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Emerging evidence indicated that many long non-coding (lnc)RNAs function in multiple

biological processes and dysregulation of their expression can cause diseases. Most

regulatory lncRNAs interact with biological macromolecules such as DNA, RNA,

and protein. LncRNAs regulate gene expression through epigenetic modification,

transcription, and posttranscription, through DNA methylation, histone modification, and

chromatin remodeling. Interestingly, differential lncRNA expression profiles in human

oocytes and cumulus cells was recently assessed, however, lncRNAs in human follicle

development has not previously been described. In this study, transcriptome dynamics

in human primordial, primary and small antral follicles were interrogated and revealed

information of lncRNA genes. It is known that some lncRNAs form a complex with

paraspeckle proteins and therefore, we extended our transcriptional analysis to include

genes encoding paraspeckle proteins. Primordial, primary follicles and small antral

follicles was isolated using laser capture micro-dissection from ovarian tissue donated

by three women having ovarian tissue cryopreserved before chemotherapy. After RN

sequencing, a bioinformatic class comparison was performed and primordial, primary

and small antral follicles were found to express several lncRNA and genes encoding

paraspeckle proteins. Of particular interest, we detected the lncRNAs XIST, NEAT1,

NEAT2 (MALAT1), andGAS5. Moreover, we noted a high expression of FUS, TAF15, and

EWS components of the paraspeckles, proteins that belong to the FET (previously TET)

family of RNA-binding proteins and are implicated in central cellular processes such as

regulation of gene expression, maintenance of genomic integrity, and mRNA/microRNA

processing. We also interrogated the intra-ovarian localization of the FUS, TAF15, and

EWS proteins using immunofluorescence. The presence and the dynamics of genes that

encode lncRNA and paraspeckle proteins may suggest that these maymediate functions

in the cyclic recruitment and differentiation of human follicles and could participate in

biological processes known to be associated with lncRNAs and paraspeckle proteins,

such as gene expression control, scaffold formation and epigenetic control through
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human follicle development. This comprehensive transcriptome analysis of lncRNAs and

genes encoding paraspeckle proteins expressed in human follicles could potentially

provide biomarkers of oocyte quality for the development of non-invasive tests to identify

embryos with high developmental potential.

Keywords: human follicle, lncRNA, paraspeckle, fertility, treatment

INTRODUCTION

The nuclei of mammalian cells are highly organized and
composed of distinct subnuclear structures termed nuclear
bodies (Naganuma and Hirose, 2013; Yamazaki and Hirose,
2015). Paraspeckles are mammalian-specific sub-nuclear bodies
built on long, non-protein-coding RNA (lncRNA), NEAT1
(nuclear-enriched abundant transcript 1), which assembles
various protein components, including RNA-binding proteins
of the DBHS (Drosophila behavior and human splicing) family.
Paraspeckles have been proposed to control of several biological
processes, such as stress responses, gene expression, and
cellular differentiation. Human follicle development represents
a continuous cyclic process throughout the reproductive
lifespan of a woman and encompasses both cell growth
and differentiation. Paraspeckles are among the most recently
identified nuclear bodies and were first described in 2002
(Fox et al., 2002; Bond and Fox, 2009). The generation of
paraspeckle sub-nuclear compartments has been extensively
described (Naganuma and Hirose, 2013; Yamazaki and Hirose,
2015). Paraspeckles are sensitive to RNAse treatment, suggesting
that their structures depend on RNAs for maintenance (Fox
et al., 2002, 2005). Later the lncRNA NEAT1 was shown to
be essential for paraspeckle formation, as a knockdown of the
NEAT1 lncRNA function caused a disintegration of paraspeckles
(Chen and Carmichael, 2009; Clemson et al., 2009; Sasaki et al.,
2009; Sunwoo et al., 2009). Paraspeckle formation proceeds
in conjunction with NEAT1 lncRNA biogenesis and involves
the cooperation of multiple paraspeckle-localized RNA-binding
proteins (Naganuma and Hirose, 2013; Yamazaki and Hirose,
2015). Currently about 40 proteins are known to assemble
in paraspeckles (Naganuma et al., 2012). Paraspeckle proteins
include DBHS (Drosophila melanogaster behavior, human
splicing) proteins, PSPC1 (paraspeckle component 1), NONO
(non-POU domain-containing octamer-binding), and SFPQ
[splicing factor, proline- and glutamine-rich (also known as
PSF (PTB-associated splicing factor)], RNA binding motif
(RBM) 14, and CPSF6 (cleavage and polyadenylation specific
factor 6) [Reviewed in (Yamazaki and Hirose, 2015)]. Many
paraspeckle proteins are RNA binding proteins that contain an
RNA recognition motif (RRM), a KH (hnRNP K homology)
domain, a RGG (glycine-arginine-rich) box, or a zinc finger
motif as the RNA-binding domain. The paraspeckle proteins
NONO, SFPQ, RBM14, EWS, FUS, TAF15, and TDP-43 are RNA
binding proteins that mediate transcription and RNA processing
(Auboeuf et al., 2005).

The paraspeckle-localized FET family of RNA-binding
proteins (Bertolotti et al., 1996) consists of FUS (TLS) (Crozat
et al., 1993), EWS (Delattre et al., 1992), and TAF15 (TAFII68,

TAF2N, RBP56) (Crozat et al., 1993). The proteins are
structurally similar and contain a number of evolutionary
conserved areas such as the RRM motif, the SYGQ-rich domain,
a G rich domain, a RanBP2-type zinc finger motif, and the
C-terminal RGG domain (Morohoshi et al., 1998; Guipaud
et al., 2006; Nguyen et al., 2011; Chau et al., 2016). The FUS,
EWS, and TAF15 proteins bind RNA as well as DNA and
have both unique and overlapping functions. The human FET
proteins are associated with transcription (Law et al., 2006), RNA
splicing, microRNA (miRNA) processing, RNA transport, and
the signaling and maintenance of genomic integrity (Schwartz
et al., 2015).

Several paraspeckle proteins are disease-related. For instance,

NONO, SFPQ, CPSF6, EWS, FUS, TAF15, DAZAP1, RBM3,

SS18L1, WT1, BCL6, BCL11A, ZNF4444, and HNRNPH1 are

implicated in various types of cancer (reviewed in Yamazaki

and Hirose, 2015). Some paraspeckle proteins, such as TDP-
13, FUS, EWS, TAF15, HNRNPA1, SS18L1, and SFPQ have

been associated with neuro-degenerative diseases, such as

amyotrophic lateral sclerosis (ALS) and frontotemporal dementia

(FTD) (Svetoni et al., 2016).
Paraspeckles have been described as nuclear sponges

sequestering transcription factors and/or RNA-binding proteins

such as lncRNAs. They are dynamic structures changing in size

in response to ever changing cellular challenges/environment
(Yamazaki and Hirose, 2015).

In addition to NEAT1, a number of lncRNAs localize to

different subcellular compartments (Chen and Carmichael,
2010).MALAT1 (NEAT2 in human) is transcribed downstream of

the NEAT1 gene and is found specifically associated with splicing

speckles (Hutchinson et al., 2007). Moreover, lncRNA have also

been implicated in stem cell pluripotency and in differentiation

in mice (Dinger et al., 2008). Furthermore, roles for ncRNAs in

cell fate decision have been explored (Ambasudhan et al., 2011;

Yoo et al., 2011; Kurian et al., 2013).
Interestingly, lncRNAs have been shown to act as chromatin

modifiers (Mercer et al., 2009) and potent regulators of histone

methylation (Yamazaki and Hirose, 2015), including chromatin
structuremodeling and the integrity of subcellular compartments

(Chen and Carmichael, 2010; Wang and Chang, 2011; Wang
et al., 2011; Wapinski and Chang, 2011; Yan et al., 2012; Backofen
and Vogel, 2014; Joh et al., 2014; Peschansky and Wahlestedt,
2014; Liu and Pan, 2015). A previous study showed that some

human lncRNAswere bound to the polycomb repressive complex

2 (PRC2) and other chromatin-modifying complexes (Khalil
et al., 2009).

Several lncRNA, including Xist, Tsix, and Xite contribute to
X chromosome inactivation, the process of ensuring dosage
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regulation of X chromosome-expressed genes (Chow and Heard,
2009; Leeb et al., 2009) in a complex and highly controlled
manner (Zhao et al., 2008). Furthermore, Xist transcription
is required for maintenance of X-chromosome inactivation
(Penny et al., 1996). Interestingly, another lncRNA, RepA, the
reassembling part of the 5′UTR sequence of Xist, was found
to associate indirectly with PRC2 (Zhao et al., 2008). The
recruitment of PRC2 by RepA happens in competition with
lncRNA Tsix, which acts as an antisense toward Xist, and the
binding of RepA to PRC2 is inhibited by Tsix, and thus competes
with RepA (Zhao et al., 2008).

In support of the developmental roles of lncRNA and
paraspeckles,Neat1 knockout (KO) mice fail to become pregnant
despite normal ovulation, which was found to be a caused by
corpus luteum dysfunction and concomitant low progesterone
(Nakagawa et al., 2014).

The developmental capacity of the matured oocyte for
generating viable offspring is determined throughout follicle
development in the ovary. The integrity of the oocytes is essential
in maintaining the reproductive potential of the female. Pre-
ovulatory oocyte maturation is a complex process resulting from
multiple interactions between the oocyte and the surrounding
follicular cells (Carabatsos et al., 2000; Adhikari and Liu, 2009;
Binelli andMurphy, 2010; Reddy et al., 2010; Bonnet et al., 2013).
The transition from primordial to primary follicle is a key first
step event in follicle development, in which the primordial follicle
is believed to have escaped the resting phase and has entered
the follicular growth phase (Zuccotti et al., 2011). Subsequently,
the cohort of follicles must remain activated in order to enter
the secondary follicle stage, and a few continue to mature to
the tertiary and antral follicle stages (McGee and Hsueh, 2000).
Tertiary and antral follicles are characterized by the presence of a
cavity known as the antrum, and have both granulosa and theca
cells present. Tertiary follicles have an extensive network of gap
junctions that permits the transfer of nutrients and regulatory
signals between the oocyte and the granulosa cells (Espey,
1994). Only a small fraction of the ovarian follicles present
in a fetal ovary will reach ovulation (Markström et al., 2002).
Identifying the factors controlling follicle development may
provide a basis for the fundamental mechanisms that regulate
follicle activation and could potentially lead to new therapeutics
in female reproduction as well as improvements in reproductive
health and productivity in women of advanced maternal age
(Baird et al., 2005). As paraspeckles and the regulatory molecules
sequestered within them have been shown to be of importance
in development, gene expression, and epigenetic control, these
nuclear structures may prove essential in human fertility and
infertility.

So far, only limited reports of the potential regulatory impact
of short ncRNA in follicle development exist and our knowledge
of the involvement of lncRNAs in human follicle development is
almost non-existent (Wilhelmm and Bernard, 2016).

Therefore, in this study, the presence of lncRNAs were
interrogated bioinformatically using RNA sequencing data
representative of selected stages in human follicle development.
We previously developed amethod for isolating pure populations
of oocytes from human primordial, intermediate and primary

follicles using laser capture micro-dissection microscopy
(Markholt et al., 2012). From these transcriptome data (Ernst
et al., 2017, 2018), in silico extraction of data for lncRNAs. We
identified the presence of the paraspeckle forming lncRNAs
NEAT1 and NEAT2 as well as several other lncRNAs, such as
XIST. As the discovery of NEAT1 and NEAT2 in early ovarian
follicles suggested the presence of paraspeckle proteins, we
further asked if genes encoding these proteins would also
be present during human ovarian follicle development. We
found the transcripts encoding the well-characterized FUS,
EWS, and TAF15 highly expressed during early ovarian follicle
development. We further employed immunohistochemistry in
human ovary tissue to explore the presence and intraovarian
localization of FUS, EWS, and TAF15 proteins to be present.

In summary, we identified the presence of several lncRNAs
and genes encoding paraspeckle proteins not previously reported
for human ovarian follicle development. This may hint that the
functions of lncRNAs and paraspeckle proteins could indeed be
relevant to oocyte physiology and development.

MATERIALS AND METHODS

Procurement of Human Ovarian Cortex and
Isolation of Oocytes and Supportive
Somatic Cells
We procured human ovarian cortex tissue from the Danish
Cryopreservation Programme offering cryopreservation
as means of fertility preservation prior to gonadotoxic
chemotherapy (Rosendahl et al., 2011). Oocyte samples
were obtained from ovarian cortical tissue procured from
three patients who underwent unilateral oophorectomy prior
to gonadotoxic treatment for a malignant disease (unrelated
to any ovarian malignancies). Patients were normo-ovulatory,
with normal reproductive hormones, and not received ovarian
stimulation with exogenous gonadotropins. All methods
were carried out in accordance with relevant guidelines and
regulations, and The Central Denmark Region Committees on
Biomedical Research Ethics and the Danish Data Protection
Agency approved the study. Written informed consent was
obtained from all participants before inclusion. Patients
consented to the research conducted. In subjects undergoing
oophorectomy, a small piece of the ovarian cortex is used
for evaluating the ovarian reserve, and for research purposes
(Danish Scientific Ethical Committee Approval Number: KF
299017 and J/KF/01/170/99) (Schmidt et al., 2003).

Laser Capture Micro-Dissection (LCM)
The LCM procedure to isolate staged oocytes and follicles
was performed as previously described (Markholt et al., 2012;
Ernst et al., 2017, 2018). Briefly, the ovarian cortical fragments,
which had a size of 2 × 2 × 1mm, were thawed and
fixed by direct immersion into 4% paraformaldehyde (PFA)
at 4◦C for 4 h followed by dehydration and embedding in
paraffin. Paraffin blocks were stored at −80◦C until use. The
blocks were cut into 15µm thick sections on a microtome
(Leica Microsystems, Wetzlar, Germany). Diethylpyrocarbonate
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(DEPC)-treated water was used in the microtome bath to avoid
RNA degradation. The sections were mounted on RNase-free
membrane glass slides (Molecular Devices, Sunnyvale, CA, USA)
and immediately processed. Consecutively, the slides were de-
paraffinized, stained, and dehydrated immediately before micro-
dissection: Xylene (VWR—Bieog Berntsen, Herlev, Denmark)
(5min), 99.9% ethanol (Merck, Darmstadt, Germany) (5min),
99.9% ethanol (5min), 96% ethanol (5min), 70% ethanol (5min),
DEPC-treated water (5min), hematoxylin (Merck, Darmstadt,
Germany) (5min), DEPC-treated water (immersion), 70%
ethanol (30 s), 96% ethanol (30 s), 99.9% ethanol (30 s), 99.9%
ethanol (30 s), xylene (1min), and xylene (5min). All solutions
were prepared with DEPC-treated water. LCM was performed
using the VeritasTM Microdissection Instrument Model 704
(ArcturusXTTM, Molecular Devices, Applied Biosystems R©, Life
Technologies, Foster City, CA, U.S.A.). The cells were isolated
based on morphological appearance. Primordial oocytes were
defined as an oocyte surrounded by 3–5 flattened pre-granulosa

cells, and primary oocytes were defined as an oocyte surrounded
by one layer of cuboidal granulosa cells. Antral follicles were
defined as a follicle with an antral cavity. For the antral follicle
to be eligible for isolation, we should be able to morphologically
differentiate between the oocyte, the mural granulosa cells and
the theca cell layer. In the antral stage the large size of the
different compartments enabled us to isolate each compartment
individually. An outline surrounding the cell(s) of interest
was marked and subsequently cut using the ultraviolet laser.
Following this the use of membrane glass slides (Arcturus R© PEN
Membrane Glass Slides, Applied Biosystems, Life Technologies,
Foster City, CA, U.S.A.) enabled us to lift the isolate onto
a sterile cap (Arcturus R© CapSure R© HS LCM Caps, Applied
Biosystems, Life Technologies, Foster City, CA, U.S.A.) using
infrared pulses. Isolated cells were inspected on the cap to ensure
that no contamination from surrounding unwanted cells was
present. From each of the three patients, several isolations were
made (Table 1, Figure 1). RNA isolation, library preparation and

FIGURE 1 | Schematic illustration of human follicular cells isolated using laser capture microdissection. Please note that the aspect ratio is arbitrary.
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TABLE 1 | Numbers of oocytes, follicles, and other somatic cells analyzed in

RNA–seq. in three different patients.

Cell type and Follicular

Stages

No. of laser-collected cells from three

patients respectively

Oocytes from primordial follicles N = 3, n = 185, n = 181, n = 70

Primordial follicles N = 3, n = 142, n = 233, n = 164

Oocytes from primary follicles N = 3, n = 76, n = 61, n = 45

Primary follicles N = 3, n = 114, n = 97, n = 50

Mural granulosa cell layers from small

antral follicles

N = 3, n = 5, n = 14, n = 6

Theca cell layers from small antral

follicles

N = 3, n = 5, n = 10, n = 4

Oocytes from small antral follicles*1 N = 2, n = 10, n = 1

*1Based on duplicate samples.

sequencing, mapping and statistical analysis and bioinformatics
were performed as described (Ernst et al., 2017, 2018).

Library Preparation and Sequencing
RNA was extracted from the LCM-derived samples, converted
to cDNA and subjected to linear amplification [Ovation R© RNA-
Seq System V2 kit (NuGen Inc., San Carlos, CA, U.S.A.)].
RNA-seq libraries (constructed from the output cDNA using
Illumina TruSeq DNA Sample and Preparation kit (Illumina, San
Diego, CA, USA, according to AROS Applied Biotechnology,
now Eurofins (https://www.eurofinsgenomics.eu/). Integrity of
libraries was verified on library yield via KAPA qPCR
measurement, and Agilent Bioanalyzer 2100 peak size with
a RNA 6000 Nano Lab Chip (Agilent Technologies, Santa
Clare, CA, U.S.A.) during different library preparation stages.
Sequencing was performed on an Illumina HiSeq2000 platform
(Illumina Inc., San Diego, CA, U.S.A.) with 5 random samples
per lane (AROS Applied Biotechnology).

Mapping and Statistical Analysis
Using Tophat (2.0.4), and Cufflinks (2.0.2) BAM files were
generated to create a list of expressed transcripts in the samples.
BWA (0.6.2) was subsequently used to map all readings to
the human reference genome (hg19) using the transcript list
as a filter so only readings mapping to RefSeq exons [incl.
non-coding RNA, and mitochondrial RNA) overlapping with
expressed transcripts were used. Expression of each gene in a
given sample was normalized and transformed to a measurement
of log2 (counts per million (CPM)]. On the basis of log2 (CPM),
fragments per kilobase of exon per million fragments mapped
(FPKM) values were calculated, and further filtered using custom
analysis in R [R Development Core Team. R: A language
and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. URL http://www.R-
project.org] (R Core Team, 2012).

Output From Statistical Analysis
The mean FPKM value for all ncRNA transcripts was calculated
using a one-sample t-test on FPKM values for each identified
transcript from patient triplicates (two for oocytes from small

antral follicles) (Resource Data) (http://users-birc.au.dk/biopv/
published_data/ernst_et_al_ncRNAs_2018/).

Cell Specific Consistently Expressed Genes (CSCEG) were
defined as one-sample t-test p-value < 0.05 [(Resource Data),
in gray]. In silico merging of transcriptomes from three patients
was performed to account for biological variance. The transcripts
in the CSCEG list were ranked based on p-value, with low p-value
indicating a high degree of consistency in FPKM gene expression
level between patients for the given isolate type. Full lists of
ncRNAs detected in human follicle development is availiable
(Supplementary Table 1).

Furthermore, we generated a list of all known paraspeckle
proteins based on annotated protein-coding RNAs detected
(Table 2) and non-coding RNAs (Table 3). Some of these data
(oocytes and granulosa cells from primordial and primary
follicles) has previously been published with a different focus in a
global expression profile study (Ernst et al., 2017, 2018).

Immunofluorescence Microscopy
Human ovarian cortical tissue was cut in 5µm sections and
mounted on glass slides. Dehydration and antigen retrieval was
performed as described elsewhere (Stubbs et al., 2005) followed
by serum block (30min), then the primary antibody; (1/200)
anti-TAFII68 Rabbit pAb (Bethyl Laboratories, #IHC-00094),
(1/500) anti-FUS Rabbit pAb (Bethyl Laboratories, #A300-302A),
or (1/200) anti-EWS Rabbit pAb (Bethyl Laboratories, #IHC-
00086) overnight at 4◦C. The sections were then incubated in
a 1:700 dilution of secondary antibody (Donkey-anti-Rabbit)
conjugated with Alexa Fluor 488Dye (Life Technologies). Finally,
sections were incubated in 1/7500 Hoechst (Life Technologies)
followed bymounting with Dako FluorescentMountingMedium
(Agilent Technologies, Santa Clara, CA, U.S.A.) and analyzed
using a LSM510 laser-scanning confocal microscope using a
63x C-Apochromat water immersion objective NA 1.2 (Carl
Zeiss, Göttingen, Germany) and ZEN 2011 software (Carl Zeiss,
Göttingen, Germany).

RESULTS

Laser-Isolation of Oocytes and Somatic
Cells During Human Follicle Development
Specific isolates of oocytes and follicles (oocytes with
surrounding somatic granulosa cells) from the primordial
and primary stage, respectively, as well as oocytes, mural
granulosa cells, and theca cells from small antral follicles were
collected via Laser Capture Microdissection (LCM). Each stage
was isolated on the basis of stringent morphological criteria
(Gougeon, 1996) (Figure 1). Primordial follicles were defined
as an oocyte surrounded by one layer of flattened granulosa
cells (Figure 1) and primary follicles were defined as an oocyte
surrounded by a single layer of cubic granulosa cells (Figure 1).
Small antral follicles were defined based on the presence of a
follicular antrum with a clear distinction between the oocyte,
the mural granulosa cells and the theca cell layer (Figure 1)
The samples (1,473 isolates) of cells from primordial, primary,
and small antral follicles were pooled into 20 samples (Table 1,
Figure 1). These 20 samples were then subjected to RNA
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TABLE 2 | Expression of paraspeckle-protein encoding mRNAs in human follicle development.

Ensemble Symbol Oocytes from primordial

follicles, FPKM mean

t-test

(p-value)

Primordial follicles,

FPKM mean

t-test

(p-value)

PRIMORDIAL FOLLICLES

ENSG00000126705 AHDC1 ND ND 0.195 0.423

ENSG00000011243 AKAP8L 2.094 0.366 0.347 0.423

ENSG00000140488 CELF6 ND ND ND ND

ENSG00000099622 CIRBP 1.826 0.053 2.486 0.059

ENSG00000111605 CPSF6 3.718 0.033 4.289 0.064

ENSG00000149532 CPSF7 2.089 0.351 2.739 0.003

ENSG00000071626 DAZAP1 1.817 0.408 1.368 0.192

ENSG00000064195 DLX3 ND ND ND ND

ENSG00000182944 EWS/EWSR1*1 5.765 0.073 6.132 0.173

ENSG00000119812 FAM98A 1.727 0.235 2.013 0.188

ENSG00000182263 FIGN 0.284 0.187 2.842 0.184

ENSG00000089280 FUS*1 3.150 0.149 3.150 0.146

ENSG00000139675 HNRNPA1L2 0.029 0.423 0.060 0.423

ENSG00000169813 HNRNPF 2.550 0.028 3.836 0.085

ENSG00000169045 HNRNPH1 3.410 0.017 6.310 0.002

ENSG00000096746 HNRNPH3 3.177 0.171 3.178 0.199

ENSG00000165119 HNRNPK 5.365 0.068 5.511 0.060

ENSG00000125944 HNRNPR 4.346 0.107 3.778 0.127

ENSG00000105323 HNRNPUL1 4.041 0.005 6.086 0.007

ENSG00000176624 MEX3C*1 1.365 0.204 3.570 0.160

ENSG00000147140 NONO*1 2.160 0.189 4.367 0.089

ENSG00000167005 NUDT21 4.365 0.155 5.401 0.065

ENSG00000121390 PSPC1 1.709 0.274 3.114 0.189

ENSG00000102317 RBM3 0.475 0.238 0.586 0.423

ENSG00000268489 RBM3 ND ND ND ND

ENSG00000173914 RBM4B 1.878 0.359 1.489 0.400

ENSG00000076053 RBM7 1.519 0.330 1.191 0.222

ENSG00000244462 RBM12 4.391 0.106 4.400 0.112

ENSG00000239306 RBM14 1.072 0.207 1.164 0.394

ENSG00000147274 RBMX 4.218 0.117 3.981 0.122

ENSG00000020633 RUNX3 ND ND 0.054 0.423

ENSG00000116560 SFPQ 4.459 0.025 5.770 0.071

ENSG00000188529 SRSF10 1.465 0.373 3.245 0.109

ENSG00000184402 SS18L1 0.083 0.423 1.002 0.213

ENSG00000172660 TAF15*1 1.303 0.172 2.055 0.226

ENSG00000143569 UBAP2L 7.856 0.006 7.315 0.006

ENSG00000188177 ZC3H6 6.564 0.002 2.015 0.365

Oocytes from primary follicles Primary follicles

Ensemble Symbol*1 FPKM mean t-test

(p-value)

FPKM mean t-test

(p-value)

PRIMARY FOLLICLES

ENSG00000198026 ZNF335 ND ND 1.216 0.423

ENSG00000120948 TARDBP 5.408 0.131 4.119 0.112

ENSG00000126705 AHDC1 0.883 0.423 ND ND

ENSG00000011243 AKAP8L ND ND ND ND

ENSG00000140488 CELF6 1.933 0.186 4.296 0.196

ENSG00000099622 CIRBP 2.339 0.359 1.864 0.423

ENSG00000111605 CPSF6 1.331 0.246 3.621 0.189
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TABLE 2 | Continued

Oocytes from primary follicles Primary follicles

Ensemble Symbol*1 FPKM mean t-test

(p-value)

FPKM mean t-test

(p-value)

PRIMARY FOLLICLES

ENSG00000149532 CPSF7 0.208 0.423 1.386 0.399

ENSG00000071626 DAZAP1 ND ND ND ND

ENSG00000064195 DLX3 4.564 0.087 5.184 0.185

ENSG00000182944 EWS/EWSR1*2,3 0.835 0.423 1.826 0.409

ENSG00000119812 FAM98A 2.007 0.423 1.189 0.401

ENSG00000182263 FIGN 2.666 0.066 2.451 0.268

ENSG00000089280 FUS*2,3 0.158 0.204 0.439 0.423

ENSG00000139675 HNRNPA1L2 3.494 0.280 3.308 0.147

ENSG00000169813 HNRNPF 2.572 0.176 4.849 0.118

ENSG00000169045 HNRNPH1 6.586 0.022 2.636 0.287

ENSG00000096746 HNRNPH3 4.526 0.097 3.360 0.217

ENSG00000165119 HNRNPK 0.554 0.244 3.590 0.195

ENSG00000125944 HNRNPR 2.285 0.110 2.451 0.185

ENSG00000105323 HNRNPUL1 1.790 0.336 3.198 0.184

ENSG00000176624 MEX3C*1 3.151 0.046 3.493 0.167

ENSG00000147140 NONO*1 4.165 0.201 5.300 0.047

ENSG00000167005 NUDT21 1.994 0.312 3.174 0.199

ENSG00000121390 PSPC1 1.712 0.133 1.077 0.374

ENSG00000102317 RBM3 ND ND ND ND

ENSG00000268489 RBM3 2.873 0.253 1.890 0.409

ENSG00000173914 RBM4B 0.654 0.423 0.161 0.259

ENSG00000076053 RBM7 5.893 0.057 5.262 0.177

ENSG00000244462 RBM12 0.952 0.423 0.716 0.353

ENSG00000239306 RBM14 4.337 0.019 3.784 0.175

ENSG00000147274 RBMX ND ND ND ND

ENSG00000020633 RUNX3 5.408 0.027 4.258 0.206

ENSG00000116560 SFPQ 3.097 0.160 4.403 0.176

ENSG00000188529 SRSF10 0.564 0.423 0.5280 0.374

ENSG00000184402 SS18L1 0.411 0.423 2.030 0.306

ENSG00000172660 TAF15*1 7.527 0.013 7.630 0.002

ENSG00000143569 UBAP2L 4.010 0.184 2.057 0.411

ENSG00000188177 ZC3H6 ND ND 0.911 0.423

ENSG00000198026 ZNF335 1.576 0.378 2.515 0.393

ENSG00000120948 TARDBP ND ND ND ND

Mural garnulosa cell layer Theca cell layer

Ensemble Symbol FPKM mean t-test

(p-value)

FPKM mean t-test

(p-value)

SMALL ANTRAL FOLLICLES

ENSG00000126705 AHDC1 1.967 0.333 0.955 0.134

ENSG00000011243 AKAP8L 1.100 0.132 2.477 0.103

ENSG00000140488 CELF6 ND ND 0.181 0.423

ENSG00000099622 CIRBP 3.468 0.017 4.523 0.021

ENSG00000111605 CPSF6 4.481 0.022 3.007 0.039

ENSG00000149532 CPSF7 4.775 0.001 1.925 0.075

ENSG00000071626 DAZAP1 1.899 0.063 1.419 0.045

ENSG00000064195 DLX3 ND ND ND ND

ENSG00000182944 EWS/EWSR1 8.561 0.001 6.354 0.009
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TABLE 2 | Continued

Mural garnulosa cell layer Theca cell layer

Ensemble Symbol FPKM mean t-test

(p-value)

FPKM mean t-test

(p-value)

SMALL ANTRAL FOLLICLES

ENSG00000119812 FAM98A 3.164 0.057 4.066 0.025

ENSG00000182263 FIGN 3.326 0.018 3.210 0.023

ENSG00000089280 FUS 4.624 0.003 3.323 0.077

ENSG00000139675 HNRNPA1L2 1.234 0.136 1.193 0.263

ENSG00000169813 HNRNPF 3.712 0.004 4.046 0.001

ENSG00000169045 HNRNPH1 6.458 0.011 6.056 0.004

ENSG00000096746 HNRNPH3 4.316 0.033 3.635 0.014

ENSG00000165119 HNRNPK 5.862 0.004 5.249 1.7237E-05

ENSG00000125944 HNRNPR 5.096 0.011 4.504 0.014

ENSG00000105323 HNRNPUL1 6.769 0.002 5.058 0.049

ENSG00000176624 MEX3C 5.705 0.006 2.639 0.036

ENSG00000147140 NONO 6.395 0.002 5.664 0.027

ENSG00000167005 NUDT21 5.327 0.015 3.735 0.131

ENSG00000121390 PSPC1 2.929 0.086 4.015 0.003

ENSG00000102317 RBM3 3.057 0.104 4.013 0.033

ENSG00000268489 RBM3 ND ND ND ND

ENSG00000173914 RBM4B 2.125 0.140 1.097 0.078

ENSG00000076053 RBM7 1.148 0.190 0.728 0.200

ENSG00000244462 RBM12 5.530 0.028 4.575 0.017

ENSG00000239306 RBM14 0.882 0.028 1.247 0.192

ENSG00000147274 RBMX 5.781 0.011 4.702 0.017

ENSG00000020633 RUNX3 ND ND ND ND

ENSG00000116560 SFPQ 6.759 0.009 5.362 0.014

ENSG00000188529 SRSF10 3.181 0.149 3.040 0.054

ENSG00000184402 SS18L1 0.916 0.317 0.856 0.212

ENSG00000172660 TAF15 3.400 0.060 3.245 0.001

ENSG00000143569 UBAP2L 6.232 0.001 5.205 0.032

ENSG00000188177 ZC3H6 2.827 0.066 2.762 0.195

ENSG00000198026 ZNF335 0.811 0.110 0.143 0.245

ENSG00000120948 TARDBP 4.411 0.028 3.083 0.097

Oocytes from small antral follicles

Ensemble Symbol FPKM mean t-test

(p-value)

ENSG00000126705 AHDC1 0.416 0.5

ENSG00000011243 AKAP8L ND ND

ENSG00000140488 CELF6 ND ND

ENSG00000099622 CIRBP 2.916 0.444

ENSG00000111605 CPSF6 0.871 0.272

ENSG00000149532 CPSF7 2.361 0.429

ENSG00000071626 DAZAP1 0.294 0.5

ENSG00000064195 DLX3 ND ND

ENSG00000182944 EWS/EWSR1 8.638 0.149

ENSG00000119812 FAM98A 0.307 0.320

ENSG00000182263 FIGN 0.238 0.5

ENSG00000089280 FUS 4.790 0.253

ENSG00000139675 HNRNPA1L2 0.190 0.5

ENSG00000169813 HNRNPF 5.995 0.232
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TABLE 2 | Continued

Oocytes from small antral follicles

Ensemble Symbol FPKM mean t-test

(p-value)

ENSG00000169045 HNRNPH1 4.243 0.050

ENSG00000096746 HNRNPH3 4.087 0.375

ENSG00000165119 HNRNPK 3.696 0.359

ENSG00000125944 HNRNPR 6.266 0.169

ENSG00000105323 HNRNPUL1 2.232 0.424

ENSG00000176624 MEX3C 3.173 0.5

ENSG00000147140 NONO 3.516 0.381

ENSG00000167005 NUDT21 3.383 0.452

ENSG00000121390 PSPC1 2.223 0.5

ENSG00000102317 RBM3 0.069 0.5

ENSG00000268489 RBM3 ND ND

ENSG00000173914 RBM4B 2.100 0.5

ENSG00000076053 RBM7 ND ND

ENSG00000244462 RBM12 4.552 0.436

ENSG00000239306 RBM14 0.069 0.5

ENSG00000147274 RBMX 3.804 0.258

ENSG00000020633 RUNX3 ND ND

ENSG00000116560 SFPQ 5.167 0.116

ENSG00000188529 SRSF10 3.538 0.5

ENSG00000184402 SS18L1 ND ND

ENSG00000172660 TAF15 2.933 0.442

ENSG00000143569 UBAP2L 3.791 0.457

ENSG00000188177 ZC3H6 4.146 0.189

ENSG00000198026 ZNF335 0.069 0.5

ENSG00000120948 TARDBP 5.918 0.025

*1Genes alphabetically sorted.
*2Genes presented in Heatmap (Figure 2).
*3Transcripts in bold are used in immunofluorescence (Figures 3–5).

sequencing using the IlluminaHiSeq2000 sequencing platform
(Illumina Inc., San Diego, CA, U.S.A.) at an external sequencing
facility (AROS Applied Biotechnology, Aarhus, Denmark). We
previously validated the expression pattern for various RNAs
in the present RNA seq. dataset using RT-qPCR (Ernst et al.,
2017, 2018). The RNA sequencing yielded on average 35.3
million reads per sample (range: 31.8–39.6 million reads) and
was mapped to the human genome (hg19) (average number of
reads mapped: 31.7 million, range: 29.4–34.0). Gene expression
was calculated as FPKM by a custom R script (Ernst et al., 2017,
2018).

Transcriptional Profiles of Genes Encoding
Paraspeckle Proteins Across Different
Follicle Stages
The expression of 39 genes encoding paraspeckle proteins
(Naganuma et al., 2012) was interrogated during human follicle
development (Table 2). The highest expression of paraspeckle
genes in the primordial follicle stage, based on FPKM values,
were EWS, HNRNPK, ZC3H6, UBAP2L, and TARDBP (Table 2).
Several other genes encoding paraspeckle proteins were present

(e.g., MEX3C, FUS, TAF15, CPSF6, NUDT21, RBM12, RBMX,
DLX3).

Interestingly, the expression of ZC3H6 appears to be
downregulated from primordial to primary follicles, indicating
a specific function associated with the primordial follicle.
The EXSR1 gene expression remains high and upregulated
in small antral follicles. NONO was noted to be upregulated
as follicle development advances, with the highest expression
detected in the somatic cells in the small antral follicle
(Table 2).

A heatmap of FPKM data for selected genes encoding
paraspeckle genes was generated to show the expression for the
two different cell-stages in isolates - and the correlation between
cell-specific isolates (Figure 2).

Intra-ovarian Distribution of Paraspeckle
Proteins TAF15, EWS, and FUS
The gene products of TAF15, EWS, and FUS were selected for
immunofluorescent staining (IMF) (bold in Table 2) to reveal
their localization in human ovarian sections.

The TAF15 translational product was expressed in both
oocytes and follicles from primordial, primary, and small
antral stages, with a particular high expression in oocytes
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TABLE 3 | Long non-coding RNAs (p < 0.05) in human follicle development.

Oocytes from primordial follicles Primordial follicle

Symbol*1 FPKM mean t-test (p-value) Symbol FPKM mean t-test (p-value)

PRIMORDIAL FOLLICLES

ADCY10P1 0.763 0.046 BDNF-AS 2.395 0.017

LINC00485 2.7643 0.046 FGD5-AS1 3.335 0.013

LINC00924 0.171 0.015 GLG1 2.640 0.007

LINC01128 5.889 0.009 LINC00221 3.800 0.012

LINC01511 6.533 0.019 LINC00485 2.770 0.007

LOC100129434 6.859 0.0036 LINC00707 4.801 0.041

LOC100507557 3.783 0.005 LINC01483 2.976 0.040

LOC101927487 4.044 0.036 LOC100129434 6.765 0.012

LOC101928137 2.656 0.029 LOC100506885 3.548 0.028

LOC101929128 4.250 0.023 LOC100507156 2.776 0.013

LOC101929567 4.773 0.014 LOC100507557 2.443 0.018

LOC101929612 3.972 0.005 LOC101926943 1.428 0.008

LOC102467226 0.335 0.016 LOC101927487 3.216 0.035

LOC284798 2.494 0.002 LOC101928137 1.999 0.012

MALAT1 7.954 0.006 LOC101929567 3.513 0.033

MIR3609 5.490 0.012 LOC101929612 3.197 0.005

MIR99AHG 0.262 0.016 LOC440300 1.490 0.041

NPY6R 0.211 0.013 LOC643201 4.491 0.034

OIP5-AS1 4.190 0.029 MALAT1 8.992 0.026

RN7SK 11.285 0.005 MGC32805 0.219 0.039

RN7SL2 8.794 0.012 MIR4426 0.622 0.018

RPS3A 1.279 0.021 OIP5-AS1 5.527 0.033

UGDH-AS1 6.637 0.013 RN7SK 11.227 0.001

XIST 5.393 0.026 RN7SL2 8.9514 0.001

RPL13AP5 2.322 0.002

RPL21P28 0.582 0.012

RPS3A 1.118 0.043

SCARNA7 5.888 0.039

SLC8A1-AS1 5.409 0.007

SYN2 4.108 0.043

TUNAR 3.893 0.047

UBXN8 2.491 0.050

UGDH-AS1 6.382 0.006

XIST 8.236 0.003

ZFAS1 4.296 0.014

ZNF252P 3.537 0.038

Oocytes from primary follciles Primary follicle

Symbol FPKM mean t-test (p-value) Symbol FPKM mean t-test (p-value)

PRIMARY FOLLICLES

BCAR4 4.563 0.008 CEACAM22P 0.182 0.033

LINC00485 1.902 0.002 GLG1 1.270 0.046

LINC00665 4.298 0.046 KIZ 4.874 0.014

LINC01511 4.625 0.016 LINC01511 5.425 0.028

LOC100129434 6.444 0.011 LOC100129434 5.792 0.047

LOC100506885 2.187 0.039 LOC100507557 1.854 0.041

LOC101926943 1.548 0.044 LOC101927487 3.822 0.007
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TABLE 3 | Continued

Oocytes from primary follciles Primary follicle

Symbol FPKM mean t-test (p-value) Symbol FPKM mean t-test (p-value)

PRIMARY FOLLICLES

LOC101927337 2.226 0.014 LOC101929567 4.053 0.049

LOC101929491 0.330 0.004 LOC101929612 3.456 0.010

LOC101929567 4.287 0.008 MALAT1 9.345 0.016

LOC101929612 3.152 0.016 NEXN-AS1 0.534 0.046

LOC102546299 2.551 0.001 OIP5-AS1 5.950 0.017

MALAT1 9.614 0.001 RN7SK 11.308 0.004

MEG3 0.220 0.024 RN7SL2 8.743 0.001

MIR3609 3.887 0.012 RPL13AP5 2.877 0.003

MIR4426 0.595 0.020 RPL21P28 0.868 0.008

RN7SK 11.845 0.001 RPL21P28 2.165 0.032

RN7SL2 9.110 0.004 SNORD89 1.513 0.034

RPL13AP5 1.418 0.011 UGDH-AS1 6.216 0.016

RPL21P28 0.916 0.047 XIST 7.610 0.030

RPS3A 0.894 0.007 ZFAS1 5.249 0.005

SCARNA7 5.424 0.009

UGDH-AS1 6.397 0.003

XIST 6.751 0.014

ZNF518A 2.983 0.018

Mural granulosa cell Theca cells

Symbol FPKM mean t-test (p-value) Symbol FPKM mean t-test (p-value)

SMALL ANTRAL

ANP32AP1 0.683 0.009 ANKRD36B 2.277 0.020

CASP8AP2 3.530 0.034 BCYRN1 2.661 0.034

CROCCP2 1.453 0.006 BDNF-AS 2.317 0.033

EBLN3 3.812 0.002 CD27-AS1 2.007 0.041

FGD5-AS1 4.032 0.019 CLEC2D 1.283 0.027

GOLGA6L5P 1.750 0.015 CSNK1A1 2.753 0.001

H3F3AP4 2.121 0.027 CTBP1-AS2 2.457 0.028

LINC00657 5.467 0.009 FGD5-AS1 3.506 0.045

LINC01128 4.413 0.018 FLJ42627 0.239 0.000

LINC01420 2.152 0.012 H3F3AP4 2.185 0.014

LOC100129434 3.831 0.025 HCG18 3.976 0.035

LOC100131564 2.425 0.024 HERC2P3 0.111 0.017

LOC100507557 1.904 0.028 LINC00485 1.467 0.049

LOC101927027 1.875 0.003 LINC00657 4.740 0.009

LOC101929124 3.0195 0.010 LINC01128 3.643 0.020

LOC101929612 3.418 0.007 LINC01133 0.111 0.017

LOC102477328 0.135 0.020 LOC100129434 4.893 0.008

LOC150776 3.000 0.002 LOC101929612 3.455 0.001

LOC643201 3.740 0.013 LOC102724699 0.420 0.021

LOC646762 2.431 0.008 MAGI2-AS3 2.791 0.020

LOC728554 1.619 0.023 MALAT1 10.73 0.000

MALAT1 9.495 0.006 MEG3 7.602 0.001

MIR3609 5.033 0.001 MIR3609 4.974 0.009

MIR99AHG 3.823 0.014 MIR4426 0.504 0.043

OIP5-AS1 5.926 0.003 MIR99AHG 5.083 0.008

PCBP1-AS1 2.541 0.029 NCBP2-AS2 0.824 0.001
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TABLE 3 | Continued

Mural granulosa cell Theca cells

Symbol FPKM mean t-test (p-value) Symbol FPKM mean t-test (p-value)

SMALL ANTRAL

PIGBOS1 1.804 0.011 NEXN-AS1 0.735 0.025

PKI55 4.600 0.000 NKAPP1 3.545 0.032

RN7SK 10.395 0.002 OIP5-AS1 4.636 0.039

RN7SL2 8.088 0.004 PCBP1-AS1 4.558 0.009

RPL13AP5 2.509 0.006 PDIA3P1 0.450 0.016

RPL21P28 2.293 0.012 PGM5P2 1.302 0.028

RPL21P28 0.589 0.026 PKI55 4.791 0.024

RPL34P6 0.405 0.013 PTOV1-AS1 2.060 0.001

RPS3A 2.326 0.001 RN7SK 10.57 0.005

SCAND2P 1.312 0.014 RN7SL2 8.740 0.006

SCARNA7 5.104 0.016 RNU4-2 4.075 0.007

SNHG17 3.099 0.018 RPL13AP5 2.816 0.011

TMEM120A 3.042 0.002 RPL21P28 2.840 0.006

TUG1 6.0234 0.003 RPL21P28 1.081 0.017

UGDH-AS1 3.874 0.031 RPL34P6 0.844 0.019

XIST 8.056 0.004 RPS3A 1.846 0.010

ZFAS1 5.124 0.005 SCARNA7 5.588 0.026

ZNF761 4.206 0.017 SDHAP2 2.223 0.001

ZNF826P 0.990 0.018 SH3BP5-AS1 2.069 0.008

SNORA23 0.659 0.007

SNORA79 1.713 0.039

SNORD89 2.354 0.017

SPON1 3.979 0.030

THUMPD3-AS1 0.829 0.049

TMEM120A 1.996 0.042

TUG1 6.154 0.008

UBXN8 4.509 0.006

UGDH-AS1 4.596 0.000

XIST 8.474 0.001

ZFAS1 4.881 0.013

ZNF252P 1.822 0.012

ZNF518A 2.901 0.020

ZSCAN26 3.800 0.007

Oocyte from small antral follicle

Symbol FPKM mean t-test (p-value)

LOC100653061 5.033 0.033

MALAT1 7.219 0.027

OIP5-AS1 0.842 0.007

PMS2CL 0.481 0.008

RN7SK 10.140 0.021

ROR1-AS1 0.481 0.008

*1Genes alphabetically sorted.
*2Presented in heat map (Figure 2).

from primordial follicles, as well as in primordial follicles
(Table 2). We interrogated the TAF15 protein using a specific
antibody toward TAF15. This showed detection of the TAF15
protein in both oocyte and granulosa cells of primordial

(Figure 3A), primary (Figure 3B), secondary (Figure 3C), as
well as small pre-antral/early antral follicles (Figures 3D–F). As
the TAF15 protein appears detectable in both oocytes and the
surrounding somatic cells are in line with the RNA sequencing
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FIGURE 2 | Heatmap representation of selected genes encoding paraspeckle proteins and lncRNA genes. Heatmap of gene expression in oocytes and granulosa

cells during the primordial-to-primary follicle transition. The heatmap includes the paraspeckle-encoding genes (blue bar) MEX3C, NONO, FUS, EWS, TAF15

transcripts, and the lncRNAs (red bar) NEAT1, MALAT1 (NEAT2), XIST, ZFAS1, GAS5. Color code reflects average FPKM values.

data, gene expression and its translational product appears
coupled.

The IMF of EWS showed that EWS is present in

both oocytes and the surrounding granulosa cells, and

in primordial and primary follicles (Figures 4A–C). The

EWS transcript was found highly expressed in these

early stages of follicle development, and thus the RNA
expression appears coupled to its translational protein
product.

The FUS transcript was also highly expressed during

early follicle development (Table 2), and as we interrogated

its protein using IMF, found that the FUS protein was
detectable in primordial follicles, (Figure 5A), primary follicles
(Figures 5B, C), as well as in late pre-antral/early antral follicles
(Figure 5C).

All samples were compared to a no-antibody control, which
did not detect any signal (Figure 5D).

We detected nuclear localization of TAF15, EWS and FUS,
with evidence of speckle-like structures in an infrequent manner
distributed throughout the cells.

Non-coding RNAs
ncRNA genes produce functional RNA molecules rather than
encoding proteins (Eddy, 2001). The groups of ncRNA are
diverse and include, for instance, short and long ncRNAs as
well as micro (mi)RNA, snoRNA, scaRNA, SRP RNA, and
antisense RNA. The presence of ncRNAs during human follicle
development was analyzed in transcriptomes representative for
oocytes and follicles from primordial and primary follicles as
well as oocytes, mural granulosa cell layers, and theca cell layers
of small antral follicles [Figure 1, Table 1, (Resource Data)].
Genes encoding ncRNAs was identified using the Ensembl gene
annotation version GRCh37.p13.

Long ncRNAs
Most ncRNAs longer than 200 nucleotides are referred to as
‘long non-coding RNAs’ (lncRNAs). Although the estimated
number of different types of human lncRNAs has ranged from
5,400 to 53,000 (Palazzo and Lee, 2015), these ncRNAs appear
to comprise functions for the control of various levels of gene
expression in physiology and development, including chromatin
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FIGURE 3 | Intra-ovarian distribution of TAF15 in human primordial and

primary follicles. This showed detection of the TAF15 protein in both oocyte

and granulosa cells of (A) primordial, (B) primary, and (C) secondary, as well

as (D–F) small pre-antral/early antral follicles. Hoechst staining identifies the

nucleus of cells. Scale bars; 30µm.

FIGURE 4 | Intra-ovarian distribution of EWS in human primordial and primary

follicles (A-C). EWS is present in both oocytes and the surrounding granulosa

cells in primordial and primary follicles. Hoechst staining identifies the nucleus

of cells. Scale bars; 30µm.

architecture/epigenetic memory, transcription, RNA splicing,
editing, translation, and turnover (Mattick and Makunin, 2006).
In this study the presence of lncRNAs was interrogated
(Table 3).

Interestingly, we detected the lncRNA XIST during human
follicle development in both oocytes and follicle samples
(Table 3). It should be noted, however, that XIST in the
oocytes from small antral follicles did not display a cell-specific
consistently expressed expression pattern but was noted used
a less stringent p-value (Resource Data), which was likewise
observed for TSIX (Table 3). The fact that a less stringent p-value
was needed to detect this transcript in the oocytes from small
antral follicles was expected, as these oocytes were rarely found
in the ovarian biopsies, and thus these oocyte samples are less
represented (Table 1, Figure 1).

MALAT1 (NEAT2) was detected throughout all the
included stages (Resource Data), indicating the need for
this paraspeckle-forming protein during human follicle
development. Interestingly, several lncRNAs with no biological
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FIGURE 5 | Intra-ovarian distribution of FUS in human primordial, and primary

follicles. The FUS protein was detectable in (A) primordial follicles, (B,C)

primary follicles (C) late pre-antral/early antral follicles. All samples were

compared to a (D) no-antibody control. Hoechst staining identifies the nucleus

of cells. Scale bars; 30µm.

functions annotated were noted (Resource Data). While the
expression of several lncRNA genes (OIP5-AS1, RN7SK, RN7SL2)
was present in all samples tested, others appeared to be cell-
and stage-specifically (GLG1, KIZ, BCAR4, EBLN3) expressed
(Resource Data).

The lncRNA ZFAS1 appears to be restricted to somatic cells,
e.g., the mural granuloma cell layer and the theca cell layer in

the small antral follicle (Resource Data). Interestingly, the ROR1-
AS1 seems to be specific to the oocyte from small antral follicles
(Resource Data). We found lncRNA Growth Arrest Specific 5
(GAS5) expressed in oocytes from primordial follicles, as well
as a high expression in primordial follicles, somewhat lower in
primary follicles, and in turn high in the mural granulosa cell
layer and the theca cell layer from small antral follicles (Resource
Data).

A heatmap of FPKM data for selected lncRNA genes was
generated to show the expression for the two different cell-stages
(primordial versus primary) in isolates - and the correlation
between cell-specific (oocyte versus granulosa cell) isolates
(Figure 2).

DISCUSSION

Extensive efforts to gain deeper understanding of RNA
biology have yielded evidence of the diverse structural and
regulatory roles in protecting chromosome integrity, maintaining
genomic architecture, X chromosome inactivation, imprinting,
transcription, translation and epigenetic regulation (Khorkova
et al., 2015). Bioinformatics analysis of chromatin marks in
intergenic DNA regions and of expressed sequence tags (ESTs)
predicts the existence of more than 5,000 long noncoding
RNA (lncRNA) genes in the human genome (Gomez et al.,
2013). Some studies have found the number of lncRNAs to
exceed that of protein-coding genes (Bouckenheimer et al.,
2016; Hon et al., 2017). In our transcriptome study of
lncRNA, we applied a strict filter to only consider transcript
that were consistently expressed in our samples. This was
applied as a major limiting factor is the number of patients
included in the study. In oocytes and granulosa cells from
primordial and primary follicles, 20, 33, and 20 and 19 lncRNAs
were noted expressed (using a cut of value of 1 FPKM).
Interestingly comparing this to the number of protein coding
transcripts in the same stages (oocytes and granulosa cells from
primordial and primary follicles showed 1099, 1695, and 1046
and 815, SSCEG, respectively (Ernst et al., 2017, 2018), it is
noteworthy that few lncRNAs compared to the protein coding
transcript are present during these early stages in human follicle
development.

Strict filters in the bioinformatic management was applied
to this study to ensure the most precise outcome from the
global transcriptome analysis. Previous studies validated
selected candidates by qPCR analysis (Ernst et al., 2017,
2018). Moreover, the analysis contains several DEG-lists
based on both SSCEGs and non-SSCEGs and caution
in the analysis of fold of change for DEG transcripts is
recommended. Importantly, this study analyzed the presence
of transcripts, and whether a gene is translated or its protein
product present, is unknown. Using single cell techniques, we
confirmed the presence of selected paraspeckle proteins using
immunohistochemistry.

In a few well-studied cases, such as AIR, XIST, and
HOTAIR, these lncRNAs have been shown to operate at the
transcriptional level by binding to proteins in histone-modifying
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complexes and targeting them to particular genes (Nagano
et al., 2008; Chu et al., 2011; Jeon and Lee, 2011; Wang
and Chang, 2011). A role for lncRNAs in human follicle
development has not previously been described (Wilhelmm
and Bernard, 2016) although their potential involvement has
been suggested (Zhao and Rajkovic, 2008; Bouckenheimer
et al., 2016). Differential lncRNA expression profiles in
human oocytes and cumulus cells was recently analyzed
(Bouckenheimer et al., 2018), which determined the lncRNA
expression profiles of human MII oocytes (BCAR4, C3orf56,
TUNAR, OOEP-AS1, CASC18, and LINC01118) and cumulus
cells (NEAT1, MALAT1, ANXA2P2, MEG3, IL6STP1, and VIM-
AS1).

The presence of the paraspeckle-forming NEAT1 and
MALAT1 (NEAT2) indicates that paraspeckles are actively
formed and present during human follicle development.
Paraspeckle formation is initiated by transcription of the
NEAT1 chromosomal locus and proceeds in conjunction with
NEAT1 lncRNA biogenesis and a subsequent assembly step
involving >39 paraspeckle proteins (PSPs). Interestingly, a study
has shown that subunits of SWItch/Sucrose NonFermentable
(SWI/SNF) chromatin-remodeling complexes were identified
as paraspeckle components that interact with PSPs and
NEAT1 lncRNA (Kawaguchi et al., 2015). In particular, it was
shown by electron microscopy that SWI/SNF complexes were
enriched in paraspeckle subdomains depleted of chromatin.
Interestingly, and consistent with this, it was found that
the arginine methyltransferase CARM1 (coactivator-associated
arginine methyltransferase 1) promotes the nuclear export
of mRNAs that contain inverted Alu elements in their 3’
untranslated region by methylating the paraspeckle component
p54(nrb), which reduces the binding of p54(nrb) to the inverted
Alu elements. It also down-regulated the synthesis of NEAT1.
This in turn inhibited paraspeckle formation (Elbarbary and
Maquat, 2015).

The lncRNA XIST was present at high levels throughout
the stages tested during human follicle development. To ensure
X-linked gene dosage compensation between females (XX)
and males (XY), one X chromosome randomly undergoes X
chromosome inactivation (XCI) in female cells (Lyon, 1961).
The human XIST (Brown et al., 1991a,b) and mouse Xist
(Borsani et al., 1991; Brockdorff et al., 1991) lncRNAs accumulate
over the X chromosome. X chromosomal inactivation is tightly
regulated throughout development with XIST as a key regulator
involved in the establishment of several layers of repressive
epigenetic modifications. These reported functions of XIST
are consistent with our observation that this gene is highly
transcribed during human follicle development and reveals that
XIST lncRNA is present already from the dormant primordial
stage of human follicle development. The functional role of XIST
during early follicle development remains to be elucidated, and
this may include early marks of maternal imprinting and dosage
regulation.

The lncRNA ZFAS1 appears specific to somatic cells during
human follicle development. ZFAS1 has been described as being
upregulated in different cancer types (Askarian-Amiri et al., 2011;
Li et al., 2015; Nie et al., 2016; Thorenoor et al., 2016) and is

involved in cell apoptosis and cell cycle control. It was recently
shown that the action of ZFAS1 occurred through interaction
with EZH2 and LSD1/CoREST in order to repress the underlying
targets KLF2 and NKD2 transcription (Nie et al., 2016). The
epigenetic dysregulation of central granulosa cell factors such as
FOXL2 are involved in the development of granulosa cell tumors
(Xu et al., 2016), which is possible through EZH2 interaction.
Furthermore, prominent roles for FOXL2 include control of
primordial follicle activation (Schmidt et al., 2004).

It remains to be tested if lncRNA ZFAS1 functions to regulate
transcriptional control in follicle development, and this may have
an effect on granulosa cell proliferation and cell cycle control in
the human follicle.

We identified the potential tumor suppressor lncRNA
growth arrest specific 5 (GAS5), expressed particularly in
the primordial stage, as well as in primary follicles and in
mural granulosa cell layers and the theca cell layers. Part of
the GAS5 RNA structure mimics the glucocorticoid response
element, enabling it to bind the DNA binding domain of the
glucocorticoid receptor, thus inhibiting glucocorticoid induced
transcription. GAS5 is further thought to regulate transcriptional
activity of the androgen receptor. In line with this, GAS5
lncRNA has been found to repress the AR/androgen complex
from binding to target through sequestering, thus repressing
transcription (Wang and Lee, 2009). Of further interest, GAS5
lncRNA has been found to supress the AKT/mTOR signaling
pathway in prostate cancer cells (Yacqub-Usman et al., 2015).
As previous studies have shown that activated AKT/mTOR
signaling increases primordial follicle activation (Makker et al.,
2014), we suggest that GAS5 expression in the primordial
follicle may be involved in primordial follicle dormancy and
survival. Recently, the GAS5 was found to promote proliferation
and survival of female germline stem cells in vitro (Wang
et al., 2018). The functional involvement of GAS5 in normal
and aberrant human follicle development remains to be
determined.

Increasing evidence supports a central role for ncRNA in
numerous aspects of chromatin function (Názer and Lei, 2014).
Interestingly, it has long been appreciated that ncRNAs are
central components of the dosage compensation machinery, and
recent work has elucidated how various ncRNAs contribute
to Polycomb Group (PcG) and chromatin insulator activities
(reviewed in Názer and Lei, 2014). The PcG proteins are required
for the adequate development of multicellular organisms,
functioning to preserve pluripotency and/or cellular identity.
Their main function however is to repress the expression of genes
that would otherwise promote differentiation into other cell types
(reviewed in Simon and Kingston, 2013).

The precise role of lncRNAs in chromatin modifications
during human follicle development remains to be elucidated.
However, our data suggests that several distinct lncRNAs are
present and that they probably have separate functions in order
to secure follicle integrity and development.

We found the protein-coding MEX3C gene present during
human follicle development. However, the role of the gene
product, MEX3C, is unknown. The MEX3BM isoform and
the E3 ubiquitin ligase DZIP3 are bought together with
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their substrates (Ataxin-1 and Snurportin-1) by the lncRNA
HOTAIR, accelerating their degradation (Khorkova et al.,
2015), thus lncRNA-mediated regulation also affects protein
stability (reviewed in Khorkova et al., 2015). Furthermore,
proteasomal inhibition causes upregulation of paraspeckle-
associated lncRNA NEAT1, which in turn protects fibroblasts
from cell death triggered by proteasome inhibition (Khorkova
et al., 2015). Interestingly, it was found that a MEX3
homolog is required for differentiation during planarian stem
cell lineage development (Zhu et al., 2015). In this study
it was shown that MEX3-1 was required for generating
differentiated cells of multiple lineages, while restricting the
size of the stem cell compartment. This indicates that MEX3-
1 functions as a cell fate regulator (Zhu et al., 2015).The
presence of the MEX3C transcript during human follicle
development has not been functionally addressed, and future
studies should reveal whether MEX3C has a pivotal role in
cell commitment and/or differentiation in the selection of the
dominant follicle.

The upregulated expression profile of NONO during follicle
development suggests that this protein is under tight control.
NONO deficiency led to upregulation of PSPC1, which replaces
NONO in a stable complex with SFPQ (Li et al., 2014). The
knockdown of PSPC1 in a Nono-deficient background led
to severe radio-sensitivity and delayed resolution of double
stranded break (DSB) repair foci. From this it can be concluded
that NONO or related proteins are critical for DSB repair
(Li et al., 2014). The complex of NONO with SFPQ and
PSPC1 served a multipurpose scaffold, including frequently
identified engagement at almost every step of gene regulation,
and including, but not limited to, transcriptional regulation,
RNA processing and transport, and DNA repair (Knott et al.,
2016). Interestingly, a report has investigated the inner cell
mass marker OCT4 and its gene expression patterns, as well
as CpG sites methylation profiles during embryonic stem (ES)
cell differentiation into neurons (Park et al., 2013). It was found
that NONO binds to the CpG island of the Oct4 promoter
and positively regulates Oct4 gene expression in ES cells (Park
et al., 2013), thus indicating a role in cell lineage during
early development. The future role of NONO during human
follicle development and how this might participate in regulating
gene expression and/or DNA repair will be important steps
toward the understanding of the capacity of the human ovarian
follicles.

Several lines of evidence suggest paraspeckle proteins to be
essential in cell fate determination, which is highly relevant for
early developmental processes (Yamazaki and Hirose, 2015).

FUS, EWS, and TAF15 are structurally similar multifunctional
proteins that were initially discovered in the process of
characterization of fusion oncogenes in human sarcomas and
leukemias. As they are implicated in numerous central cellular
processes such as gene regulation, genomic integritymaintenance
and mRNA/microRNA processing, it is therefore not surprising
to find them in many cellular contexts and in different cell
types and tissues. The expression profile of the FET proteins
were characterized in both the human (Andersson et al., 2008)
and porcine (Blechingberg et al., 2012b) developing brain.

The FET proteins are expressed in most human tissues and
are localized mainly in the cell nucleus (Andersson et al.,
2008), but are also found in the cytoplasm (Zinszner et al.,
1997; Belyanskaya et al., 2001; Jobert et al., 2009). This is
supported by the fact that the functions of hnRNPs include
nucleocytoplasmic shuttling (Bedford and Clarke, 2009; Yu,
2011). Interestingly, FUS, EWS, and TAF15 has previously
revealed a cell-specific expression pattern (Andersson et al.,
2008), and processes such a heat shock and/or oxidative
stress induce the re-localization of these proteins to stress
granules (Andersson et al., 2008; Blechingberg et al., 2012a).
The fact that we observed infrequent staining in nuclear and
cytoplasmic localizations supports the activity of these FET
proteins.

The FET proteins also frequently exhibit gene translocation
in human cancers (Paronetto, 2013; Campos-Melo et al., 2014).
Emerging evidence demonstrates their physical interactions with
DNA Damage Response proteins (Kai, 2016) and thus suggests
their involvement in the maintenance of genome stability.
Interestingly, it was recently proposed that FET proteins are
involved in the maintenance of lifespan, cellular stress resistance,
and neuronal integrity (Therrien et al., 2016).

It has been shown that FUS interact directly with NEAT1
lncRNA, reducing the expression of FUS, and subsequently
causing cell apoptosis. In combination with miR-548ar-3p, this
regulates breast cancer cell apoptosis (Ke et al., 2016).

CONCLUSION

We identified the presence of lncRNAs as well as the
genes encoding the paraspeckle proteins, offering insights into
how their transcripts are expressed during human follicle
development. The study is descriptive in nature. As a proof
of concept, we probed for the intracellular presence and
localization of three selected paraspeckle proteins. It remains
to be determined for several other proteins encoding by genes
noted, as well as lncRNAs. In particular, our study indicates
that they may be involved in cellular processes such as cell
differentiation and cell integrity. This could be accomplished by
their ability to control gene expression, epigenetics and mRNA
turnover during follicle development.
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