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Abstract

Cryo-electron microscopy (cryo-EM) has become a leading approach for protein structure 

determination, but it remains challenging to accurately model atomic structures with cryo-EM 

density maps. We propose a hybrid method, CR-I-TASSER, which integrates deep neural-network 

learning with I-TASSER assembly simulations for automated cryo-EM structure determination. 

The method is benchmarked on 778 proteins with simulated and experimental density maps, where 

CR-I-TASSER constructs models with a correct fold (TM-score>0.5) for 643 targets that is 64% 

higher than the best of other de novo and refinement-based approaches on high-resolution data 

samples. Detailed data analyses showed that the major advantage of CR-I-TASSER lies in the 

deep-learning based Cα position prediction, which significantly improves the threading template 

quality and therefore boosts the accuracy of final models through optimized fragment assembly 

simulations. These results demonstrate a new avenue to determine cryo-EM protein structures with 

high accuracy and robustness covering various target types and density-map resolutions.

INTRODUCTION

Knowledge of 3D structures of proteins is crucial for understanding their biological 

functions. Over the past decades, nuclear magnetic resonance (NMR) spectroscopy1, X-ray 

crystallography2 and electron microscopy (EM)3 have been widely employed to obtain 

protein structures. However, NMR can only be used for relatively small proteins, whereas 

X-ray crystallography is often constrained by the difficulty of protein crystallization4. 

Although EM can overcome some of these limitations, it suffers from sample damage 

due to high-energy radiation, or low signal-to-noise ratio when very low electron doses 
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are used5. The idea of cryogenic electron microscopy (cryo-EM) was first proposed in the 

1980s to reduce sample damage through frozen specimens6. Over the last decade, various 

technological innovations, such as single particle analysis and direct electron detection 

cameras5, 7, 8, have made cryo-EM a practical means for probing protein structures without 

crystallization (X-ray) or size limitations (NMR). However, the success rate of cryo-EM is 

low with low-resolution density map data and more than half of cryo-EM samples in the 

EMDataResource have no atomic structure determined9.

To help cryo-EM structure determination, a variety of computational structure modeling 

methods have been proposed, which can be generally categorized into two groups. The first 

group of approaches, such as Rosetta-Ref10, Flex-EM11, iMODFIT12, MDFF13, Situs14 and 

EM-Refiner15, are built on structure refinement guided by correlations between the atomic 

model and cryo-EM maps. Despite the relative simplicity, most of the refinement programs 

require predefined model and map superposition, and the success rate critically depends 

on the quality of initial models and the superposition. The second group is referred to as 

‘de novo’ modeling which constructs models from sequence and density map alone. One 

such example is Rosetta de novo (Rosetta-dn)16, 17 which creates the initial model from 

a density map followed by RosettaES17 beam growing and Rosetta folding refinement. 

Another example is MAINMAST18 which constructs initial backbone models from local 

dense points and then refines the models with the MDFF program13. Although these de novo 
approaches are capable of creating models from density maps alone, their success is highly 

sensitive to the resolution level of density maps. Additionally, methods such as MAINMAST 

require manual tuning and combination of multiple parameter-sets, rendering the programs 

less convenient to be automatedly implemented.

We present a hybrid pipeline, CR-I-TASSER (CRyo-EM Iterative Threading ASSEmbly 

Refinement), for fully automated protein structure determination. While it is a de novo type 

approach in terms of creating models from sequence and density maps alone, CR-I-TASSER 

does utilize multithreading algorithms to identify homologous and analogous templates 

from the PDB to facilitate structural assembly. Technically, most existing de novo and 

refinement-based approaches rely on model-to-map correlations to guide the structural 

modeling simulations, but such correlation information is not precise and specific when 

the map resolution is low. In CR-I-TASSER, we extend deep residual convolutional neural 

networks (CNN)19 to create high-accuracy Cα atom trace models from experimental density 

maps, providing a specific set of target atom positions that can be used to significantly 

improve threading template quality. In addition, the deep-learning boosted threading models 

are further assembled with cutting-edge I-TASSER folding simulations, under the guidance 

of specific CNN models and the highly optimized I-TASSER knowledge-based force field20. 

Our large-scale benchmark tests show a significant advantage of CR-I-TASSER over the 

traditional de novo and refinement-based approaches in assembling atomic cryo-EM protein 

structures. The online server and standalone package of CR-I-TASSER have been made 

publicly available at https://zhanggroup.org/CR-I-TASSER/.
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RESULTS

CR-I-TASSER is a hybrid method for determining atomic-level protein structures from 

cryo-EM density maps. As outlined in Fig. 1, CR-I-TASSER starts with the creation 

of a sequence-order independent Cα conformation by deep convolutional neural network 

(3D-CNN) training from density maps. The Cα conformation is then used to improve the 

threading templates created by LOMETS21, using multiple heuristic iteration algorithms 

designed to match the query and template sequences with the Cα conformation for template 

reselection and Cα trace regeneration. Finally, the iterative threading assembly refinement 

method (I-TASSER20) is extended to assemble atomic structure models under the guidance 

of both cryo-EM density map correlation and deep-learning boosted template restraints. 

Here, although CR-I-TASSER is built on I-TASSER and LOMETS21, the development 

of a deep-learning approach for cryo-EM based Cα atom prediction and the integration 

of sequence-order independent Cα models with advanced structure assembly methods 

represent the major novelty of the pipeline. Although there were prior efforts in applying 

deep-learning techniques to extract structural information from cryo-EM density maps22, 23, 

CR-I-TASSER marks the first pipeline utilizing sequence-order independent Cα positions 

to improve threading alignments and regenerate order-dependent Cα trace models, so that 

the deep-learning derived cryo-EM models can be directly used for guiding atomic-level 

structural assembly simulations. See Supplementary Text 1 for details of CR-I-TASSER 

datasets.

Density-map based Cα significantly improve template quality

A key component of CR-I-TASSER is the deep neural-network based Cα atom prediction 

from cryo-EM density maps, which is used to guide both template regeneration and structure 

folding simulations. Since the predicted Cα atoms from 3D-CNN do not have indexes, we 

define CRscore to estimate the similarity between the predicted Cα atoms and the native 

structure by

CRscore = 1
L ∑i

1

1 + dij
d0

2 (1)

where L is the target length. dij is the distance between ith atom in the 3D-CNN model 

and jth atom in the native structure, where the i-j correspondence is established by a greedy 

method selecting the non-redundant i-j pairs of the shortest distance (see Supplementary 

Text 2). d0 = 1.24 N − 153 − 1.8 is a distance scale taken from TM-score to rule out length 

dependence24. Here, the index information (and index connectivity) of both structures is 

completely ignored when computing CRscore since we establish the i-j correspondence by 

using their coordinate information only (see Supplementary Text 2).

In Supplementary Fig. 1a, we list the average CRscore of 3D-CNN models on the 530 test 

proteins in different resolution ranges. The average CRscore is >0.95 when the resolution 

is high (<5 Å), but slightly decreases when the resolution becomes lower (>10 Å). This 

is consistent with the trend of RMSD shown in Supplementary Fig. 1b, which is around 
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2–3 Å for high-resolution density maps but rises to 3–5 Å for low-resolution maps. As 

a comparison, we employ an established algorithm, MAINMAST, which can generate 

Cα locations from the density map. In addition, we create Cα atom models by a naïve 

greedy procedure which picks Cα atom positions of the highest density values not in an 

excluded volume (see Supplementary Text 3). As shown in Supplementary Fig. 1, the 

average CRscore and RMSD from our 3D-CNN Cα models are considerably better than 

MAINMAST and the naïve greedy procedure when resolution is high to medium (1–8 Å), 

and the scores become much better as the resolution drops, demonstrating the efficiency of 

deep-learning training process for Cα position prediction.

Using the 3D-CNN models, CR-I-TASSER creates two types of templates by either density-

map based template reselection or Cα trace regeneration, followed by score re-ranking. 

In Supplementary Table 2, we compare TM-scores of the templates from LOMETS with 

those after 3D-CNN based refinement, where TM-score is a metric defined to assess 

structural similarity of two structures, which has values ranged in (0,1] with a higher value 

indicating closer similarity24 (see Supplementary Text 4 for a more detailed description 

of TM-score). In general, 3D-CNN makes the largest improvement for Hard targets in 

which Cα traces deduced from 3D-CNN models have a significantly higher TM-score 

(0.690 and 0.527 with high- and low-resolution density maps respectively) than that of the 

original LOMETS (0.283). Combining both Easy and Hard targets, the TM-score of the 

first models by 3D-CNN (0.707) is 45% higher than that by the original LOMETS (0.487), 

which corresponds to a p-value=1.3×10−174 using Student’s t-test, showing that the template 

quality improvement brought by 3D-CNN is statistically highly significant.

CR-I-TASSER on high-resolution simulated density maps

To examine the efficiency of the CR-I-TASSER pipeline, we first apply it to the 301 

Hard targets from our benchmark set that lack homologous templates in the PDB. Overall, 

CR-I-TASSER creates models with average TM-score=0.772 and RMSD=4.4 Å. If we 

count the targets with TM-score >0.5, which corresponds to a model with correct fold25, 

CR-I-TASSER creates correct folds for 251 targets, which is 9.3 times of that obtained by 

I-TASSER (=27, see Table 1), showing a significant impact of cryo-EM density maps on 

I-TASSER based structure modeling.

As a comparison, we list in Table 1 (Rows 9–11) the results from three de novo 
programs, MAINMAST18, Rosetta-dn16, 17 and Phenix26, which create models from the 

same set of density map data (see Supplementary Texts 5-7 for setting). It shows that 

CR-I-TASSER outperforms these programs significantly with the average TM-score 76% 

higher than MAINMAST (0.438), 84% higher than Rosetta-dn (0.419), and 66% higher 

than Phenix (0.466). In Figs. 2b-d, we present a head-to-head TM-score comparison of CR-

I-TASSER with the three control programs, where CR-I-TASSER has a higher TM-score 

in 259/270/252 cases than MAINMAST/Rosetta-dn/Phenix and the latter does so only in 

42/31/49 cases. In Figs. 2e-i, we also list the modeling results by five state-of-the-art 

cryo-EM refinement programs from Flex-EM11, iMODFIT12, MDFF13, EM-Refiner15 and 

Rosetta-Ref10, which start with the I-TASSER models after superposition of the density 

maps using Situs14 (see Supplementary Texts 8-12). Overall, the refinement programs do 
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not work well for the Hard targets, where their TM-scores are even lower than that of the 

initial I-TASSER models, probably due to the poor quality of the initial I-TASSER models 

for the Hard proteins that have an average TM-score of 0.345. This result is consistent 

with a previous observation15, which showed that the correlation between model quality and 

model-to-map correlation coefficient (CC) vanishes when the TM-score of the initial models 

<0.5, and therefore there is no sufficient CC gradient to guide the programs for refining 

structures. We also benchmarked CR-I-TASSER on 229 Easy targets, where it outperforms 

other control groups with a significantly higher TM-score (0.949; p<10−20 in all cases, 

Student’s t-test). Details can be found in Supplementary Text 13.

In addition to the global structure quality listed in Table 1, we also calculate the 

local structure scores, including clashes and Molprobity27, in Supplementary Table 3. 

CR-I-TASSER achieves the second-best clash and Molprobity scores following Rosetta-

Ref, indicating that the CR-I-TASSER models have a reasonable local structure quality. 

Moreover, we demonstrate that improvement of template quality plays a critically important 

role in CR-I-TASSER structure assembly (Supplementary Text 14), and benchmarked CR-

I-TASSER under Gaussian noises added by Xmipp28 (see Supplementary Texts 15 and 

16 for details). Furthermore, in Supplementary Fig. 3, we present an illustrative example 

from polyomavirus VP1 pentamer protein (PDB ID: 1vps-A), which demonstrates that the 

template regeneration process can create high-quality templates from the 3D-CNN Cα traces 

and result in much improved full-length structure models, even though the initial threading 

templates are completely incorrect (see Supplementary Text 17 for details).

CR-I-TASSER on low-resolution simulated density maps

While cryo-EM experiments are now achieving increasingly good resolutions, it is still of 

importance to model structures from medium- and low-resolution density maps, especially 

for molecules with high flexibility or conformational/compositional heterogeneity5. In Table 

1 (Rows 25–34), we examine the performance of CR-I-TASSER on the 301 Hard proteins 

with resolution ranging from 5 to 15 Å. Compared to the models with high-resolution 

density maps (2–5 Å), the overall performance of CR-I-TASSER is reduced in the low-

resolution set with an average TM-score=0.597; this is mainly due to the reduction of the 

3D-CNN Cα model quality with lower map resolution, as shown in Supplementary Fig. 

1. Nevertheless, the TM-score of CR-I-TASSER is significantly higher than the de novo 
programs by MAINMAST (0.204), Rosetta-dn (0.201) and Phenix (0.180), as well as the 

refinement programs by Flex-EM (0.303), iMODFIT (0.316), MDFF (0.319), EM-Refiner 

(0.305) and Rosetta-Ref (0.268). A similar trend can be found on the 229 Easy targets as 

summarized in Table 1 (Rows 36–47); see Supplementary Text 18 for details.

In Supplementary Figs. 4a-b, we list a head-to-head TM-score comparison of CR-I-TASSER 

with the best de novo and refinement programs, where CR-I-TASSER outperforms 

MAINMAIST/MDFF in 296/265 cases, while the latter does so only in 5/36 cases. If 

we count the number of cases with TM-score >0.5, CR-I-TASSER constructs the correct 

fold for 191 out of the 301 targets, which is 63 times of that by MAINMAST (3) and 7.3 

times of that by MDFF (26). As an illustration, we present in Supplementary Figs. 4c-h 

the modeling results on Q6MIM9 from Bdellovibrio bacteriovorus, which highlights that 
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the hybrid effects of both template reselection and regeneration processes, as well as the 

optimized structure assembly simulations, make a major contribution to the modeling of a 

Hard target with very low-resolution density maps (see Supplementary Text 19).

Overall, although the average TM-score of CR-I-TASSER drops for low-resolution maps 

in 530 Hard/Easy targets, the magnitude of the TM-score reduction for CR-I-TASSER (by 

17% from 0.849 to 0.727) is much smaller than that of the other de novo methods, including 

MAINMAST (54%), Rosetta-dn (53%) and Phenix (73%). Even with the low-resolution 

maps, the average TM-score of CR-I-TASSER is 87% higher than that of the second-best 

method (MDFF) for Hard targets, and 14% (299%) higher than other refinement-based (de 
novo) methods for Easy targets. This advantage on low-resolution data modeling is mainly 

attributed to the integration of multi-threading alignments and the deep Cα trace learning 

with the BFGS and MC assembly simulations, which makes CR-I-TASSER a robust pipeline 

for a wide range of map densities.

Structure modeling on experimental density maps

To examine our pipeline in a realistic setting, we further tested CR-I-TASSER on 248 

non-redundant proteins with experimental density maps; see Supplementary Text 1 for 

details of dataset. On average, CR-I-TASSER achieves an average TM-score=0.783 for 

the 248 EMDataResource targets, which is 158% higher than the best de novo program 

Rosetta-dn (0.303) and 17% higher than the best refinement program MDFF (0.671). 

In Fig. 3, we present a head-to-head comparison of CR-I-TASSER with I-TASSER and 

other control programs, where CR-I-TASSER outperforms the control methods (including 

I-TASSER) in most of the cases. Especially, CR-I-TASSER outperforms the sequence-

based I-TASSER method in 228 out of 248 cases (92%). The average TM-score of CR-I-

TASSER (0.783) is 23% higher than that of I-TASSER (0.637), which corresponds to a 

p-value=3.8 × 10−6 in Student’s t-test, showing significant impact of the introduction of 

cryo-EM data in the cutting-edge structure assembly simulations. If we count the number 

of cases with TM-score >0.5/0.9 for low-/high-resolution targets, CR-I-TASSER achieves 

good predictions in 138 cases, which is 23 and 1.7 times of that by the best de novo 
program (Rosetta-dn, 6) and the best refinement program (MDFF, 83), respectively. In the 

bottom of Table 1 (rows 46–67), we split the data samples into high- and low-resolution, 

where a similar trend of the superiority of CR-I-TASSER over other methods is seen. 

The gap between CR-I-TASSER and the comparison methods, as assessed by Δ TM=TM-

scoreCR-I-TASSER-TM-scoreother, is slightly larger for the low-resolution (0.543/0.141 for 

Rosetta-dn/MDFF) than the high-resolution samples (0.457/0.101), despite that all methods 

perform better for high- than low-resolution samples. This is probably due to the fact that 

TM-scores of the control methods for low-resolution samples are lower and therefore have 

more room for improvement. Furthermore, we specifically checked whether any particular 

secondary structure components would affect the performance of CR-I-TASSER. As shown 

in Supplementary Fig. 5, although CR-I-TASSER performs better in high-resolution than in 

low-resolution maps, there is no obvious correlation between the average TM-score and the 

ratio of secondary components for both high- and low-resolution cases. More benchmark 

results (e.g., template homology cutoff, different network trainings, full maps etc.) can be 

found in Supplementary Text 20.
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As a further case study focusing on difficult targets, we examine in detail a hard example 

from the anthrax toxin antigen pore protein (PDB ID: 3j9c-A) in Fig. 4. This target 

consists of 423 residues and the cryo-EM density map has a resolution of 2.6 Å. In this 

case, LOMETS failed to locate good templates (the best template has a TM-score=0.257), 

which resulted in an incorrect fold of the final I-TASSER model with a TM-score=0.132. 

Therefore, the superposition from Situs is nearly random. Consequently, all refinement-

based methods failed to model the target and have the final model with TM-score=0.144, 

0.132, 0.136, 0.143 and 0.153 for Flex-EM, iMODFIT, MDFF, EM-Refiner and Rosetta-Ref, 

respectively. As illustrated in Figs. 4a and 4d, the Rosetta-Ref model does not match the 

native structure both globally and locally. On the other hand, Phenix built a model from 

density map alone which fits the global conformation with the density map. However, there 

are multiple misconnections and disordered local structures in the model, resulting in an 

incorrect topology and sequence mapping with a TM-score=0.274 (Figs. 4b and 4e). Similar 

results were obtained by MAINMAST and Rosetta-dn with TM-score=0.165 and 0.245, 

respectively.

Given the high resolution of the density map, 3D-CNN generated a well-predicted Cα
conformation with CRscore=0.947. Benefitting from this high-quality prediction, the 

template regeneration algorithm created a reasonable Cα trace model with TM-score=0.534. 

Following the CR-I-TASSER reassembly, the final model achieves a TM-score=0.725) for 

the head globular domain (Fig. 4c) and TM-score=0.620 for the overall chain (Fig. 4f), 

which are both significantly higher than that by all template and cryo-EM based modeling 

programs.

It is notable that the TM-score of the sequence-ordered Cα trace model in CR-I-TASSER 

is considerably lower than the CRscore calculated from the order-independent Cα
conformation in the anthrax toxin antigen pore protein case. This is mainly due to the 

extreme complexity of target structure consisting of a 3-domain globular head flanked with 

a long beta-hairpin stem that form an antigen pore with other homo-chains; such structural 

complexity not only introduces noise to Cα position predictions due to the high flexibility 

of the long stem, but also results in a huge conformational space of fragment connection 

patterns, which makes the true backbone difficult to trace. As shown in Supplementary 

Fig. 8, there are many mis-predicted Cα atoms around the long stem. Additionally, the 

connection conformational space is huge because the two long beta strands are close to each 

other, making it hard for the fragment-tracing program to interpret the correct connection 

patterns. Given the specific local structures, however, this issue could be amended by 

using the density-map-based secondary structure prediction models because the backbone 

conformational space could be significantly reduced by excluding the zigzag connection 

patterns in the predicted beta zone. A separate computational pipeline implementing 

real-space secondary structure prediction powered with deep-learning is currently under 

development, which may in the future highly benefit modeling for targets with extremely 

low-resolution maps as well.
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End-to-end studies on protein complexes EMD-10564/EMD-30703

As end-to-end case studies from raw density map to final structure, we first present 

an illustrative example in Figs. 5a-f and Supplementary Figs. 9a-c for a large-size homo-

tetramer complex Beta-galactosidase (PDB ID: 6tsk), with each chain consisting of 1040 

residues. The corresponding density map EMD-10564 has a resolution of 2.3 Å and is 

segmented by Phenix segment_and_split_map that has been integrated in the CR-I-TASSER 

pipeline (see Supplementary Text 22), resulting in a reasonable segmentation model as 

shown in Supplementary Fig. 9a. Here, we construct 4 models from the 4 segmented 

density maps separately and look specifically into chain A. As shown in Supplementary Fig. 

9b, 3D-CNN creates a high-quality Cα model with CRscore=0.946, which is subsequently 

used for template reranking and selection from the LOMETS alignment pool (outlined in 

Supplementary Fig. 12) and for Cα trace generation with the Cα trace connection algorithm 

(outlined in Supplementary Fig. 14). In this case, the best template with a TM-score=0.666 

was identified by both LOMETS and the predicted Cα trace conformation, as shown in 

Supplementary Fig. 9c. However, the rest of the threading templates are not as good as 

the best one, resulting in an average TM-score=0.446 for the top-40 LOMETS templates. 

By combining the template reranking and Cα trace generation processes, CR-I-TASSER 

improved the TM-score from 0.446 to 0.513 for the top-40 templates.

These templates are submitted to the structural assembly simulations which are guided by 

the restraint-enhanced I-TASSER force field and the density-map correlations. Eventually, 

CR-I-TASSER constructed the final model with TM-score=0.705 (Fig. 5c), which is 41% 

higher than that of the original I-TASSER prediction (0.500). Due to the size and complexity 

of the model, Situs does not correctly superpose the I-TASSER model into the density 

map, resulting in the general low quality from the refinement-based programs with TM-

score=0.476, 0.474, 0.343, 0.359 and 0.353 for Flex-EM, iMODFIT, MDFF, EM-Refiner 

and Rosetta-Ref, respectively. Meanwhile, the de novo programs that we tested are also 

unsuccessful in creating correct folds because of the complexity of tracing/building such 

a large protein, resulting in final TM-scores of 0.194, 0.105 and 0.251, for MAINMAST, 

Rosetta-dn and Phenix, respectively.

Although CR-I-TASSER successfully built a model with the highest TM-score among the 

state-of-the-art programs, there is still room for improvement. In fact, the final model in 

Fig. 5c shows that the structure of the three domains in the left side of the picture is very 

close to the native, but that for the remaining two domains in the right side is poor. This 

is partly because the correct LOMETS alignments are mostly located in the left domains. 

However, the connection patterns of the Cα trace model shown in Fig. 5a overlaps well 

with the target structure, indicating the connections are mostly correct. A closer view shows 

that there are several small flaws of misconnections in beta sheets of the right part, where 

these misconnections can terminate the growth of the long traces as the target atoms may 

be out of the probing radius of the last Cα atom, as shown in the zoom-in figure of Fig. 

5b. The probing radius request is employed as the default in CR-I-TASSER to ensure the 

reasonability of the Cα tracing models for general sequences. Nevertheless, if we use the 

option of “keep-tracing mode” provided in the CR-I-TASSER pipeline, which allows for 

the end point of current trace to break the connection patterns (see Supplementary Text 
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23), the created Cα trace models are greatly improved with the average TM-score increased 

from 0.446 to 0.708 for this case, where the TM-score of the first template is improved 

from 0.666 to 0.749. These high-quality Cα trace templates lead to a much-improved 

full-length model with TM-score=0.857 (Fig. 5e). Despite the improved performance for 

this case, the “keep-tracing mode” is not used as default setting in CR-I-TASSER as the 

drop off of the probing radius could increase the connection uncertainty and reduce the 

average performance for regular proteins. Additionally, since we have separately modeled 

4 segmented chains, we could choose a possibly better model by examining the estimated 

TM-scores (see Eq. 8 in Methods), which are 0.777, 0.912, 0.834 and 0.856 for chain A, B, 

C and D, respectively. By selecting the model for chain B, we obtained the final full-length 

model with a TM-score of 0.908 as shown in Fig. 5f.

Overall, this example demonstrates the practicality of CR-I-TASSER for generating high-

quality models from unsegmented raw density map data, but also exposes the potential 

weaknesses of the default CR-I-TASSER pipeline which is sometime too conservative when 

generating Cα traces for targets involving long loops/tails and disorder regions, where the 

“keep-tracing mode” may help provide an alternative solution for better Cα tracing and final 

model constructions for these cases when the first try fails.

In Figs. 5g-i, we present another example of models built from raw low-resolution density 

map (13.5 Å), which is for the complex of the SARS-CoV-2 spike protein with a 2H2 Fab 

(PDB ID: 7dk5). In this complex, three large homo-chains (each with 1261 residues) are 

bound with the two heavy/light chains of a 2H2 Fab with 214/218 residues. Due to the low 

resolution, it is not feasible to automatically segment with only density map information. 

Thus, we attempted to build models on the whole map. Given that CR-I-TASSER performs 

better for the cases with higher protein-map size ratio as shown in Supplementary Fig. 

7b, we first tried to build a long spike protein chain in the map. In this case, LOMETS 

recognize the top-1 template with TM-score=0.562, where the CR-I-TASSER re-ranked 

the alignments and chose a better first-rank template with TM-score=0.671. As shown in 

Fig. 5g and Supplementary Fig. 9d, CR-I-TASSER superposed the first-rank template into 

the low-resolution density map correctly and built a final model with TM-score=0.798 

to the deposited structure in the chain C position, where the model built by I-TASSER 

has only a TM-score=0.682. After that, the density map was masked by deleting the part 

which overlaps with the model just built. The remaining density map was then used by 

CR-I-TASSER to build the second and third spike chains subsequently by repeating this 

process. As shown in Fig. 5h and Supplementary Figs. 9e, CR-I-TASSER eventually built 

three spike protein models on the low-resolution map with TM-scores of 0.668, 0.800 and 

0.798 for the chain A (with up receptor-binding domain, RBD) and chain B/C with down 

RBDs, respectively (compared to 0.599, 0.677 and 0.682 by I-TASSER). Although the 

resolution is low, CR-I-TASSER still assembles spikes with up/down RBD conformations in 

the correct position.

Following the long-chain structure modeling for the spike proteins, we further attempted to 

build models of the heavy/light chains of 2H2 Fab. Since these two chains are of similar 

length but not identical, it is hard to tell which one should be built first. By randomly 

selecting the heavy chain to start, CR-I-TASSER created models with TM-scores of 0.702 
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and 0.518 for the heavy and light chains respectively, which are marginally better than 

I-TASSER (TM-score=0.524 and 0.571), where the positions of the two chains on the map 

are apparently incorrect (see Supplementary Figs. 9f-g). The failure for improvement is 

partly because the native structures of these two chains share similar folds (TM-score=0.730 

by TM-align32), and hence they have very similar density maps, which make it harder to 

locate the correct position in such a low-resolution map. Instead of one-by-one modeling, 

a better strategy may be to introduce complex modeling. Here, we slightly extended the 

current pipeline to simultaneously superpose the templates from two chains and choose the 

best combination poses (see details in Supplementary Text 24). With this, good templates 

for both chains were correctly ranked and superposed in the density map as shown in 

Supplementary Fig. 9h. These templates were then submitted to CR-I-TASSER simulations 

separately, which resulted in the final models with higher TM-scores (0.827/0.670 for heavy/

light chains, see Fig. 5i and Supplementary Fig. 9i). Despite the simplicity of the strategy, 

this result demonstrates the feasibility to extend CR-I-TASSER for complex-based structural 

modeling on full density maps.

CONCLUSION

We present a hybrid pipeline, CR-I-TASSER, for automated protein structure modeling from 

cryo-EM density map. The core component of the pipeline is the density-map based Cα
trace predictions from deep convolutional neural networks, which are used for threading 

template selection and initial model generations through fragment tracing. The advanced 

I-TASSER folding simulation platform is then extended to reassemble the template and Cα
trace models, under the guidance of an optimized force field combining 3D-CNN density-

map and template restraints with the advanced knowledge-based energy potentials.

CR-I-TASSER was benchmarked on a large-scale data set containing 778 proteins with 

both computer-simulated and experimental density maps, compared to three state-of-the-

art de novo (Rosetta-dn16, 17, MAINMAST18 and Phenix26) and five refinement-based 

(Flex-EM11, iMODFIT12, MDFF13, EM-Refiner15 and Rosetta-Ref10) methods. Overall, 

CR-I-TASSER generates models with an average TM-score=0.839 when high-resolution 

(2–5 Å) density maps are used, which is 88% higher than the best de novo modeling 

program (Phenix) and 41% higher than the best refinement program (MDFF), with a p-value 

<10−66 in Student’s t-test for both comparisons. When the medium-to-low resolution (5–15 

Å) maps are used, although the average TM-score of CR-I-TASSER is slightly reduced 

(=0.726), it still generates correct fold with a TM-score >0.5 for 482 cases, which is 66% 

higher than the best of other methods (289 by MDFF program). Detailed data analyses 

showed that the density-map based deep-learning Cα trace models from 3D-CNN play a 

critical role in the structure quality improvement. Since deep-learning can derive specific 

and precise information on Cα atoms from density map, the 3D-CNN Cα trace models can 

therefore be used to more efficiently constrain both initial template regeneration and CR-

I-TASSER model assembly simulations, compared to traditional de novo and refinement-

based approaches that are guided solely by model-to-map correlations. Thus, CR-I-TASSER 

provides currently best-in-class performance for automated structure prediction from cryo-

EM density maps.
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Despite the encouraging results, it is important to note that the current CR-I-TASSER 

pipeline relies on the success of 3D-CNN on Cα trace prediction, and we observe that 

the accuracy can decrease on low-resolution data. There are also issues in converting Cα
positions into ordered tracing models when the target structure involves long loops/tails 

or disordered regions. Given the exciting progress witnessed in hybrid deep-learning and 

evolution-based protein structure prediction29–31, the combination of 3D-CNN with deep 

multiple sequence alignments collected from metagenome databases should help further 

improve the 3D-CNN Cα trace and CR-I-TASSER model accuracy. Additionally, a new 

module of CR-I-TASSER aimed to further enhance its performance on low-resolution data 

is in development, in which we employ density-map based real-space secondary structure 

modeling powered by deep neural-network learning to assist cryo-EM model construction. 

The preliminary result is encouraging and shows that since secondary structure is “coarser” 

than Cα positions, the models are easier to learn and can provide more relevant information 

to improve the modeling accuracy for the targets with poorer resolution maps. Meanwhile, 

CR-I-TASSER mainly focuses on monomer proteins, for which the density maps need to 

be segmented manually in the first place. We expect that it will be possible to combine 

CR-I-TASSER in a modular fashion with improved upstream or downstream tools for other 

modeling tasks (e.g., segmentation or refinement) to further enhance future performance. 

Given that a major advantage of cryo-EM is on large-size protein complex structure 

determination, however, an important next step is to extend the deep-learning based structure 

assembly simulations for protein-protein/protein-nucleic acid complex structure modeling 

and determination. While one of the current state-of-the-art segmentation programs has been 

integrated into CR-I-TASSER, new algorithms built on I-TASSER homology modeling and 

heuristic structure-map alignment iterations32 can be a meaningful solution; investigations 

along these lines are under progress.

ONLINE METHODS

CR-I-TASSER is a hierarchical method integrating I-TASSER with cryo-EM density maps 

for high-accuracy protein structure determination. As outlined in Fig. 1, the pipeline consists 

of three consecutive steps: (1) initial data processing; (2) deep learning-based template 

refinement and regeneration; (3) density map guided structural reassembly simulations.

Initial data processing

Starting from query sequence and cryo-EM density map, CR-I-TASSER extracts three parts 

of information.

Predicting Cα locations using deep neural-network learning.—Deep 

convolutional neural network (3D-CNN) with a residual network architecture19 (see 

Supplementary Text 25 for details) is employed to predict Cα atom locations in a grid 

system, where the input of the 3D-CNN is the cryo-EM density map, and the output is the 

grid values ranging from 0 to 1 representing the possibility of Cα atoms at the grids. The 

overall 3D-CNN architecture is shown in Supplementary Fig. 10a, where the density map 

in 3D grid space is taken as input signal to send through a 3D convolutional layer followed 

by instance normalization and ReLU and extended to 32 channels. Next, 10 basic blocks 
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with residual network architecture are used to enhance the network capability of learning 

essential information of density maps. Eventually, the signal goes through the last layer 

which contains a 3D convolutional layer with 2 output channels and a SoftMax layer. The 

final outputs of 3D-CNN contain two complementary probability maps with the same size of 

the input density map, in which one map represents the probability of class 1 (“having Cα
atom”) while the other one stands for class 0 (“not having Cα atom”). Since only a few grids 

are with Cα atoms around them, these two classes are highly imbalanced. Specifically, if we 

look at the central part (instead of marginal part) of density maps where proteins are located, 

the ratio of the numbers of class 0/1 in experimental training set is 440,462,749/9,537,251, 

which is approximately 50/1 (see Supplementary Table 1). Therefore, to make the training 

process more balanced, we set the weights as 1.0 and 50.0 for class 0 and 1 respectively 

when computing the loss function, for which the Cross Entropy Loss is employed. Although 

the weights are important in imbalance training and can affect the training process, the 

slightly different weights (e.g. 1/25 or 1/75 for class 0/1) will have negligible effect on the 

final training result and hence we only used the weights that are most naturally derived from 

statistics result. During the training, Adam optimizer is employed to enhance the learning 

efficiency with a learning rate of 0.0005. To reduce overfitting, random dropout is also used 

with a drop_rate=0.2, and the batch sizes are set to 1.

The network was trained on two datasets to obtain two network 

models separately: To obtain the first training dataset, we download the 

file “cullpdb_pc20_res1.6_R0.25_d190404_chains3470.gz” from http://dunbrack.fccc.edu/

Guoli/pisces_download.php, which contains 3,470 non-redundant proteins and was then 

randomly split into a training (3,088 proteins) and a validation (382 proteins) set with a ratio 

~9:1 to prevent overfitting. The density map for the first dataset is simulated by

ρ y = ∑i
Ai
2πσ2e−

y − xi
2

2σ2 (2)

where σ = R/ 2π with R being the resolution parameter randomly taken from [1, 15Å], y
is the coordinate vector of the density map, xi and Ai indicate the coordinate vector and 

atomic number of ith atom of the protein, respectively. The second training dataset contains 

3,600 targets with experimental density maps whose resolutions range from 2.1 Å to 10.0 

Å. These experimental maps were generated from 36 large complexes with well-superposed 

experimental structures by randomly segmenting them into small maps with a size of 

50 × 50 × 50 Å3. To make the training process focus more on Cα atoms, we set a filter of 

these small maps by containing at least 250 Cα atoms. This can avoid the issue of containing 

too few Cα atoms in a map, which could happen in the marginal parts of experimental maps. 

Through the 3D-CNN networks, the first model was trained on the simulated training set 

with more than 720 epochs. We calculated the average CRscore loss from the validation set 

every 30 epochs and stopped the training if: (1) training epochs > 500 and max average 

CRscore > 0.8 and the latest average CRscore is 0.02 less than the max average CRscore, 

or (2) training epochs > 2000. After stopping training, we selected the model with the max 

CRscore (708 epochs, see Supplementary Fig. 11a). The second model started from the first 

model and was trained on the experimental training set for 217 more epochs, where the 
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average loss against training epochs is shown in Supplementary Fig. 11b. The loss in the 

first model starts to saturate around 600–700 epochs, while that in the second model does so 

after 800 epochs, probably because of the relatively higher complexity associated with the 

experimental maps.

Following the 3D-CNN model, a quick procedure is designed to convert the Cα possibility 

map into Cα atom coordinates (Supplementary Fig. 10b). The procedure first locates the grid 

with the highest possibility and labels it as the first Cα atom. It then iteratively searches for 

the next Cα atom with the highest possibility at the grids with distance no less than 3.3Å 

from all the labeled Cα atoms. The procedure repeats to ensure at least L (=query length) 

Cα atoms are located. It will continue until 1.2*L Cα atoms are located if the next highest 

possibility is >0.9.

Initial template identification by LOMETS.—We employed LOMETS21, a meta-

threading method containing 11 leading fold-recognition programs, to identify homologous 

and analogous templates from the PDB. For each query sequence, top 300 templates are 

collected based on the normalized Z-score (Zn), which measures the significance of query-

template alignments by each program. Accordingly, a target will be defined as ‘Easy’ if 

there is on average one or more good templates with Zn>1 for each program, while others 

are labeled ‘Hard’ due to the lack of good templates.

Inter-residue contact map prediction.—ResPRE33 is used to predict the residue-

residue contact maps. From a query sequence, ResPRE first uses DeepMSA34 to collect 

multiple sequence alignments (MSAs) from the whole-genome and metagenome sequence 

databases, where the inter-residue contact maps are then predicted from the inverse 

covariance matrix derived from the MSAs, based on deep residual convolutional network 

training19.

Deep learning-based template selection and regeneration

We design two procedures utilizing the deep-learning based Cα conformations to 

improve initial template quality of CR-I-TASSER through template reselection and model 

regeneration, respectively.

Template reselection by Cα and density map matching.—LOMETS creates 

multiple threading templates, but the best templates do not always rank at the top by the 

Z-score. We re-rank the top 300 template structures based on their match with the Cα
conformations predicted by the 3D-CNN from cryo-EM density map, using a procedure 

outlined in Supplementary Fig. 12. Because the 3D-CNN Cα conformation has no sequence 

index assigned, the matching procedure starts with the calculation of the “fingerprint” for 

each Cα atom in a given LOMETS template and Cα conformation, where a fingerprint vector 

of ith Cα atom F⃑ temp or Cα i  is defined as a set of 20 ascending-ranking intra-distances 

between ith Cα atom and 20 nearest Cα atoms in the template (or Cα conformation). A 

pairing score of ith atom at template with jth atom at Cα conformation is then calculated by
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Fscoreij = F⃑ temp i − F⃑Cα j 2
(3)

The lower Fscoreij is, the more similar environment two atoms (i, j) are in, indicating a 

higher probability for (i, j) to be correctly paired. Therefore, we initially select the Cα atom 

pairs with the minimum Fscoreij and pair them in the ascending order, where each atom 

can only be paired once. Generally, if ith and iith Cα atoms from the template are correctly 

paired to jth and jjth Cα atoms from the Cα conformation, the intra-distance between ith and 

iith Cα atoms, d i, ii , should be close to that between jth and jjth Cα atoms, d j, jj . Based on 

this assumption, we further refine the initial pairing using a weighted matching score S i, j
defined by

S i, j = ∑ii ≠ i
jj ≠ j

W i, ii if d i, ii − d j, jj ≤ 1
W i, ii

d i, ii − d j, jj 2 if d i, ii − d j, jj > 1 (4)

Here, W i, ii = w i ∙ w ii , where w i  is the weight for ith Cα atom from the template which 

is initially set as 1 and updated iteratively by an algorithm outlined in Supplementary Fig. 

13. After the convergence, only the pairs with a matching score S i, j > S0 are selected, 

where the threshold S0 is defined by the 2-mean clustering of the matching scores. Based on 

the selected Cα pairing, the Kabsch RMSD superposition of template and Cα conformation 

is performed35, where the inter-chain distance dij <10 Å will be used as a new condition 

to select Cα pairing in addition to Eqs. (3–4). This new pairing will be used as the input 

of pairing refinement and Kabsch superposition to generate a newer pairing. The procedure 

will repeat until the final pairing and structure superposition converge (Supplementary Fig. 

12). Overall, the idea of the superposition process described above is to identify the correct 

pairs of atoms between Cα conformation (index-free) and template alignments (indexed) by 

comparing their intra environments.

Finally, the CRscore is calculated for each template with the 3D-CNN Cα conformation 

based on the selected Cα pairing, where the 300 LOMETS templates selected by Z-score are 

re-ranked based on the calculated CRscores. A template will be defined as a ‘good’ template 

if the CRscore >0.5. Up to 30 good templates (Nrank ≤ 30) are selected from this template 

reselection procedure.

Initial Cα trace model generation from 3D-CNN Cα conformations.—Since CR-

I-TASSER uses 40 replicas in the replica-exchange Monte Carlo (REMC) simulations and 

each replica starts with different templates, we generate Ngen = 40 − Nrank new templates 

directly from the 3D-CNN Cα conformations; this contains two steps of Cα-trace connection 

and sequence-trace mapping (Supplementary Fig. 14).

For Cα-trace connection, we first connect all neighboring Cα atoms which have a distance 

below a bond-length db. All connections to a Cα atom that has the number of connections 
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(nconn ≤ 2) are considered as ‘true’ connections (e.g., connections to Atoms-1, 3, 5, 7 and 

8 in Supplementary Fig. 14a), while all other connections that contradict with the true 

connections and make nconn > 2 for other atoms are removed (e.g., connection 2–4 in 

Supplementary Fig. 14a). After this scan, if a Cα still contains >2 connections, this atom 

will be removed from the trace (e.g., Atom 6 in Supplementary Fig. 14a). As shown in 

Supplementary Fig. 14b, the remaining Cα trace pattern will depend on the selection of db. 

In CR-I-TASSER, we implement the procedure under eighteen different cutoffs of db = 3.8, 

3.9, …, 5.5 Å separately, and keep only the connections with a frequency of occurrence 

>40% in the final Cα connection.

This connection procedure creates multiple Cα fragments, where up to 1,000,000 Cα traces 

are generated by randomly connecting the fragments, until no atom is available for the next 

connection. The latter could happen at the true end of the protein, or if there is no available 

atom in the probing radius (5.5 Å), or if there are other atoms but are already fully connected 

in an unused fragment. Although the constraints involved in the connection process can help 

improve the accuracy of the template generation on average, it cannot always result in Cα
trace model with full length because the growth could stop anywhere under the constraints. 

To address this issue, CR-I-TASSER provides an alternative “keep-tracing mode” to improve 

fragment tracing success rate for some special cases by partially releasing some of the 

restraints or additional iterations (see Supplementary Text 23 for details).

Assuming that each fragment is continuous, we map the query sequence to each Cα trace 

by gapless threading and calculate the Cα − Cα contact map using a distance cutoff d < 8
Å. Top 300 Cα traces are selected based on the Pearson correlation coefficient (PCC) of 

the Cα − Cα contact map with the predicted contact map from ResPRE, as well as the PCC 

of the template structure with the target density map (see Supplementary Text 26). Finally, 

Ngen templates are selected from the 300 traces based on the PCC of the template structure 

with the target density map. This PCC is also employed to re-rank all top-40 templates 

including those from template reselection and regeneration.

It is noted that two 3D-CNN models have been trained on the simulated and experimental 

density-map datasets separately, which generates two sets of Cα conformations for each 

target. If the two conformations are close, i.e., with the CRscore between them >0.85, 

which usually indicates good quality of the conformations, we will take the average for 

each Cα atom pair to generate the final Cα conformation and use it for the template 

reselection and regeneration as described above. In case the Cα conformations are different 

(CRscore<0.85), which while rare, happens in some cases with low-resolution experimental 

cases and usually indicates that the predicted Cα conformation is not reliable, we skip the 

Cα conformation-based template reselection and regeneration. Instead, we match each of the 

LOMETS templates directly with the density maps using BFGS algorithm (Supplementary 

Text 27) followed by a short Metropolis Monte Carlo simulation under the guidance 

of template-density correlation as defined in Supplementary Text 26, with movements 

including 2,000 rigid-body translations/rotations. The top 40 templates are then selected 

based on the correlation coefficients from high to low.
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Density-map guided structural assembly simulations

CR-I-TASSER performs REMC simulations to assemble full-length structure models, under 

a composite energy force field of

ECR‐I‐TASSER = EI‐TASSER + W tempEtemp + W EMEEM + W EM
CNNEEM

CNN (5)

where EI‐TASSER is the inherent knowledge-based potential extended from I-TASSER20 

and described in Supplementary Eqs. S2-33 in Supplementary Text 28, Etemp contains four 

aspects of distance and contact restraints collected from the top templates determined by 

LOEMTS and 3D-CNN models (Supplementary Eqs. S34-43 in Supplementary Text 29). 

EEM counts for the global correlation between structure conformation and experimental 

density map ρ0 by

EEM = − ∑y ρ0 y ∙ ρ y (6)

where ρ y  is calculated by Eq. (2). The EEM
CNN counts for the correlation between structure 

conformation and the 3D-CNN predicted Cα conformation:

EEM
CNN = − ∑y ρ0

CNN y ∙ ρ y (7)

where ρ0
CNN is the density maps calculated by Eq. (2) for the 3D-CNN Cα conformation. 

This term is performed only when CRscore between the two 3D-CNN conformations is 

>0.85, which is designed to enhance the convergence of simulations to the consensus Cα
conformations. It is noted that the negative cross correlation in Eqs. (6–7) instead of PCC 

defined in Supplementary Text 26 is implemented because the former is computed faster 

than the latter. Additionally, benefit from the linear combination form of Eqs. (6–7), energy 

terms need to be computed only for the local segment involved in each movement, which 

is significantly faster than the calculations on the entire chain after each movement. The 

resolution for ρ y  and ρ0 y  calculations is automatically detected and set by a short-trained 

3D-CNN predictor for resolution prediction. Our benchmark results showed that the final 

model quality is not sensitive to the value of setting resolution. The weight parameters in Eq. 

(5), as well as those in the inherent knowledge-based I-TASSER force field, are determined 

in a separate training protein dataset, which is non-homologous to the test proteins of this 

work, by maximizing the average TM-score of the final models.

Final model selection and model quality estimation

The structure conformations generated by CR-I-TASSER (referred as ‘decoys’) in eight 

low-temperature replicas are clustered by SPICKER to select the states corresponding to the 

lowest free energy states36. Specifically, an all-to-all RMSD matrix is calculated among all 

decoys where a pair of decoys are considered as neighbors if their RMSD is within a cutoff. 

The decoy with the largest number of neighbors is selected as the center of the first cluster 

and the representative centroid model for the cluster is obtained by averaging all decoys 

included. The second cluster is obtained in a similar way on the remaining decoys after 

excluding all decoys from the first cluster, and the procedure repeats till five clusters are 
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obtained. Thus, a decoy cluster captures the inherent statistics of the Monte Carlo process, 

i.e., the larger the size of the decoy cluster is, the higher the convergence is, and accordingly 

the less uncertainty the model sampling is. As the cluster centroid models from SPICKER 

often contain steric clashes, the centroids of the five biggest clusters are reassembled by 

a second round of REMC simulation to improve the hydrogen-bonding network and local 

structural geometry. The lowest energy conformations are selected from the second-round 

simulations and further refined at atomic level by the fragment-guided molecular dynamics 

(FG-MD)37 to create final models.

To evaluate the quality of predicted structures, we calculate the estimated TM-score (eTM-

score) of the mth CR-I-TASSER model relative to the target structure by

eTM‐scorem = 0.18 + 0.82 ∙ max Cm, max
n ≠ m

TM‐scoremn − 0.5 1 − Cn (8)

where TM-scoremn is the TM-score between mth and nth predicted models. The confidence 

score Cm is defined as

Cm = CRscorem
1 + 0.05 Mtot ∙ RMSD m /Mm

(9)

where Mtot is the total number of decoy conformations submitted to SPICKER, Mm is the 

number of decoys at mth cluster, RMSD m is the average RMSD of the decoys to the 

cluster centroid, and the CRscorem is the matching score of the model with the 3D-CNN 

predicted Cα conformation by Eq. (1).

Supplementary Fig. 16 displays the data of eTM-score versus the actual TM-scores on 

the first predicted models of all 530 test proteins with high-/low-resolution density maps, 

where most of the data points are located near the diagonal line, showing a strong linear 

correlation. The PCC and cosine similarity between eTM-score and TM-score are 0.858 and 

0.989, respectively. If we use eTM-score=0.5 as cutoff to split “Positive”/“Negative” cases, 

the numbers of cases for True Positive (TP), False Negative (FN), True Negative (TN) and 

False Positive (FP) are 856, 44, 119 and 41, respectively, which correspond the TP, FN, 

TN and FP rates of 95.1%, 4.9%, 74.4% and 25.6%, and the overall Matthews correlation 

coefficient (MCC) = 0.710. The strong correlation indicates that eTM-score can be used to 

reliably estimate the quality of predicted models.

In addition to the eTM-score for overall quality estimation, we introduce two metrics, local 

PCC and local confidence, to estimate the local agreement to the density for the final 

models. First, the local PCC for ith-residue modeling quality from the mth predicted model 

is defined as

LPCC m, i = ∑y ρm y, i − E ρm i ρm′ y, i − E ρm′ i
∑y ρm y, i − E ρm i 2 ∙ ∑y ρm′ y, i − E ρm′ i 2 1/2 (10)
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where ρm y, i  is the density on grid y calculated by Eq. (2) but only from the ith residue of 

the mth predicted model. Eq. (10) is very similar to the normal PCC (see Supplementary 

Text 26) except that we use a modified density ρm′  instead of the experimental density ρ0:

ρm′ y, i = ρ0 y ∙ ρm y, i
∑jρm y, j (11)

The reason we use the modified density to compute local PCC for ith residue is because 

the experimental density ρ0 y  on grid y contains contributions from all residues, where Eq. 

(11) is designed to decouple the experimental density for ith residue specifically. Toy model 

results shown in Supplementary Fig. 17 demonstrate that the ρm′ y, i  is more reasonable than 

ρ0 y  when computing the local PCC.

Second, the local confidence for ith-residue from the mth predicted model is defined by 

integrating eTM-score and local PCC:

LC m, i = T m, i ∙ ∑
j

eTM‐scorem
T m, j (12)

where T m, i  is defined as

T m, i = LPCC m, i + 1
Nmodel

∑
n = 1

Nmodel eTM‐scoren

1 + di m, n d0
2 (13)

Here, di m, n  is the distance of ith residue between mth and nth models, and d0 is a scaling 

parameter from TM-score (see Supplementary Text 4). Nmodel is the number of final models 

predicted by CR-I-TASSER which is no more than five.

As an illustration, Supplementary Fig. 18 displays the local PCC and local confidence scores 

on two end-to-end study proteins (6tsk-B and 7dk5), where Supplementary Table 5 lists 

the average correlation coefficients between the local quality scores and the local error of 

predicted models from the experimental structure for all 248 test proteins with experimental 

density maps. The data show that both scores can be used for local model quality 

estimation. Although the local confidence shows a slightly higher correlation with the local 

modeling errors, CR-I-TASSER output both scores for alternative local quality estimations. 

In addition, CR-I-TASSER produces up to five models, which allow user to estimate the 

global/local quality using other methods such as ensemble structure comparison.

Data Availability

All training and testing data are available at https://zhanggroup.org/CR-I-TASSER/ and 

https://zenodo.org/record/5774563#.YbWYaNPJeXA (DOI: 10.5281/zenodo.5774563).
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Code Availability

The standalone package of the CR-I-TASSER programs, including library and 

manual documents, are available to download at https://zhanggroup.org/CR-I-TASSER/

download.html and https://zenodo.org/record/5774535#.YbWYudPJeXA (DOI: 10.5281/

zenodo.5774535).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
CR-I-TASSER pipeline. Starting with a query sequence and cryo-EM density map, CR-I-

TASSER constructs atomic models through 3 consecutive steps: 1. Initial data processing 

to generate 3D-CNN Cα conformation, LOMETS threading and ResPRE contact-map 

prediction; 2. Density-map based template reselection and trace generation; 3. Density-map 

guided fragment reassembly simulations and model refinements.
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Figure 2. 
TM-score comparisons of CR-I-TASSER with I-TASSER and eight other control methods 

on 301 Hard targets with 2–5 Å resolution simulated density maps. CR-I-TASSER versus 

(a) I-TASSER; (b) MAINMAST; (c) Rosetta-dn; (d) Phenix; (e) Flex-EM; (f) iMODFIT; 

(g) MDFF; (h) EM-Refiner; (i) Rosetta-Ref. The symbols with different colors and shapes 

denote different ranges of resolution: red square: 2–3 Å; yellow circle: 3–4 Å; blue triangle: 

4–5 Å.
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Figure 3. 
Modeling results on 248 targets with experimental density maps by different methods. CR-I-

TASSER versus (a) I-TASSER; (b) MAINMAST; (c) Rosetta-dn; (d) Phenix; (e) Flex-EM; 

(f) iMODFIT; (g) MDFF; (h) EM-Refiner; (i) Rosetta-Ref. The symbols with different 

colors denote different ranges of resolution: purple: 2–5 Å; yellow: 5–10 Å.
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Figure 4. 
Structure modeling results on a protective antigen pore protein (PDB ID: 3j9c-A) with 

high-resolution (2.9 Å) density map. (a-c) Predicted models by Rosetta-Ref (green), Phenix 

(orange) and CR-I-TASSER (red) are shown along with the native structure on the head 

globular domain (Residues 1–98; 185–423, blue). (d-f) The corresponding full-length 

models including the stem region. The predicted Cα conformations and connection pattern 

can be found in Supplementary Fig. 6.
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Figure 5. 
Illustrative examples of end-to-end structural modeling by CR-I-TASSER from unsegment 

maps. Through all pictures, native structures are shown in blue overlaid on density map 

in gray. (a-f) Beta-galactosidase in complex with L-ribose (PDB ID: 6tsk) from density 

map (EMD-10564, resolution 2.3 Å). (a) Best Cα trace model (orange) superposed with the 

native. (b) Zoom-in pictures of breaking connections can be remedied by the “keep-tracing 

mode” (see Supplementary Fig. 15 for details). (c) Full-length model by CR-I-TASSER with 

default setting (red). (d) Cα trace model generated with “keep-tracing mode” (green). (e) 

Full-length model by CR-I-TASSER with “keep-tracing mode” (red); (f) Full-length model 
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with the highest eTM-score among 4 chains (magenta). (g-i) the SARS-CoV-2 spike protein 

with receptor-binding domains (RBD) bound with a 2H2 Fab (PDB ID: 7dk5) from density 

map (EMD-30703, resolution 13.5 Å). (g) First CR-I-TASSER model (yellow) built on the 

map as in the chain C location; (h) Models of chains A (green), B (red) and C (yellow) built 

on the map; (i) Final CR-I-TASSER models of heavy/light chains of 2H2 Fab (gold/silver) 

using complex-based superposition process described in Supplementary Text 24.
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Table 1.

Modeling results by CR-I-TASSER and other methods on 778 benchmark test proteins involving different 

density map types and resolutions. P-values are calculated using two-tailed Student’s t-tests between the 

TM-scores produced by CR-I-TASSER and the other methods. Bold fonts highlight the performer which 

obtained the best average result in each category.

Methods TM˗score N (TM>TM0)
4 RMSD  (Å) P-value

301 Hard targets with high-resolution density map (resolution in 2–5 Å) (TM0=0.5)

I-TASSER
1 0.345 27 12.0 8.0×10−91

Flex-EM
2 0.318 22 12.4 3.8×10−96

iMODFIT
2 0.340 25 11.9 6.6×10−91

MDFF
2 0.331 26 12.1 3.4×10−91

EM-Refiner
2 0.315 18 12.2 6.9×10−96

Rosetta-Ref
2 0.297 30 14.0 1.2×10−99

MAINMAST
3 0.438 121 10.2 9.8×10−47

Rosetta-dn
3 0.419 94 12.2 8.7×10−52

Phenix
3 0.466 134 8.6 8.7×10−42

CR-I-TASSER
3 0.772 251 4.4 --

229 Easy targets with high-resolution density map (resolution in 2–5 Å) (TM0=0.9)

I-TASSER
1 0.762 16 5.1 8.4×10−75

Flex-EM
2 0.824 66 4.4 4.6×10−35

iMODFIT
2 0.799 43 4.7 5.6×10−48

MDFF
2 0.857 104 4.1 4.8×10−21

EM-Refiner
2 0.846 76 4.0 3.5×10−37

Rosetta-Ref
2 0.851 103 4.0 6.9×10−21

MAINMAST
3 0.439 9 11.8 5.7×10−78

Rosetta-dn
3 0.474 17 12.0 8.0×10−77

Phenix
3 0.493 8 8.4 1.4×10−76

CR-I-TASSER
3 0.950 198 1.4 --

301 Hard targets with low-resolution density map (resolution in 5–15 Å) (TM0=0.5)

I-TASSER
1 0.345 27 12.0 2.0×10−48

Flex-EM
2 0.303 13 12.3 1.2×10−61

iMODFIT
2 0.316 23 12.0 2.0×10−56
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Methods TM˗score N (TM>TM0)
4 RMSD  (Å) P-value

MDFF
2 0.319 29 11.8 6.8×10−55

EM-Refiner
2 0.305 19 12.1 2.3×10−60

Rosetta-Ref
2 0.268 18 13.9 1.6×10−70

MAINMAST
3 0.204 3 14.3 2.1×10−86

Rosetta-dn
3 0.201 7 14.6 6.7×10−91

Phenix
3 0.180 0 12.5 5.5×10−95

CR-I-TASSER
3 0.597 191 6.3 --

229 Easy targets with low-resolution density map (resolution in 5–15 Å) (TM0=0.9)

I-TASSER
1 0.762 16 5.1 8.4×10−75

Flex-EM
2 0.666 0 5.3 3.5×10−90

iMODFIT
2 0.767 34 4.4 4.0×10−29

MDFF
2 0.788 46 4.3 5.5×10−23

EM-Refiner
2 0.739 21 4.7 5.3×10−42

Rosetta-Ref
2 0.714 14 4.9 7.5×10−49

MAINMAST
3 0.202 0 15.6 5.7×10−311

Rosetta-dn
3 0.225 1 9.2 1.5×10−238

Phenix
3 0.174 0 13.8 3.2×10−309

CR-I-TASSER
3 0.898 137 2.1 --

178 targets with experimental density map (resolution in 2–5 Å) (TM0=0.9)

I-TASSER
1 0.647 6 8.3 4.0×10−15

Flex-EM
2 0.681 24 8.5 3.6×10−9

iMODFIT
2 0.695 19 7.8 6.8×10−8

MDFF
2 0.709 37 7.3 4.9×10−6

EM-Refiner
2 0.690 32 8.3 2.5×10−7

Rosetta-Ref
2 0.688 40 8.5 7.1×10−7

MAINMAST
3 0.323 2 15.2 7.4×10−72

Rosetta-dn
3 0.353 5 15.7 1.4×10−60

Phenix
3 0.349 1 13.3 2.7×10−63

CR-I-TASSER
3 0.810 75 4.9 --

70 targets with experimental density map (resolution in 5–10 Å) (TM0=0.5)
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Methods TM˗score N (TM>TM0)
4 RMSD  (Å) P-value

I-TASSER
1 0.612 49 9.2 2.7×10−3

Flex-EM
2 0.546 45 9.3 4.3×10−7

iMODFIT
2 0.603 48 8.9 1.7×10−3

MDFF
2 0.573 46 8.7 5.9×10−5

EM-Refiner
2 0.576 45 8.8 9.7×10−5

Rosetta-Ref
2 0.554 43 9.3 9.7×10−6

MAINMAST
3,5 0.221 0 16.1 2.0×10−31

Rosetta-dn
3 0.176 1 15.6 5.4×10−41

Phenix
3 0.118 0 18.3 1.5×10−43

CR-I-TASSER
3 0.714 63 6.2 --

1
Protein structure prediction methods

2
Cryo-EM based structure refinement methods

3
Cryo-EM based de novo structure modeling methods

4
TM0=0.5 for simulated Hard targets and low-resolution experimental targets, =0.9 for simulated Easy targets or high-resolution experimental 

targets

5
Only 61 targets are solved with MAINMAST, probably due to the low resolution and experimental noise
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