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Summary
Antiretroviral therapy (ART) has dramatically improved life expectancy for people with HIV (PWH) and helps to
restore immune function but is not curative and must be taken lifelong. Achieving long term control of HIV in the
absence of ART will likely require potent T cell function, but chronic HIV infection is associated with immune
exhaustion that persists even on ART. This is driven by elevated expression of immune checkpoints that provide neg-
ative signalling to T cells. In individuals with cancer, immune checkpoint blockade augments tumour-directed T-cell
responses resulting in significant clinical cures. There is therefore high interest if ICB can contribute to HIV cure or
remission by reversing HIV-latency and/or drive recovery of HIV-specific T-cells. We here review recent evidence on
the role of immune checkpoints in persistent HIV infection and discuss the potential for employing immune check-
point blockade as a therapeutic approach to target HIV persistence on ART.
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Introduction/Aims of immune checkpoint
blockade in HIV
Antiretroviral therapy (ART) potently suppresses HIV
replication and has greatly improved prognosis for peo-
ple with HIV (PWH) but it is no cure. The main reason
ART is unable to cure HIV is the persistence of HIV in
a latent form in long-lived and proliferating CD4+ T-
cells from which virus rebounds if ART is stopped.1

Achieving durable control of HIV in the absence of ART
is likely to be mediated by potent CD8+ T-cell effector
function, similar to what is observed in HIV elite con-
trollers.2 However, HIV infection is characterised by
immune exhaustion, driven by increased expression of
immune checkpoints,3�6 which persists even on ART7

leading to a state of immune dysfunction with impaired
cytolytic activity.8

Immune checkpoints make up a network of recep-
tors involved in maintaining a balance between T-cell
activation and autoimmunity by providing co-inhibitory
or co-stimulatory signalling that modify the quality and
duration of the T-cell effector response.9 Programmed
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cell death 1 (PD-1) and cytotoxic T-lymphocyte associ-
ated protein 4 (CTLA-4) are the best studied pathways,
but other receptors of significant interest in both infec-
tious disease and cancer include lymphocyte activation
gene 3 (LAG-3), T-cell immunoglobulin and ITIM
domain (TIGIT) and T-cell immunoglobulin and
mucin-domain containing-3 (TIM-3). Therapeutic block-
ade of PD-1, PD-ligand1 (PD-L1) and CTLA-4 by mono-
clonal antibodies has demonstrated clinical efficacy in
cancer by enhancing tumour-specific T-cell
function,10,11 but monoclonal antibodies to multiple
other immune checkpoints including LAG-3, TIM-3 and
TIGIT are currently under active clinical development.12

In addition to their role in HIV-associated immune
exhaustion, immune checkpoints also identify cells that
are enriched for HIV. CD4+ T-cells expressing PD-1,
LAG-3 and/or TIGIT have been shown to contain HIV
DNA at a higher frequency,13�15 in particular in cells co-
expressing multiple immune checkpoints.6,13 This
might be explained by inhibitory signalling during T-
cell infection, limiting T-cell activation and favouring
transition to latent infection, as was demonstrated in an
in vitro model.16 Immune checkpoint proteins thus con-
tribute to HIV persistence through two major pathways
� effects on the virus itself by promoting latent infec-
tion and by impairing cytotoxic function of HIV-specific
T-cells. Given this dual role, immune checkpoint inhibi-
tors may similarly have two distinct effects when given
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Figure 1. Dual Role of ICB in HIV. Immune checkpoint antibodies have two distinct effects in the setting of HIV on ART. On the one
hand they activate HIV expression in latently infected CD4+ T-cells and on the other hand they enhance HIV-specific CD8+ T-cell
function. PD-1: Programmed death-1; PD-L1: Programmed death ligand-1; SHP2: Src homology 2 domain-containing tyrosine phos-
phatase 2; TCR: T-cell receptor; LCK: lymphocyte-specific protein tyrosine kinase; ZAP-70: Zeta-chain-associated protein kinase-70;
MHC: major histocompatibility complex.
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to PWH on ART: (1) they may activate HIV expression
in latently infected CD4+ T-cells thereby exposing these
to immune recognition and/or viral-induced apoptosis;
and (2) they may reinvigorate exhausted T-cells, thereby
enhancing HIV-specific T-cell function (Figure 1).

The potential role of immune checkpoint antibodies
in targeting HIV persistence on ART depends on their
capacity to achieve these effects as well as their safety
profile in PWH on ART without cancer. Both outcomes
may be optimised by alternative dosing strategies, by
combination approaches with other immunomodula-
tors, latency-reversing agents or vaccines, by identifying
pathways associated with a favourable virological
response, and/or by delivering immune checkpoint
blockade in the context of antigen co-stimulation. A
detailed understanding of the underlying biology of
immune checkpoints is fundamentally important to
assessing how interrupting these pathways might be rel-
evant for curative strategies in HIV and potentially other
chronic viral infections. This is driven forward by active
research across in vitro, ex vivo and in vivo models in
HIV as well as emerging data from clinical trials in
PWH on ART. We here review data regarding the role
of immune checkpoints in persistent HIV infection
with a particular focus on recent and emerging findings
from clinical trials in PWH and discuss the potential for
employing immune checkpoint blockade, including
combined blockade of multiple checkpoints, as a thera-
peutic approach to achieve durable control of HIV in
the absence of ART.
T-cell exhaustion in cancer and chronic
infection
Common features of cancer and chronic infections are
persistent exposure to antigen and the development of
dysfunctional or exhausted effector T-cells.17 While mul-
tiple studies have shown tremendous success in treating
cancers with antibodies that block inhibitory receptors
on T-cells (immune checkpoint blockade, ICB) it is
unclear why some individuals respond and others do
www.thelancet.com Vol 76 Month February, 2022
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not. The anti-tumour clinical response to PD-1 blockade
in patients with malignancies18,19 was recently shown to
rely on precursor exhausted T-cells (Tpex), a subpopula-
tion of CD8+ T-cells that exhibit features of exhaustion,
such as PD-1 expression, but also display memory T-cell
characteristics,20�23 including expression of the tran-
scription factor T-cell factor 1 (TCF-1). TCF-1 is crucial
for the development of memory CD8+ T-cells.24 Tpex
were found to be responsible for the proliferative burst
and increased CD8+ T-cell effector functions after
blocking PD-125�27 whereby they replenish the popula-
tion of terminally differentiated exhausted T-cells (Tex),
which are essential for ongoing immune control. A
higher frequency of Tpex cells was associated with bet-
ter anti-tumour responses and improved patient
survival,18,19 and a higher ratio of Tex cells to tumour
burden predicted an enhanced clinical response.11

In the setting of HIV, CD8+ T-cells from elite control-
lers, individuals who can control HIV replication to unde-
tectable levels in the absence of ART, were shown to
express higher levels of TCF-1 compared to non-control-
lers,28 suggesting that TCF-1 may have a direct role in
regulating the expansion capacity of HIV-specific CD8
+T-cells. However, it remains to be proven if HIV-specific
Figure 2. Immune checkpoint inhibition: Receptor/ligand interaction
the protein tyrosine phosphatase SHP-2 (Src homology 2 domain-co
ases and blocks proximal TCR signal transduction. (B) Upon binding
through the protein phosphatase 2A (PPA2) to inhibit phosphorylati
progression and proliferation. (C) LAG-3 is believed to signal throug
from the TCR. However, the intracellular proteins that bind the KIEEL
not known. (D) Upon Caecam-1 and Gal-9/TIM-3 triggering, Bat3 ge
ing of SH2 domain containing Src kinases like LCK and ZAP-70 which
TIGIT becomes phosphorylated and recruitment of SHIP1 (SH2 dom
receptor bound protein 2) lead to blocking of PI3K (phosphatase 3-
resulting in reduced T-cell activation, proliferation, and effector func

PD-1: Programmed death-1; PD-L1: Programmed death ligand-1
Lymphocyte activation gene 3; TIGIT: T-cell immunoglobulin and
containing-3 (TIM-3); TCR: T-cell receptor; LCK: lymphocyte-specific
kinase-70; MHC: major histocompatibility complex.
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Tpex can be targeted with ICB in PWH on ART leading
to recovery of polyfunctional HIV-specific T-cells.

Another mechanism by which HIV-specific CD8+ T-
cells from elite controllers have been reported to evade
exhaustion was linked to HLA- B*27 and HLA-B*57
alleles. Upon antigen recognition HLA-B*27� or HLA-
B*57�restricted HIV-specific CD8+ T-cells showed a
deficiency in TIM-3 upregulation, allowing these cells to
evade TIM-3:Gal-9 mediated regulatory T-cell (Treg)
suppression.29
Role of immune checkpoints in HIV and pre-
clinical data on blocking these pathways
In cancer and chronic infection, the understanding of
immune checkpoints and their targeting is a significant
milestone toward reversing T cell exhaustion. In this
review we have put an emphasis on immune checkpoints
assessed in preclinical studies and recent findings from
clinical trials in HIV. While other immune checkpoints
like CD39, V-domain Ig suppressor of T cell activation
(VISTA), CD244 (2B4) and CD160 have all been associ-
ated with T-cell exhaustion in HIV infection, there is little
and signaling. (A) PD-1-PD-L1/PD-L2 interaction signals through
ntaining tyrosine phosphatase 2), which dephosphorylates kin-
CD80/CD86 the cytoplasmatic tail of CTLA-4 transduces a signal
on of Akt and thereby interfering with IL-2 production, cell cycle
h its unique KIEELE motive to transduce antiproliferative signals
E motif and the signalling pathways further downstream are still
ts released form the cytoplasmatic tail of TIM-3 and allows bind-
subsequently block TCR signalling. (E) Upon ligand interaction,
ain containing inositol-5-phosphatase) and Grb2 (growth factor
kinase) and MAPK (mitogen-activated protein kinase) pathways
tions.
; CTLA-4: Cytotoxic T-lymphocyte associated protein 4 (CTLA-4);
ITIM domain; TIM-3: T-cell immunoglobulin and mucin-domain
protein tyrosine kinase; ZAP-70: Zeta-chain-associated protein
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preclinical and no clinical data on targeting these recep-
tors in the context of HIV infection.
PD-1
PD-1 is a co-inhibitory receptor expressed on the surface
of activated T-cells and binds to PD-L1 and PD-L2,
which are expressed on the surface of antigen present-
ing cells (APCs) (see Figure 2 and Text box 1).

In HIV infection, PD-1 overexpression on both CD4+
and CD8+ T-cells was shown to correlate with increased
disease progression and higher HIV viral load.4,30 Apart
from persistent T-cell receptor (TCR) stimulation, in
vitro studies also indicate that the negative regulatory
factor (Nef) can induce expression of PD-1 in HIV-1-
infected cells by activating the p38 pathway.31

It was shown more than 15 years ago that during
chronic HIV infection, increased expression of PD-1 on
HIV-specific CD8+ T cells is associated with reduced
effector functions and that blocking PD-1 could enhance
HIV-specific CD8+ T-cell survival, proliferation, and
reinvigorate effector functions upon T cell receptor
(TCR) stimulation with cognate antigen.5 In a study
where simian immunodeficiency virus (SIV)-infected
rhesus macaques were administered anti-PD-1 ten days
prior to ART initiation and again at 26�30 weeks
PD-1

PD-1 (also known as CD279) binds to PD-L1 (also known as CD274) and PD-L2

B cells and macrophages. Targeting the PD-1 receptor or the PD-L1/PD-L2 liga

action and takes the “breaks” off the activating TCR signals (Figure 2.)

CTLA-4

CTLA-4 (also known as CD152) is a homologue of the co-stimulatory molecule

known as B7�2) expressed on APCs, but with higher affinity and therefore ou

LAG-3

LAG-3 (also known as CD223) is a CD4 homolog that binds to the major histoc

lated on activated T-cells, Tregs and a subset of NK cells.45 Stimulating LAG-3

expansion89,90 consistent with LAG-3 being a negative regulator of T-cell expa

as neither of these express CD4 or bind MHC-II. This could be through Treg m

and were shown to inhibit DC maturation,92 thereby reducing immune activa

TIM-3

TIM-3 (also known as Hepatitis A virus cellular receptor 2, HAVCR2) has multiple

1 (HMGB1)93 that binds DNA released form dying cells and facilitates delivery to

and thereby suppress innate immune activation. Caecam-1 was recently identifi

is expressed on the surface of exhausted T-cells together with TIM-3 and while

drives inhibitory Tim-3 function. It is uncertain, however, if binding TIM-3 by Ca

TIGIT

TIGIT is a receptor of the Ig superfamily and binds to the ligands CD155 (also kn

nectin-2) expressed on APCs, T-cells and tumour cells. The co-stimulatory mole

known as Tactile) compete for the CD155 and C112 ligands. Similar to the CTLA

fore favouring effector cell inhibition over stimulation.95 CD226 is important for

that T-cells expressing high CD226 expression maintain effector functions in res

1.96

Text box 1: Additional information on IC receptors/ligand interactions.
following ART, the authors found faster viral suppres-
sion in plasma, enhanced CD8+ T-cell function and
improved CD4+ T-cell reconstitution in the gut leading
to a significant delay in viral rebound and a reduction of
the viral setpoint following ART interruption.32

Consistent with the enrichment of HIV in PD-1+CD4
+ T-cells,13�15 it was also shown that blocking PD-1 in
vitro or ex vivo can induce or enhance activation of latent
HIV.16,33,34 However, in a recent study in ART-treated
SIV-infected macaques, PD-1 blockade, alone or in com-
bination with a TLR7 agonist, showed no impact on viral
rebound kinetics following ART interruption and no
impact on the frequency of latently infected cells.35

Interestingly, PD-1 blockade during SIV-vaccination
substantially improved protection against SIV infection
of macaques and protective SIV-specific T-cell responses
were sustained for more than 42 weeks after the first
immunisation.36 Collectively, these studies indicate an
immune-enhancing effect of PD-1 blockade in the set-
ting of HIV infection.
CTLA-4
CTLA-4 is a potent negative regulator of immune
responses and is expressed on both activated T-cells and
(also known as CD273) which are expressed on dendritic cells, monocytes,

nd with monoclonal antibodies blocks the inhibitory receptor-ligand inter-

CD28 and like CD28 binds to CD80 (also known as B7�1) and CD86 (also

tcompetes the co-stimulatory signal (Figure 2).

ompatibility complex (MHC) class II with superior affinity. LAG-3 is upregu-

deficient T-cells in vitro and in vivo resulted in their uncontrolled

nsion (Figure 2). However, the effect on CD8 and NK cells is likely indirect

ediated suppression as Tregs constitutively express high levels of LAG-391

ting stimuli and suppressing T-cell activation.

ligands. Apart form Gal-9 it interacts with the high mobility group protein B

Toll-like receptors (TLRs). TIM-3 can block this process by binding to HMGB1

ed as a crucial component in the co-inhibitory function of TIM-3.94 Caecam-1

in cis it acts as a stabilizer for the TIM-3 glycoprotein, the trans interaction

ecam-1, Gal-9 or both together differentially impact TIM-3 function (Figure 2).

own as poliovirus receptor (PVR) or Necl-5) and CD112 (also known as PVRL2,

cule CD226 (also known as DNAM-1) and co-inhibitory molecule CD96 (also

-4-CD80/86-CD28 setup, TIGIT binds its ligands with superior affinity there-

effective tumour-specific CD8+ T-cell responses and it was recently shown

ponse to TCR triggering despite co-expression of negative receptors, like PD-
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regulatory T-cells (Tregs).37 It binds to CD80 and CD86
expressed on APCs (see Figure 2 and Text box 1).

During untreated HIV infection, CTLA-4 expression
is upregulated on HIV-specific CD4+ T-cells with only
modest and slow reduction in expression levels upon
starting ART.3 A study in SIV-infected macaques on
ART identified a potential viral reservoir in lymph node
CTLA-4+PD-1- memory CD4 T-cells as these cells con-
tained high levels of SIV DNA as well as replication-
competent and infectious virus.38 Additional data imply
that viral factors influence CTLA-4 expression. In vitro
studies showed that Nef-mediated downregulation of
CTLA-4 in HIV-infected CD4+ T-cells resulted in
enhanced interleukin (IL)�2 production and viral repli-
cation upon TCR triggering.39 This led to the hypothesis
that infection of CD4+CTLA-4 + T-cells elicited Nef-
mediated concomitant downregulation of CTLA-4,
which is believed to produce optimal conditions for viral
replication, thereby promoting productive infection and
HIV persistence.39

Kaufmann et al. showed that increased levels of
CTLA-4 expression on HIV-specific CD4+ T-cells are
associated with disease progression and a failure to pro-
duce IL-2, and that in vitro blockade of CTLA-4 could
rescue HIV specific CD4+ T-cell function.3 In HIV dis-
ease progressors it was shown that CTLA-4 upregula-
tion on HLA-B35px and HLA-B53 restricted HIV
specific CD8+ T-cells and the expression of CTLA-4 cor-
related with low proliferative capacity, poor expression
of cytotoxic molecules and decreased cytokine produc-
tion of HIV-specific CD8+ T-cells.40 A study in SIV-
infected rhesus macaques treated with ART similarly
showed that CTLA-4 blockade was associated with an
increase in SIV-specific CD4+ and CD8+ T-cell effector
function and a decrease in viral RNA levels in lymph
nodes, thus indicating a role for anti-CTLA-4 in aug-
menting anti-SIV immunity.41 In contrast, another
study using the same virus (SIVmac251) in rhesus maca-
ques found that CTLA-4 blockade during primary infec-
tion increased both T-cell activation and viral
replication, and that viral suppression following ART
initiation was blunted in monkeys receiving anti-CTLA-
4.42 More recently, Harper et al. investigated anti-PD-1
Gal-9 is a member of the galectin family of animal lectins and binds to the TIM

context of HIV is complex. Gal-9 is upregulated on NK cells in PWH97 and on C

also shown to be rapidly released during acute HIV infection with high levels

tion between plasma Gal-9 levels and HIV viral load.99 Furthermore a recent re

T-cell line.52 This finding is consistent with a recent study showing Gal-9 shedd

cell activation in PWH.100

CD155 is a ligand of the TIM-3 receptor and was shown to be upregulated on

persistence.53,56,101 It was suggested that HIV can directly upregulate CD155 c

these observations.103

Text box 2: Additional IC ligands and their role in HIV.
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and anti-CTLA-4, alone or in combination, in SIV
infected macaques on long-term ART and showed that
although dual blockade was more effective in expanding
effector memory T-cells and induced latency reversal at
higher levels compared to anti-PD-1 alone, none of the
tested interventions enhanced SIV-specific CD8+ T-cell
function or virological control following ART
discontinuation.43

Finally, a murine study indicated a potential adju-
vant role of anti-CTLA-4 as CTLA-4 blockade during
HIV immunization in mice led to increased CD4+ T-
cell activation, expansion of HIV specific follicular
helper T-cell (Tfh) cells, altered HIV specific B-cell
responses and significantly increased anti-HIV antibod-
ies with higher avidity and antibody-dependent-cellular
cytotoxicity (ADCC) capabilities.44
LAG-3
LAG-3 binds to the major histocompatibility complex
(MHC) class II and is upregulated on activated T-cells,
Tregs and a subset of NK cells45 (see Figure 2 and
Text box 1).

There is still limited data on LAG-3 and LAG-3 block-
ade in HIV although one study showed enrichment of
HIV in LAG-3+CD4+ T-cells.13 Also, HIV infection
increased LAG-3 expression in both peripheral blood
and lymph node CD4+ and CD8+ T-cells, correlated
with HIV plasma viral load and disease
progression,46,47 whereas ex vivo blockade augmented
HIV-specific CD4+ and CD8+ T-cell responses.46
TIM-3
TIM-3 is expressed on T-cells and innate immune cells
like DCs, NK cells and monocytes and binds to galectin-
9 (Gal-9) which triggers inhibitory signaling and can
induce cell death of TIM-3 expressing T-cells48 (see
Figure 2 and Text box 1, 2).

In PWH the frequency of TIM-3+ CD8+ and TIM-3+
CD4+ T-cells were both positively correlated with HIV
viral load and inversely with absolute CD4 T-cell
counts.49 Recent in vitro studies suggested that Nef-
-3 receptor. It has a wide range in biological properties and its role in the

D4+ and CD8+ T-cells with impaired T-cell effector function.98 Gal-9 was

remaining in the circulation even upon viral control with a positive correla-

port demonstrated the ability of Gal-9 to reactivate latent HIV-1 in a jurkat

ing by neutrophils can activate T cells via binding to CD44 which leads to T

CD4+ Tfh cells that reside in the lymph node, a major site of HIV

ells through a Vpr-dependent mechanism,102 but newer studies challenged
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mediated TIM-3 upregulation may in fact activate
infected cells,50 which is somewhat counterintuitive but
highlights the complex biology that exhaustion markers
are also markers of T-cell activation. In contrast, the
Vpu protein expressed late in the viral replication cycle
was shown to downregulate TIM-3, possibly to facilitate
viral release.51

In HIV progressors, TIM-3 upregulation in HIV-spe-
cific CD8+ T-cells was associated with reduced effector
functions. In some individuals, this could be reduced
upon ART and blocking TIM-3 interaction resulted in
reinvigoration and restoration of CD8 effector functions
ex vivo49 implying that neutralizing TIM-3 may have a
role in approaches to eliminate the HIV reservoir.52
TIGIT
TIGIT is a co-inhibitory receptor that is specifically
expressed on activated T-cells, memory T-cells, Tregs,
NK cells and Tfh cells53 and has multiple complex
ligand interactions that result in reduced T-cell activa-
tion, proliferation and effector functions54,55 (see
Figure 2 and Text box 1, 2).

TIGIT was shown to be upregulated on CD8 T-cells
during HIV infection despite early initiation of ART, and
almost all HIV specific CD8+ T-cells from PWH express
TIGIT.6,56 Increased TIGIT expression on CD4+ T-cells
correlated with the frequency of HIV DNA, and TIGIT
co-expression with either PD-1 or LAG-3 marked cells
with substantially higher levels of HIV DNA.13

A recent study also showed decreased expression of
interferon-g (IFN-g), tumour necrosis factor-a (TNF-a)
and CD107 expression in TIGIT+ NK cells compared to
TIGIT� NK cells from PWH.57 Nevertheless, introduc-
tion of monoclonal antibodies that inhibit the higher
affinity TIGIT/CD155 co-inhibitory pathway in favour of
the lower affinity CD226/CD155 co-stimulatory pathway
remains a rational strategy to re-invigorate HIV-associ-
ated T-cell exhaustion to target the HIV reservoir.
Clinical data of immune checkpoint blockers in
PWH
Due to the frequent exclusion of PWH in clinical trials of
immune checkpoint antibodies for cancer, there is still
limited clinical data on their use in this population,
although recent studies including a systematic review
reported safety data and anti-tumour response rates com-
parable to that seen in people without HIV.58�60 Data
from clinical studies regarding the effect on HIV-specific
T-cell function, reversal of HIV latency, and the latent
HIV reservoir are even more sparse and mostly limited
to small studies or case reports of PWH receiving ICB
for cancer. These studies have so far mostly focused on
the capacity of ICB to activate HIV from latency.
In a person with HIV on ART receiving anti-CTLA-4
followed by anti-PD-1 for melanoma, we previously
observed a marked increase in cell-associated and
plasma HIV RNA, indicative of latency reversal in
vivo.16,61 Other case reports of PWH on ART receiving
anti-PD-1 or anti-CTLA-4 for cancer have described tran-
sient increases in either cell-associated or plasma HIV
RNA with or without a decrease in the frequency of
latently infected CD4+ T-cells,62,63 whereas others have
not seen this effect.64,65 In a small case-series of three
PWH on ART receiving anti-PD-L1 for Merkel cell carci-
noma or combined anti-PD-1/anti-CTLA-4 for mela-
noma, we recently reported that ICB led to substantial
increases in cell-associated HIV RNA of up to 16-fold
relative to pre-treatment levels.66 In one individual
receiving combined blockade of PD-1 and CTLA-4, there
was also a dramatic increase in the frequency of HIV-
specific CD8+ T-cells producing IFN-g, TNF-a, and
CD107a expression in response to gag stimulation, thus
showing the potential to enhance HIV-specific T-cell
responses but also indicating that such a favourable
response may only occur in a subset of treated
individuals.66

In a larger prospective study of PWH on ART
assigned to anti-PD-1, alone or in combination with
anti-CTLA-4, it was found that anti-PD-1 alone did not
reverse HIV latency. However, in seven individuals
receiving anti-PD-1 in combination with anti-CTLA-4,
there was a modest but significant increase in cell-asso-
ciated HIV RNA as compared to baseline, thus suggest-
ing an enhanced effect on reversing HIV latency with
combination ICB.67 Only two individuals had large vol-
ume blood samples to quantify functional virus, but in
both participants there was a substantial decrease in
replication-competent HIV, in contrast to those receiv-
ing anti-PD-1 alone.67 An important limitation of this
study is the absence of data on the effect on HIV-spe-
cific T cell function during blockade of PD-1 and CTLA-
4. These analyses are part of ongoing work.

There are only three published studies of immune
checkpoint blockade in PWH on ART without malig-
nancy and two of those were terminated prematurely.
One was a dose-escalation study of a monoclonal anti-
body to PD-L1 (BMS-936,559). Data from the first dose-
cohort showed an increase in HIV-specific CD8+ T-cell
responses in two of six individuals treated with a single
infusion of low-dose (0.3 mg/kg) anti-PD-L1 but no
effect on plasma or cell-associated HIV.68 The study did
not progress to the higher dose-cohorts because of reti-
nal toxicity in a concurrent monkey study and, addition-
ally, one individual in the human trial developed
hypophysitis 36 weeks after single low-dose anti-PD-L1
(68). More recently, a dose-escalation study of the anti-
PD-1 antibody, cemiplimab, in PWH on ART without
cancer, was stopped prematurely as possible immune-
related adverse events (irAE) occurred in two of four
cemiplimab recipients.69 One participant developed
www.thelancet.com Vol 76 Month February, 2022
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thyroiditis assessed as probably related to cemiplimab
while another had asymptomatic grade 3 hepatitis possi-
bly related to cemiplimab. Both cases fully resolved
without therapeutic intervention. An ongoing study is
investigating ascending doses of the anti-PD-1 antibody,
budigalimab, in PWH in the context of ART interrup-
tion (NCT04223804). In another study, ascending dose
of the anti-CTLA-4 antibody, ipilimumab, was given to
viremic PWH on or off ART to test whether ipilimu-
mab-enhanced immunity might improve virological
control.70 Assessment of HIV-specific immunity could
not be performed due to poor cell viability, but most par-
ticipants displayed an increase in plasma HIV RNA
after ipilimumab dosing, which likely reflected activa-
tion of HIV during CTLA-4 blockade.70
Combined blockade of multiple immune
checkpoints: is more better?
Superior therapeutic efficacy with combination
immune checkpoint blockade was demonstrated in clin-
ical trials of anti-PD-1 and anti-CTLA-4 for melanoma
including improved long-term survival but at a cost of
higher rates of immune-related toxicities.71,72 Multiple
other combinations of immune checkpoint antibodies
are now under active clinical investigation in oncology
clinical trials with most combinations including an anti-
body to PD-1 or PD-L1.12

PD-1 and CTLA-4 signalling attenuate T-cell activity
through separate pathways,73 which may help explain
their superior efficacy when used in combination. In
HIV, preliminary data also suggested a greater effect on
reversing latency with combined blockade of PD-1 and
CTLA-4 compared to anti-PD-1 alone,67 but it remains
unclear whether this is mediated through additive or syn-
ergistic effects. Immunological and genetic profiling
revealed distinct genomic and functional signatures of
combined blockade compared to either therapy alone,
which may suggest a potential for immunological syner-
gism.74 It is also possible that engagement of distinct T-
cell populations by anti-CTLA-4 and anti-PD-1 contrib-
utes to the enhanced effect of combination blockade, as
was indicated by the differential expression of PD-1 and
CTLA-4 on resting and proliferating CD4+ T including
findings that anti-PD-1 could reverse latency in non-pro-
liferating cells and anti-CTLA-4 in proliferating T-cells.33

We recently explored the effect on HIV-specific T-cell
function of multiple combinations of immune check-
point antibodies ex vivo using PBMCs obtained from
PWH on suppressive ART. This showed that immune
checkpoint blockade primarily led to enhanced produc-
tion of CD107a and IL-2 but not IFNg and TNFa in
response to HIV peptide stimulation.75 Combinations
that included antibodies to LAG-3, CTLA-4 and TIGIT
showed synergistic induction of cytokine production in
HIV-specific T-cells, whereas combinations that
included anti-PD-1 did not.75 Another study using
www.thelancet.com Vol 76 Month February, 2022
PBMCs from PWH on ART evaluated antibodies to
CTLA-4, TIM-3, LAG-3, CD160 and BTLA, alone or in
combination with anti-PD-1, and found that anti-TIM-3
and anti-BTLA enhanced CD8+ T-cell proliferation in
response to HIV peptide stimulation.76

Taken together, these studies indicate enhanced
effect and potential synergy of combining blockade
against several immune checkpoints, but much more
work is required to understand which pathways should
ideally be targeted to promote elimination of latently
infected cells and, secondly, how such combinations
might be administered without excessive toxicity.
Outstanding questions
Several important questions remain to be answered for
a more comprehensive understanding of the potential
for using ICB as a therapeutic tool in achieving ART-
free control of HIV. First, safety remains a significant
concern as illustrated by the premature termination due
to immune-related adverse events (irAEs) of two clinical
trials in HIV using anti-PD-1 and anti-PDL1.77,78 These
experiences raise a clear need for more effective risk
mitigation strategies. Given that current data is derived
from blocking PD-1/PD-L1 or CTLA-4, emerging clinical
trial data of antibodies against LAG-3, TIM-3 and TIGIT
will be highly informative when considering their safety
and potential use in HIV. Aligned with results from
cancer treatment, preliminary data indicate that only a
subset of treated PWH will respond to and profit from
ICB. In people with malignancies, multiple mecha-
nisms of primary and secondary resistance to ICB have
been recognised. While many of these are changes that
originate in the tumour cells and which impair antitu-
mour immune responses, others are host-related
including alterations in immunosuppressive cells,
secretion of cytokines and chemokines, composition of
the gut microbiome, and co-expression of multiple
inhibitory immune checkpoints.79 For example, in
patients with non-small cell lung cancer, high expres-
sion of PD-1 marked a particularly dysfunctional subset
of T-cells characterised by co-expression of multiple
other immune checkpoints and was associated with
poor restoration of T-cell effector function following
PD-1 blockade.80 The prediction of who can mount a
sustained HIV-specific T-cell response to ICB and
which mechanisms underlie such a treatment-response
remains to be determined, but may be informed from
host-specific findings in cancer immunotherapy and
will be of tremendous value for the design of novel cura-
tive strategies. It may also be possible to mitigate risk
through single and/or low-dose administration of
immune checkpoint antibodies. For example, a study in
people with hepatitis B demonstrated that a single low-
dose (0.1 or 0.3 mg/kg) of the anti-PD-1 antibody, nivo-
lumab, was safe and led to high levels of PD-1 occu-
pancy for around 6 weeks.81
7
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Second, most immune checkpoints are also
expressed on immune cells other than CD4+ and CD8+
T-cells such as NK cells, monocytes, gamma delta T-
cells and Tregs. These cells are important to consider as
additional targets and the effect of blocking immune
checkpoints in those cell populations needs to be better
understood.82 For example, blocking a co-inhibitory sig-
nal on cytotoxic CD8+ T-cells can simultaneously act as
a co-stimulatory signal in suppressive Tregs, which
then can lead to overactivation-induced Treg apoptosis
and result in elimination of neative Treg mediated sup-
pression. However, targeting immune checkpoints on
Tregs can also potentiate TCR stimulation, which does
not result in overactivation-induced apoptosis, but
instead enhances Treg proliferation83 thereby increas-
ing unwanted Treg mediated suppression.

Third, given that immune checkpoints provide co-
inhibitory or co-stimulatory signals to T-cells upon bind-
ing of their cognate antigen, it is entirely possible that
blocking inhibitory receptors during antigen exposure
may provide a more potent immune stimulus. This will
require studies delivering ICB in the setting of ART inter-
ruption as HIV antigen expression is minimal on ART.

Fourth, data from animal models show that the crys-
tallizable fragment (Fc) variant of the immune check-
point targeting antibody has a profound impact on the
antitumor response.84 In the case of anti-CTLA-4, the
Fc tail was shown to have a critical role in promoting
antibody-mediated cellular cytotoxicity (ADCC) leading
to an increased CD8+ to Treg ratio, which promoted
tumour rejection.85,86 However, the translational impli-
cations of these findings have thus far not been investi-
gated in the setting of HIV.

Fifth, accumulating data on inhibitory pathways and
their modulation in HIV can form the basis of using
ICB as a vaccine adjuvant. In animal models, ICB dur-
ing vaccination improved protective efficacy36 and
increased levels of anti-HIV antibodies with higher anti-
body-dependent cellular cytotoxicity capabilities.44

Finally, while most studies have focused on blocking
negative receptors, there are emerging data on agonistic
or modulatory interactions with co-stimulatory pathways.
The co-stimulatory glucocorticoid-induced TNFR related
protein (GITR, also known as TNFRSF18) is a potent tar-
get for immunotherapy in mouse models of cancer and
chronic infection, owing to its capacity to concurrently
promote effector T-cell function and dampen Treg-medi-
ated suppression. A first-in-human trial in patients with
solid tumours demonstrated safety of a monoclonal anti-
body targeting GITR but failed to demonstrate clinical
efficacy or clear reinvigoration of exhausted T-cells.87

Investigating co-stimulatory agents like GITR and
CD226 in the context of HIV might still hold potential as
“putting the gas on” rather than “taking the brakes off”
might overcome exhaustion in chronic infection. In a
vaccination setting, co-stimulatory ligands could also
boost the priming of immune cells and facilitate
development of an effective and sustained anti-HIV
immune response. More work is required to investigate
these potentially promising pathways.
Conclusion
In conclusion, a substantial body of pre-clinical data
highlights the potential of ICB for targeting persistent
SIV and HIV infection. Clinical data derived from PWH
on ART with or without malignancy indicate a modest
effect of reversing HIV latency with the clearest effects
to date seen in individuals receiving combination block-
ade that included anti-CTLA-4. To which extent and by
which mechanisms ICB can durably enhance HIV spe-
cific T-cell function is still being explored, but prelimi-
nary data indicate this may occur only in a subset of
treated individuals. This is consistent with results from
cancer treatment where anti-tumour response rates
with anti-PD-1 range as widely as 4�70% depending on
tumour pathology.88

While targeting more than one inhibitory pathway
may be superior to single-agent blockade, the enhanced
effect may come at a cost of increased toxicity and it is
currently unclear how these findings can be translated
into clinical strategies for HIV cure. The high and rap-
idly expanding number of ongoing clinical trials investi-
gating combination approaches in people with
malignancies will provide further information on
whether combined blockade can improve clinical effi-
cacy relative to toxicity but given the excellent prognosis
for PWH on ART, there is a much lower tolerance for
immune-related toxicities in this population. Single or
combined blockade of immune checkpoints in HIV is
therefore primarily focused on understanding how
interrupting the negative signalling, or potentiating co-
stimulatory signalling, might contribute to augmenting
HIV-specific T-cell function and/or eliminating latently
infected CD4+ T-cells. With future improvements in
risk mitigation or novel approaches to deliver ICB safely
to PWH without cancer, combinations of immune
checkpoint antibodies may become a viable clinical
strategy to test in HIV cure studies.
Search strategy and selection criteria
We searched the PubMed and Clarivate database in
August 2021 with the keywords: PD-1, PD-L1, PD-L2,
CTLA-4, TIGIT, TIM-3, LAG-3, GITR, anti-PD-1, anti-
PD-L1, anti-PD-L2, anti-CTLA-4, anti-TIGIT, anti-TIM-
3, anti-LAG-3, anti-GITR and immune checkpoints in
combination with HIV or SIV. Titles and abstracts were
reviewed and assessed for relevance.
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