producers and areas of open

space (i.e., open slots; Figures 1, 2 and 3). Across all simulations

where producers and nonproducers were present at generation

1000, a producer typically had about seven other producers in its

Moore neighborhood (and 0.5 empty cells plus 0.5 nonproducers);

a nonproducer usually had just two nonproducers, about three

producers, and three empty cells in its neighborhood.

Although the exact positioning of producers, nonproducers and

empty slots constantly changed over the course of a thousand

generations, this spatial patterning, in which producers are found

on the edge between clusters of producers and empty slots, was

similar across generations.

Discussion

There is a large and rapidly growing literature on microbes as

model systems to test ‘‘public goods’’ problems (see references in

Introduction). The results of our model are in agreement with

some general findings from this work: for example, as the B/C

ratio increases, cooperation increases. Our model uncovered an

interesting, novel spatial patterning for producers and nonprodu-

cers, wherein nonproducers–the equivalent of cheats in our

simulations–were almost always found on the boundary between

clusters of producers and empty (unoccupied) slots. This was in

part a result of the strong frequency-dependent nature of the

payoffs in the model, especially the harsh payoff when cheaters

were surrounded by other cheaters. Though the position of

producers, nonproducers and empty slots moved around through

time, the ‘‘cheaters-on-the-edge’’ phenomenon moved with it.

This dramatic spatial pattern appears to be the result of the

following dynamics: when surrounded by other nonproducers or

by empty space, nonproducers in our model die (due to

antibiotics). What that means is that clusters of nonproducers

perish, and nonproducers cannot survive in the middle of

‘‘clusters’’ of empty slots. When nonproducers find themselves in

the midst of clusters of producers, they do poorly because of the

dynamics of competition at the local scale. For example, consider

the case of a nonproducer whose Moore neighbors are all

producers. The relative fitness of that nonproducer is higher than

any of its producer neighbors, but the particular strategy that will

fill that nonproducer’s slot in the next generation is a function of

the fitness of producers and nonproducers in that Moore

neighborhood weighted by their prevalence in that neighborhood, and

hence the nonproducer slot is very likely to be taken by a producer

in the next generation.

Why then do nonproducers survive on the moving boundaries

between clusters of producers and areas of empty space? In these

areas, nonproducers can often fill empty slots because they are

closer to those empty slots than producers (who cluster with each

other). But, nonproducers cannot continue to fill further empty

slots because once they begin to cluster in formerly empty space,

they die in the presence of antibiotics, when no producers are

nearby. This introduces a temporal component to the results,

wherein nonproducers appear to ‘‘chase’’ empty slots, and

producers appear to chase the nonproducers.

The fact that producers clustered together quickly in our

simulations also helps explain why increasing the value of ‘‘help’’ –

the proportional benefit that cells near producers receive–

increased the frequency of producers. Clustering created a

situation in which producers were most often aiding others

producers, and this, in conjunction with the phenomena outlined

above, will allow us to better understand why providing greater

levels of help differentially aided producers.

We recognize that our model examines only two strategies and

that costs and benefits themselves may evolve: more work is

Figure 3. Zoomed-in version of upper left hand section of a
snapshot at generation 1000. B/C = 0.62, help = 0.09. Red lines
outline some cases in which nonproducers exist at the boundary
between empty space and clusters of altruists. In all figures, yellow = -
nonproducers, green = producer, white = empty slot.
doi:10.1371/journal.pone.0002763.g003
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needed on these fronts. Nevertheless, it is our hope that these

results will spur empirical researchers working on group-beneficial

traits in bacterial model systems to search for spatial and temporal

patterns similar to those we have observed in our agent-based

simulations. In terms of medical implications, because nonprodu-

cers in our model were sensitive to antibiotics, and were often

found between empty spaces and producers, targeting such areas

with antibiotic infusions may be worth considering.
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